all: implement lock revoke-keys command

The revoke-keys command allows nodes with tailnet lock keys
to collaborate to erase the use of a compromised key, and remove trust
in it.

Signed-off-by: Tom DNetto <tom@tailscale.com>
Updates ENG-1848
pull/8766/head
Tom DNetto 1 year ago committed by Tom
parent 7adf15f90e
commit 767e839db5

@ -961,6 +961,42 @@ func (lc *LocalClient) NetworkLockVerifySigningDeeplink(ctx context.Context, url
return decodeJSON[*tka.DeeplinkValidationResult](body)
}
// NetworkLockGenRecoveryAUM generates an AUM for recovering from a tailnet-lock key compromise.
func (lc *LocalClient) NetworkLockGenRecoveryAUM(ctx context.Context, removeKeys []tkatype.KeyID, forkFrom tka.AUMHash) ([]byte, error) {
vr := struct {
Keys []tkatype.KeyID
ForkFrom string
}{removeKeys, forkFrom.String()}
body, err := lc.send(ctx, "POST", "/localapi/v0/tka/generate-recovery-aum", 200, jsonBody(vr))
if err != nil {
return nil, fmt.Errorf("sending generate-recovery-aum: %w", err)
}
return body, nil
}
// NetworkLockCosignRecoveryAUM co-signs a recovery AUM using the node's tailnet lock key.
func (lc *LocalClient) NetworkLockCosignRecoveryAUM(ctx context.Context, aum tka.AUM) ([]byte, error) {
r := bytes.NewReader(aum.Serialize())
body, err := lc.send(ctx, "POST", "/localapi/v0/tka/cosign-recovery-aum", 200, r)
if err != nil {
return nil, fmt.Errorf("sending cosign-recovery-aum: %w", err)
}
return body, nil
}
// NetworkLockSubmitRecoveryAUM submits a recovery AUM to the control plane.
func (lc *LocalClient) NetworkLockSubmitRecoveryAUM(ctx context.Context, aum tka.AUM) error {
r := bytes.NewReader(aum.Serialize())
_, err := lc.send(ctx, "POST", "/localapi/v0/tka/submit-recovery-aum", 200, r)
if err != nil {
return fmt.Errorf("sending cosign-recovery-aum: %w", err)
}
return nil
}
// SetServeConfig sets or replaces the serving settings.
// If config is nil, settings are cleared and serving is disabled.
func (lc *LocalClient) SetServeConfig(ctx context.Context, config *ipn.ServeConfig) error {

@ -23,6 +23,7 @@ import (
"tailscale.com/ipn/ipnstate"
"tailscale.com/tka"
"tailscale.com/types/key"
"tailscale.com/types/tkatype"
)
var netlockCmd = &ffcli.Command{
@ -40,6 +41,7 @@ var netlockCmd = &ffcli.Command{
nlDisablementKDFCmd,
nlLogCmd,
nlLocalDisableCmd,
nlRevokeKeysCmd,
},
Exec: runNetworkLockNoSubcommand,
}
@ -711,3 +713,114 @@ func wrapAuthKey(ctx context.Context, keyStr string, status *ipnstate.Status) er
fmt.Println(wrapped)
return nil
}
var nlRevokeKeysArgs struct {
cosign bool
finish bool
forkFrom string
}
var nlRevokeKeysCmd = &ffcli.Command{
Name: "revoke-keys",
ShortUsage: "revoke-keys <tailnet-lock-key>...\n revoke-keys [--cosign] [--finish] <recovery-blob>",
ShortHelp: "Revoke compromised tailnet-lock keys",
LongHelp: `Retroactively revoke the specified tailnet lock keys (tlpub:abc).
Revoked keys are prevented from being used in the future. Any nodes previously signed
by revoked keys lose their authorization and must be signed again.
Revocation is a multi-step process that requires several signing nodes to ` + "`--cosign`" + ` the revocation. Use ` + "`tailscale lock remove`" + ` instead if the key has not been compromised.
