util/deephash: generate type-specific hasher funcs

name                old time/op    new time/op    delta
Hash-8                71.1µs ± 2%    71.5µs ± 1%     ~     (p=0.114 n=9+8)
HashPacketFilter-8    8.39µs ± 1%    4.83µs ± 2%  -42.38%  (p=0.000 n=8+9)
HashMapAcyclic-8      56.2µs ± 1%    56.9µs ± 2%   +1.17%  (p=0.035 n=10+9)
TailcfgNode-8         6.49µs ± 2%    3.54µs ± 1%  -45.37%  (p=0.000 n=9+9)
HashArray-8            729ns ± 2%     566ns ± 3%  -22.30%  (p=0.000 n=10+10)

name                old alloc/op   new alloc/op   delta
Hash-8                 24.0B ± 0%     24.0B ± 0%     ~     (all equal)
HashPacketFilter-8     24.0B ± 0%     24.0B ± 0%     ~     (all equal)
HashMapAcyclic-8       0.00B          0.00B          ~     (all equal)
TailcfgNode-8          0.00B          0.00B          ~     (all equal)
HashArray-8            0.00B          0.00B          ~     (all equal)

name                old allocs/op  new allocs/op  delta
Hash-8                  1.00 ± 0%      1.00 ± 0%     ~     (all equal)
HashPacketFilter-8      1.00 ± 0%      1.00 ± 0%     ~     (all equal)
HashMapAcyclic-8        0.00           0.00          ~     (all equal)
TailcfgNode-8           0.00           0.00          ~     (all equal)
HashArray-8             0.00           0.00          ~     (all equal)

Change-Id: I34c4e786e748fe60280646d40cc63a2adb2ea6fe
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
pull/5096/head
Brad Fitzpatrick 2 years ago committed by Brad Fitzpatrick
parent 4d0461f721
commit 2a22ea3e83