1. To start, run ` + "`tailscale revoke-keys <tlpub-keys>`" + ` with the tailnet lock keys to revoke.
2. Re-run the ` + "`--cosign`" + ` command output by ` + "`revoke-keys`" + ` on other signing nodes. Use the
most recent command output on the next signing node in sequence.
3. Once the number of ` + "`--cosign`" + `s is greater than the number of keys being revoked,
run the command one final time with ` + "`--finish`" + ` instead of ` + "`--cosign`" + `.`,
Exec: runNetworkLockRevokeKeys,
FlagSet: (func() *flag.FlagSet {
fs := newFlagSet("lock revoke-keys")
fs.BoolVar(&nlRevokeKeysArgs.cosign, "cosign", false, "continue generating the recovery using the tailnet lock key on this device and the provided recovery blob")
fs.BoolVar(&nlRevokeKeysArgs.finish, "finish", false, "finish the recovery process by transmitting the revocation")
fs.StringVar(&nlRevokeKeysArgs.forkFrom, "fork-from", "", "parent AUM hash to rewrite from (advanced users only)")
return fs
})(),
}
func runNetworkLockRevokeKeys(ctx context.Context, args []string) error {
// First step in the process
if !nlRevokeKeysArgs.cosign && !nlRevokeKeysArgs.finish {
removeKeys, _, err := parseNLArgs(args, true, false)
if err != nil {
return err
}
keyIDs := make([]tkatype.KeyID, len(removeKeys))
for i, k := range removeKeys {
keyIDs[i], err = k.ID()
if err != nil {
return fmt.Errorf("generating keyID: %v", err)
}
}
var forkFrom tka.AUMHash
if nlRevokeKeysArgs.forkFrom != "" {
if len(nlRevokeKeysArgs.forkFrom) == (len(forkFrom) * 2) {
// Hex-encoded: like the output of the lock log command.
b, err := hex.DecodeString(nlRevokeKeysArgs.forkFrom)
if err != nil {
return fmt.Errorf("invalid fork-from hash: %v", err)
}
copy(forkFrom[:], b)
} else {
if err := forkFrom.UnmarshalText([]byte(nlRevokeKeysArgs.forkFrom)); err != nil {
return fmt.Errorf("invalid fork-from hash: %v", err)
}
}
}
aumBytes, err := localClient.NetworkLockGenRecoveryAUM(ctx, keyIDs, forkFrom)
if err != nil {
return fmt.Errorf("generation of recovery AUM failed: %w", err)
}
fmt.Printf(`Run the following command on another machine with a trusted tailnet lock key:
%s lock recover-compromised-key --cosign %X
`, os.Args[0], aumBytes)
return nil
}
// If we got this far, we need to co-sign the AUM and/or transmit it for distribution.
b, err := hex.DecodeString(args[0])
if err != nil {
return fmt.Errorf("parsing hex: %v", err)
}
var recoveryAUM tka.AUM
if err := recoveryAUM.Unserialize(b); err != nil {
return fmt.Errorf("decoding recovery AUM: %v", err)
}
if nlRevokeKeysArgs.cosign {
aumBytes, err := localClient.NetworkLockCosignRecoveryAUM(ctx, recoveryAUM)
if err != nil {
return fmt.Errorf("co-signing recovery AUM failed: %w", err)
}
fmt.Printf(`Co-signing completed successfully.
To accumulate an additional signature, run the following command on another machine with a trusted tailnet lock key:
%s lock recover-compromised-key --cosign %X
Alternatively if you are done with co-signing, complete recovery by running the following command:
%s lock recover-compromised-key --finish %X
`, os.Args[0], aumBytes, os.Args[0], aumBytes)
}
if nlRevokeKeysArgs.finish {
if err := localClient.NetworkLockSubmitRecoveryAUM(ctx, recoveryAUM); err != nil {
return fmt.Errorf("submitting recovery AUM failed: %w", err)
}
fmt.Println("Recovery completed.")
}
return nil
}

@ -845,6 +845,93 @@ func (b *LocalBackend) NetworkLockAffectedSigs(keyID tkatype.KeyID) ([]tkatype.M
return resp.Signatures, nil
}
// NetworkLockGenerateRecoveryAUM generates an AUM which retroactively removes trust in the
// specified keys. This AUM is signed by the current node and returned.
//
// If forkFrom is specified, it is used as the parent AUM to fork from. If the zero value,
// the parent AUM is determined automatically.
func (b *LocalBackend) NetworkLockGenerateRecoveryAUM(removeKeys []tkatype.KeyID, forkFrom tka.AUMHash) (*tka.AUM, error) {
b.mu.Lock()
defer b.mu.Unlock()
if b.tka == nil {
return nil, errNetworkLockNotActive
}
var nlPriv key.NLPrivate
if p := b.pm.CurrentPrefs(); p.Valid() && p.Persist().Valid() {
nlPriv = p.Persist().NetworkLockKey()
}
if nlPriv.IsZero() {
return nil, errMissingNetmap
}
aum, err := b.tka.authority.MakeRetroactiveRevocation(b.tka.storage, removeKeys, nlPriv.KeyID(), forkFrom)
if err != nil {
return nil, err
}
// Sign it ourselves.
aum.Signatures, err = nlPriv.SignAUM(aum.SigHash())
if err != nil {
return nil, fmt.Errorf("signing failed: %w", err)
}
return aum, nil
}
// NetworkLockCosignRecoveryAUM co-signs the provided recovery AUM and returns
// the updated structure.
//
// The recovery AUM provided should be the output from a previous call to
// NetworkLockGenerateRecoveryAUM or NetworkLockCosignRecoveryAUM.
func (b *LocalBackend) NetworkLockCosignRecoveryAUM(aum *tka.AUM) (*tka.AUM, error) {
b.mu.Lock()
defer b.mu.Unlock()
if b.tka == nil {
return nil, errNetworkLockNotActive
}
var nlPriv key.NLPrivate
if p := b.pm.CurrentPrefs(); p.Valid() && p.Persist().Valid() {
nlPriv = p.Persist().NetworkLockKey()
}
if nlPriv.IsZero() {
return nil, errMissingNetmap
}
for _, sig := range aum.Signatures {
if bytes.Equal(sig.KeyID, nlPriv.KeyID()) {
return nil, errors.New("this node has already signed this recovery AUM")
}
}
// Sign it ourselves.
sigs, err := nlPriv.SignAUM(aum.SigHash())
if err != nil {
return nil, fmt.Errorf("signing failed: %w", err)
}
aum.Signatures = append(aum.Signatures, sigs...)
return aum, nil
}
func (b *LocalBackend) NetworkLockSubmitRecoveryAUM(aum *tka.AUM) error {
b.mu.Lock()
defer b.mu.Unlock()
if b.tka == nil {
return errNetworkLockNotActive
}
var ourNodeKey key.NodePublic
if p := b.pm.CurrentPrefs(); p.Valid() && p.Persist().Valid() && !p.Persist().PrivateNodeKey().IsZero() {
ourNodeKey = p.Persist().PublicNodeKey()
}
if ourNodeKey.IsZero() {
return errors.New("no node-key: is tailscale logged in?")
}
b.mu.Unlock()
_, err := b.tkaDoSyncSend(ourNodeKey, aum.Hash(), []tka.AUM{*aum}, false)
b.mu.Lock()
return err
}
var tkaSuffixEncoder = base64.RawStdEncoding
// NetworkLockWrapPreauthKey wraps a pre-auth key with information to

@ -994,3 +994,129 @@ func TestTKAAffectedSigs(t *testing.T) {
})
}
}
func TestTKARecoverCompromisedKeyFlow(t *testing.T) {
nodePriv := key.NewNode()
nlPriv := key.NewNLPrivate()
cosignPriv := key.NewNLPrivate()
compromisedPriv := key.NewNLPrivate()
pm := must.Get(newProfileManager(new(mem.Store), t.Logf))
must.Do(pm.SetPrefs((&ipn.Prefs{
Persist: &persist.Persist{
PrivateNodeKey: nodePriv,
NetworkLockKey: nlPriv,
},
}).View()))
// Make a fake TKA authority, to seed local state.
disablementSecret := bytes.Repeat([]byte{0xa5}, 32)
key := tka.Key{Kind: tka.Key25519, Public: nlPriv.Public().Verifier(), Votes: 2}
cosignKey := tka.Key{Kind: tka.Key25519, Public: cosignPriv.Public().Verifier(), Votes: 2}
compromisedKey := tka.Key{Kind: tka.Key25519, Public: compromisedPriv.Public().Verifier(), Votes: 1}
temp := t.TempDir()
tkaPath := filepath.Join(temp, "tka-profile", string(pm.CurrentProfile().ID))
os.Mkdir(tkaPath, 0755)
chonk, err := tka.ChonkDir(tkaPath)
if err != nil {
t.Fatal(err)
}
authority, _, err := tka.Create(chonk, tka.State{
Keys: []tka.Key{key, compromisedKey, cosignKey},
DisablementSecrets: [][]byte{tka.DisablementKDF(disablementSecret)},
}, nlPriv)
if err != nil {
t.Fatalf("tka.Create() failed: %v", err)
}
ts, client := fakeNoiseServer(t, http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
defer r.Body.Close()
switch r.URL.Path {
case "/machine/tka/sync/send":
body := new(tailcfg.TKASyncSendRequest)
if err := json.NewDecoder(r.Body).Decode(body); err != nil {
t.Fatal(err)
}
t.Logf("got sync send:\n%+v", body)
var remoteHead tka.AUMHash
if err := remoteHead.UnmarshalText([]byte(body.Head)); err != nil {
t.Fatalf("head unmarshal: %v", err)
}
toApply := make([]tka.AUM, len(body.MissingAUMs))
for i, a := range body.MissingAUMs {
if err := toApply[i].Unserialize(a); err != nil {
t.Fatalf("decoding missingAUM[%d]: %v", i, err)
}
}
// Apply the recovery AUM to an authority to make sure it works.
if err := authority.Inform(chonk, toApply); err != nil {
t.Errorf("recovery AUM could not be applied: %v", err)
}
// Make sure the key we removed isn't trusted.
if authority.KeyTrusted(compromisedPriv.KeyID()) {
t.Error("compromised key was not removed from tka")
}
w.WriteHeader(200)
if err := json.NewEncoder(w).Encode(tailcfg.TKASubmitSignatureResponse{}); err != nil {
t.Fatal(err)
}
default:
t.Errorf("unhandled endpoint path: %v", r.URL.Path)
w.WriteHeader(404)
}
}))
defer ts.Close()
cc := fakeControlClient(t, client)
b := LocalBackend{
varRoot: temp,
cc: cc,
ccAuto: cc,
logf: t.Logf,
tka: &tkaState{
authority: authority,
storage: chonk,
},
pm: pm,
store: pm.Store(),
}
aum, err := b.NetworkLockGenerateRecoveryAUM([]tkatype.KeyID{compromisedPriv.KeyID()}, tka.AUMHash{})
if err != nil {
t.Fatalf("NetworkLockGenerateRecoveryAUM() failed: %v", err)
}
// Cosign using the cosigning key.
{
pm := must.Get(newProfileManager(new(mem.Store), t.Logf))
must.Do(pm.SetPrefs((&ipn.Prefs{
Persist: &persist.Persist{
PrivateNodeKey: nodePriv,
NetworkLockKey: cosignPriv,
},
}).View()))
b := LocalBackend{
varRoot: temp,
logf: t.Logf,
tka: &tkaState{
authority: authority,
storage: chonk,
},
pm: pm,
store: pm.Store(),
}
if aum, err = b.NetworkLockCosignRecoveryAUM(aum); err != nil {
t.Fatalf("NetworkLockCosignRecoveryAUM() failed: %v", err)
}
}
// Finally, submit the recovery AUM. Validation is done
// in the fake control handler.
if err := b.NetworkLockSubmitRecoveryAUM(aum); err != nil {
t.Errorf("NetworkLockSubmitRecoveryAUM() failed: %v", err)
}
}

@ -44,6 +44,7 @@ import (
"tailscale.com/types/logger"
"tailscale.com/types/logid"
"tailscale.com/types/ptr"
"tailscale.com/types/tkatype"
"tailscale.com/util/clientmetric"
"tailscale.com/util/httpm"
"tailscale.com/util/mak"
@ -106,6 +107,9 @@ var handler = map[string]localAPIHandler{
"tka/affected-sigs": (*Handler).serveTKAAffectedSigs,
"tka/wrap-preauth-key": (*Handler).serveTKAWrapPreauthKey,
"tka/verify-deeplink": (*Handler).serveTKAVerifySigningDeeplink,
"tka/generate-recovery-aum": (*Handler).serveTKAGenerateRecoveryAUM,
"tka/cosign-recovery-aum": (*Handler).serveTKACosignRecoveryAUM,
"tka/submit-recovery-aum": (*Handler).serveTKASubmitRecoveryAUM,
"upload-client-metrics": (*Handler).serveUploadClientMetrics,
"watch-ipn-bus": (*Handler).serveWatchIPNBus,
"whois": (*Handler).serveWhoIs,
@ -1747,6 +1751,103 @@ func (h *Handler) serveTKAAffectedSigs(w http.ResponseWriter, r *http.Request) {
w.Write(j)
}
func (h *Handler) serveTKAGenerateRecoveryAUM(w http.ResponseWriter, r *http.Request) {
if !h.PermitWrite {
http.Error(w, "access denied", http.StatusForbidden)
return
}
if r.Method != httpm.POST {
http.Error(w, "use POST", http.StatusMethodNotAllowed)
return
}
type verifyRequest struct {
Keys []tkatype.KeyID
ForkFrom string
}
var req verifyRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, "invalid JSON for verifyRequest body", http.StatusBadRequest)
return
}
var forkFrom tka.AUMHash
if req.ForkFrom != "" {
if err := forkFrom.UnmarshalText([]byte(req.ForkFrom)); err != nil {
http.Error(w, "decoding fork-from: "+err.Error(), http.StatusBadRequest)
return
}
}
res, err := h.b.NetworkLockGenerateRecoveryAUM(req.Keys, forkFrom)
if err != nil {
http.Error(w, err.Error(), 500)
return
}
w.Header().Set("Content-Type", "application/octet-stream")
w.Write(res.Serialize())
}
func (h *Handler) serveTKACosignRecoveryAUM(w http.ResponseWriter, r *http.Request) {
if !h.PermitWrite {
http.Error(w, "access denied", http.StatusForbidden)
return
}
if r.Method != httpm.POST {
http.Error(w, "use POST", http.StatusMethodNotAllowed)
return
}
body := io.LimitReader(r.Body, 1024*1024)
aumBytes, err := ioutil.ReadAll(body)
if err != nil {
http.Error(w, "reading AUM", http.StatusBadRequest)
return
}
var aum tka.AUM
if err := aum.Unserialize(aumBytes); err != nil {
http.Error(w, "decoding AUM", http.StatusBadRequest)
return
}
res, err := h.b.NetworkLockCosignRecoveryAUM(&aum)
if err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
return
}
w.Header().Set("Content-Type", "application/octet-stream")
w.Write(res.Serialize())
}
func (h *Handler) serveTKASubmitRecoveryAUM(w http.ResponseWriter, r *http.Request) {
if !h.PermitWrite {
http.Error(w, "access denied", http.StatusForbidden)
return
}
if r.Method != httpm.POST {
http.Error(w, "use POST", http.StatusMethodNotAllowed)
return
}
body := io.LimitReader(r.Body, 1024*1024)
aumBytes, err := ioutil.ReadAll(body)
if err != nil {
http.Error(w, "reading AUM", http.StatusBadRequest)
return
}
var aum tka.AUM
if err := aum.Unserialize(aumBytes); err != nil {
http.Error(w, "decoding AUM", http.StatusBadRequest)
return
}
if err := h.b.NetworkLockSubmitRecoveryAUM(&aum); err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
return
}
w.WriteHeader(http.StatusOK)
}
// serveProfiles serves profile switching-related endpoints. Supported methods
// and paths are:
// - GET /profiles/: list all profiles (JSON-encoded array of ipn.LoginProfiles)

@ -28,6 +28,9 @@ var cborDecOpts = cbor.DecOptions{
MaxMapPairs: 1024,
}
// Arbitrarily chosen limit on scanning AUM trees.
const maxScanIterations = 2000
// Authority is a Tailnet Key Authority. This type is the main coupling
// point to the rest of the tailscale client.
//
@ -471,7 +474,7 @@ func Open(storage Chonk) (*Authority, error) {
return nil, fmt.Errorf("reading last ancestor: %v", err)
}
c, err := computeActiveChain(storage, a, 2000)
c, err := computeActiveChain(storage, a, maxScanIterations)
if err != nil {
return nil, fmt.Errorf("active chain: %v", err)
}
@ -604,7 +607,7 @@ func (a *Authority) InformIdempotent(storage Chonk, updates []AUM) (Authority, e
state, hasState := stateAt[parent]
var err error
if !hasState {
if state, err = computeStateAt(storage, 2000, parent); err != nil {
if state, err = computeStateAt(storage, maxScanIterations, parent); err != nil {
return Authority{}, fmt.Errorf("update %d computing state: %v", i, err)
}
stateAt[parent] = state
@ -639,7 +642,7 @@ func (a *Authority) InformIdempotent(storage Chonk, updates []AUM) (Authority, e
}
oldestAncestor := a.oldestAncestor.Hash()
c, err := computeActiveChain(storage, &oldestAncestor, 2000)
c, err := computeActiveChain(storage, &oldestAncestor, maxScanIterations)
if err != nil {
return Authority{}, fmt.Errorf("recomputing active chain: %v", err)
}
@ -721,3 +724,115 @@ func (a *Authority) Compact(storage CompactableChonk, o CompactionOptions) error
a.oldestAncestor = ancestor
return nil
}
// findParentForRewrite finds the parent AUM to use when rewriting state to
// retroactively remove trust in the specified keys.
func (a *Authority) findParentForRewrite(storage Chonk, removeKeys []tkatype.KeyID, ourKey tkatype.KeyID) (AUMHash, error) {
cursor := a.Head()
for {
if cursor == a.oldestAncestor.Hash() {
// We've reached as far back in our history as we can,
// so we have to rewrite from here.
break
}
aum, err := storage.AUM(cursor)
if err != nil {
return AUMHash{}, fmt.Errorf("reading AUM %v: %w", cursor, err)
}
// An ideal rewrite parent trusts none of the keys to be removed.
state, err := computeStateAt(storage, maxScanIterations, cursor)
if err != nil {
return AUMHash{}, fmt.Errorf("computing state for %v: %w", cursor, err)
}
keyTrusted := false
for _, key := range removeKeys {
if _, err := state.GetKey(key); err == nil {
keyTrusted = true
}
}
if !keyTrusted {
// Success: the revoked keys are not trusted!
// Lets check that our key was trusted to ensure
// we can sign a fork from here.
if _, err := state.GetKey(ourKey); err == nil {
break
}
}
parent, hasParent := aum.Parent()
if !hasParent {
// This is the genesis AUM, so we have to rewrite from here.
break
}
cursor = parent
}
return cursor, nil
}
// MakeRetroactiveRevocation generates a forking update which revokes the specified keys, in
// such a manner that any malicious use of those keys is erased.
//
// If forkFrom is specified, it is used as the parent AUM to fork from. If the zero value,
// the parent AUM is determined automatically.
//
// The generated AUM must be signed with more signatures than the sum of key votes that
// were compromised, before being consumed by tka.Authority methods.
func (a *Authority) MakeRetroactiveRevocation(storage Chonk, removeKeys []tkatype.KeyID, ourKey tkatype.KeyID, forkFrom AUMHash) (*AUM, error) {
var parent AUMHash
if forkFrom == (AUMHash{}) {
// Make sure at least one of the recovery keys is currently trusted.
foundKey := false
for _, k := range removeKeys {
if _, err := a.state.GetKey(k); err == nil {
foundKey = true
break
}
}
if !foundKey {
return nil, errors.New("no provided key is currently trusted")
}
p, err := a.findParentForRewrite(storage, removeKeys, ourKey)
if err != nil {
return nil, fmt.Errorf("finding parent: %v", err)
}
parent = p
} else {
parent = forkFrom
}
// Construct the new state where the revoked keys are no longer trusted.
state := a.state.Clone()
for _, keyToRevoke := range removeKeys {
idx := -1
for i := range state.Keys {
keyID, err := state.Keys[i].ID()
if err != nil {
return nil, fmt.Errorf("computing keyID: %v", err)
}
if bytes.Equal(keyToRevoke, keyID) {
idx = i
break
}
}
if idx >= 0 {
state.Keys = append(state.Keys[:idx], state.Keys[idx+1:]...)
}
}
if len(state.Keys) == 0 {
return nil, errors.New("cannot revoke all trusted keys")
}
state.LastAUMHash = nil // checkpoints can't specify a LastAUMHash
forkingAUM := &AUM{
MessageKind: AUMCheckpoint,
State: &state,
PrevAUMHash: parent[:],
}
return forkingAUM, forkingAUM.StaticValidate()
}

@ -524,3 +524,131 @@ func TestAuthorityCompact(t *testing.T) {
t.Errorf("ancestor = %v, want %v", anc, c.AUMHashes["C"])
}
}
func TestFindParentForRewrite(t *testing.T) {
pub, _ := testingKey25519(t, 1)
k1 := Key{Kind: Key25519, Public: pub, Votes: 1}
pub2, _ := testingKey25519(t, 2)
k2 := Key{Kind: Key25519, Public: pub2, Votes: 1}
k2ID, _ := k2.ID()
pub3, _ := testingKey25519(t, 3)
k3 := Key{Kind: Key25519, Public: pub3, Votes: 1}
c := newTestchain(t, `
A -> B -> C -> D -> E
A.template = genesis
B.template = add2
C.template = add3
D.template = remove2
`,
optTemplate("genesis", AUM{MessageKind: AUMCheckpoint, State: &State{
Keys: []Key{k1},
DisablementSecrets: [][]byte{DisablementKDF([]byte{1, 2, 3})},
}}),
optTemplate("add2", AUM{MessageKind: AUMAddKey, Key: &k2}),
optTemplate("add3", AUM{MessageKind: AUMAddKey, Key: &k3}),
optTemplate("remove2", AUM{MessageKind: AUMRemoveKey, KeyID: k2ID}))
a, err := Open(c.Chonk())
if err != nil {
t.Fatal(err)
}
// k1 was trusted at genesis, so there's no better rewrite parent
// than the genesis.
k1ID, _ := k1.ID()
k1P, err := a.findParentForRewrite(c.Chonk(), []tkatype.KeyID{k1ID}, k1ID)
if err != nil {
t.Fatalf("FindParentForRewrite(k1) failed: %v", err)
}
if k1P != a.oldestAncestor.Hash() {
t.Errorf("FindParentForRewrite(k1) = %v, want %v", k1P, a.oldestAncestor.Hash())
}
// k3 was trusted at C, so B would be an ideal rewrite point.
k3ID, _ := k3.ID()
k3P, err := a.findParentForRewrite(c.Chonk(), []tkatype.KeyID{k3ID}, k1ID)
if err != nil {
t.Fatalf("FindParentForRewrite(k3) failed: %v", err)
}
if k3P != c.AUMHashes["B"] {
t.Errorf("FindParentForRewrite(k3) = %v, want %v", k3P, c.AUMHashes["B"])
}
// k2 was added but then removed, so HEAD is an appropriate rewrite point.
k2P, err := a.findParentForRewrite(c.Chonk(), []tkatype.KeyID{k2ID}, k1ID)
if err != nil {
t.Fatalf("FindParentForRewrite(k2) failed: %v", err)
}
if k3P != c.AUMHashes["B"] {
t.Errorf("FindParentForRewrite(k2) = %v, want %v", k2P, a.Head())
}
// There's no appropriate point where both k2 and k3 are simultaneously not trusted,
// so the best rewrite point is the genesis AUM.
doubleP, err := a.findParentForRewrite(c.Chonk(), []tkatype.KeyID{k2ID, k3ID}, k1ID)
if err != nil {
t.Fatalf("FindParentForRewrite({k2, k3}) failed: %v", err)
}
if doubleP != a.oldestAncestor.Hash() {
t.Errorf("FindParentForRewrite({k2, k3}) = %v, want %v", doubleP, a.oldestAncestor.Hash())
}
}
func TestMakeRetroactiveRevocation(t *testing.T) {
pub, _ := testingKey25519(t, 1)
k1 := Key{Kind: Key25519, Public: pub, Votes: 1}
pub2, _ := testingKey25519(t, 2)
k2 := Key{Kind: Key25519, Public: pub2, Votes: 1}
pub3, _ := testingKey25519(t, 3)
k3 := Key{Kind: Key25519, Public: pub3, Votes: 1}
c := newTestchain(t, `
A -> B -> C -> D
A.template = genesis
C.template = add2
D.template = add3
`,
optTemplate("genesis", AUM{MessageKind: AUMCheckpoint, State: &State{
Keys: []Key{k1},
DisablementSecrets: [][]byte{DisablementKDF([]byte{1, 2, 3})},
}}),
optTemplate("add2", AUM{MessageKind: AUMAddKey, Key: &k2}),
optTemplate("add3", AUM{MessageKind: AUMAddKey, Key: &k3}))
a, err := Open(c.Chonk())
if err != nil {
t.Fatal(err)
}
// k2 was added by C, so a forking revocation should:
// - have B as a parent
// - trust the remaining keys at the time, k1 & k3.
k1ID, _ := k1.ID()
k2ID, _ := k2.ID()
k3ID, _ := k3.ID()
forkingAUM, err := a.MakeRetroactiveRevocation(c.Chonk(), []tkatype.KeyID{k2ID}, k1ID, AUMHash{})
if err != nil {
t.Fatalf("MakeRetroactiveRevocation(k2) failed: %v", err)
}
if bHash := c.AUMHashes["B"]; !bytes.Equal(forkingAUM.PrevAUMHash, bHash[:]) {
t.Errorf("forking AUM has parent %v, want %v", forkingAUM.PrevAUMHash, bHash[:])
}
if _, err := forkingAUM.State.GetKey(k1ID); err != nil {
t.Error("Forked state did not trust k1")
}
if _, err := forkingAUM.State.GetKey(k3ID); err != nil {
t.Error("Forked state did not trust k3")
}
if _, err := forkingAUM.State.GetKey(k2ID); err == nil {
t.Error("Forked state trusted removed-key k2")
}
// Test that removing all trusted keys results in an error.
_, err = a.MakeRetroactiveRevocation(c.Chonk(), []tkatype.KeyID{k1ID, k2ID, k3ID}, k1ID, AUMHash{})
if wantErr := "cannot revoke all trusted keys"; err == nil || err.Error() != wantErr {
t.Fatalf("MakeRetroactiveRevocation({k1, k2, k3}) returned %v, expected %q", err, wantErr)
}
}

Loading…
Cancel
Save