@ -26,6 +26,7 @@ import (
"encoding/hex"
"fmt"
"hash"
"log"
"math"
"reflect"
"sync"
@ -142,6 +143,35 @@ func Hash(v any) (s Sum) {
return h.sum()
}
// HasherForType is like Hash, but it returns a Hash func that's specialized for
// the provided reflect type, avoiding a map lookup per value.
func HasherForType[T any]() func(T) Sum {
var zeroT T
ti := getTypeInfo(reflect.TypeOf(zeroT))
seedOnce.Do(initSeed)
return func(v T) Sum {
h := hasherPool.Get().(*hasher)
defer hasherPool.Put(h)
h.reset()
h.hashUint64(seed)
rv := reflect.ValueOf(v)
if rv.IsValid() {
// Always treat the Hash input as an interface (it is), including hashing
// its type, otherwise two Hash calls of different types could hash to the
// same bytes off the different types and get equivalent Sum values. This is
// the same thing that we do for reflect.Kind Interface in hashValue, but
// the initial reflect.ValueOf from an interface value effectively strips
// the interface box off so we have to do it at the top level by hand.
h.hashType(rv.Type())
h.hashValueWithType(rv, ti, false)
}
return h.sum()
}
}
// Update sets last to the hash of v and reports whether its value changed.
func Update(last *Sum, v ...any) (changed bool) {
sum := Hash(v)
@ -170,14 +200,26 @@ func (h *hasher) hashUint32(i uint32) {
binary.LittleEndian.PutUint32(h.scratch[:4], i)
h.bw.Write(h.scratch[:4])
}
func (h *hasher) hashLen(n int) {
binary.LittleEndian.PutUint64(h.scratch[:8], uint64(n))
h.bw.Write(h.scratch[:8])
}
func (h *hasher) hashUint64(i uint64) {
binary.LittleEndian.PutUint64(h.scratch[:8], i)
h.bw.Write(h.scratch[:8])
}
var uint8Type = reflect.TypeOf(byte(0))
var (
uint8Type = reflect.TypeOf(byte(0))
timeTimeType = reflect.TypeOf(time.Time{})
)
// typeInfo describes properties of a type.
//
// A non-nil typeInfo is populated into the typeHasher map
// when its type is first requested, before its func is created.
// Its func field fn is only populated once the type has been created.
// This is used for recursive types.
type typeInfo struct {
rtype reflect.Type
canMemHash bool
@ -190,11 +232,394 @@ type typeInfo struct {
// keyTypeInfo is the map key type's typeInfo.
// It's set when rtype is of Kind Map.
keyTypeInfo *typeInfo
hashFuncOnce sync.Once
hashFuncLazy typeHasherFunc // nil until created
}
// returns ok if it was handled; else slow path runs
type typeHasherFunc func(h *hasher, v reflect.Value) (ok bool)
var typeInfoMap sync.Map // map[reflect.Type]*typeInfo
var typeInfoMapPopulate sync.Mutex // just for adding to typeInfoMap
func (ti *typeInfo) hasher() typeHasherFunc {
ti.hashFuncOnce.Do(ti.buildHashFuncOnce)
return ti.hashFuncLazy
}
func (ti *typeInfo) buildHashFuncOnce() {
ti.hashFuncLazy = genTypeHasher(ti.rtype)
}
func (h *hasher) hashBoolv(v reflect.Value) bool {
var b byte
if v.Bool() {
b = 1
}
h.hashUint8(b)
return true
}
func (h *hasher) hashUint8v(v reflect.Value) bool {
h.hashUint8(uint8(v.Uint()))
return true
}
func (h *hasher) hashInt8v(v reflect.Value) bool {
h.hashUint8(uint8(v.Int()))
return true
}
func (h *hasher) hashUint16v(v reflect.Value) bool {
h.hashUint16(uint16(v.Uint()))
return true
}
func (h *hasher) hashInt16v(v reflect.Value) bool {
h.hashUint16(uint16(v.Int()))
return true
}
func (h *hasher) hashUint32v(v reflect.Value) bool {
h.hashUint32(uint32(v.Uint()))
return true
}
func (h *hasher) hashInt32v(v reflect.Value) bool {
h.hashUint32(uint32(v.Int()))
return true
}
func (h *hasher) hashUint64v(v reflect.Value) bool {
h.hashUint64(v.Uint())
return true
}
func (h *hasher) hashInt64v(v reflect.Value) bool {
h.hashUint64(uint64(v.Int()))
return true
}
func hashStructAppenderTo(h *hasher, v reflect.Value) bool {
if !v.CanInterface() {
return false // slow path
}
var a appenderTo
if v.CanAddr() {
a = v.Addr().Interface().(appenderTo)
} else {
a = v.Interface().(appenderTo)
}
size := h.scratch[:8]
record := a.AppendTo(size)
binary.LittleEndian.PutUint64(record, uint64(len(record)-len(size)))
h.bw.Write(record)
return true
}
// hashPointerAppenderTo hashes v, a reflect.Ptr, that implements appenderTo.
func hashPointerAppenderTo(h *hasher, v reflect.Value) bool {
if !v.CanInterface() {
return false // slow path
}
if v.IsNil() {
h.hashUint8(0) // indicates nil
return true
}
h.hashUint8(1) // indicates visiting a pointer
a := v.Interface().(appenderTo)
size := h.scratch[:8]
record := a.AppendTo(size)
binary.LittleEndian.PutUint64(record, uint64(len(record)-len(size)))
h.bw.Write(record)
return true
}
// fieldInfo describes a struct field.
type fieldInfo struct {
index int // index of field for reflect.Value.Field(n)
typeInfo *typeInfo
canMemHash bool
offset uintptr // when we can memhash the field
size uintptr // when we can memhash the field
}
// mergeContiguousFieldsCopy returns a copy of f with contiguous memhashable fields
// merged together. Such fields get a bogus index and fu value.
func mergeContiguousFieldsCopy(in []fieldInfo) []fieldInfo {
ret := make([]fieldInfo, 0, len(in))
var last *fieldInfo
for _, f := range in {
// Combine two fields if they're both contiguous & memhash-able.
if f.canMemHash && last != nil && last.canMemHash && last.offset+last.size == f.offset {
last.size += f.size
last.index = -1
last.typeInfo = nil
} else {
ret = append(ret, f)
last = &ret[len(ret)-1]
}
}
return ret
}
// genHashStructFields generates a typeHasherFunc for t, which must be of kind Struct.
func genHashStructFields(t reflect.Type) typeHasherFunc {
fields := make([]fieldInfo, 0, t.NumField())
for i, n := 0, t.NumField(); i < n; i++ {
sf := t.Field(i)
if sf.Type.Size() == 0 {
continue
}
fields = append(fields, fieldInfo{
index: i,
typeInfo: getTypeInfo(sf.Type),
canMemHash: canMemHash(sf.Type),
offset: sf.Offset,
size: sf.Type.Size(),
})
}
fieldsIfCanAddr := mergeContiguousFieldsCopy(fields)
return structHasher{fields, fieldsIfCanAddr}.hash
}
type structHasher struct {
fields, fieldsIfCanAddr []fieldInfo
}
func (sh structHasher) hash(h *hasher, v reflect.Value) bool {
var base unsafe.Pointer
if v.CanAddr() {
base = v.Addr().UnsafePointer()
for _, f := range sh.fieldsIfCanAddr {
if f.canMemHash {
h.bw.Write(unsafe.Slice((*byte)(unsafe.Pointer(uintptr(base)+f.offset)), f.size))
} else if !f.typeInfo.hasher()(h, v.Field(f.index)) {
return false
}
}
} else {
for _, f := range sh.fields {
if !f.typeInfo.hasher()(h, v.Field(f.index)) {
return false
}
}
}
return true
}
// genHashPtrToMemoryRange returns a hasher where the reflect.Value is a Ptr to
// the provided eleType.
func genHashPtrToMemoryRange(eleType reflect.Type) typeHasherFunc {
size := eleType.Size()
return func(h *hasher, v reflect.Value) bool {
if v.IsNil() {
h.hashUint8(0) // indicates nil
} else {
h.hashUint8(1) // indicates visiting a pointer
h.bw.Write(unsafe.Slice((*byte)(v.UnsafePointer()), size))
}
return true
}
}
const debug = false
func genTypeHasher(t reflect.Type) typeHasherFunc {
if debug {
log.Printf("generating func for %v", t)
}
switch t.Kind() {
case reflect.Bool:
return (*hasher).hashBoolv
case reflect.Int8:
return (*hasher).hashInt8v
case reflect.Int16:
return (*hasher).hashInt16v
case reflect.Int32:
return (*hasher).hashInt32v
case reflect.Int, reflect.Int64:
return (*hasher).hashInt64v
case reflect.Uint8:
return (*hasher).hashUint8v
case reflect.Uint16:
return (*hasher).hashUint16v
case reflect.Uint32:
return (*hasher).hashUint32v
case reflect.Uint, reflect.Uintptr, reflect.Uint64:
return (*hasher).hashUint64v
case reflect.Float32:
return (*hasher).hashFloat32v
case reflect.Float64:
return (*hasher).hashFloat64v
case reflect.Complex64:
return (*hasher).hashComplex64v
case reflect.Complex128:
return (*hasher).hashComplex128v
case reflect.String:
return (*hasher).hashString
case reflect.Slice:
et := t.Elem()
if canMemHash(et) {
return (*hasher).hashSliceMem
}
eti := getTypeInfo(et)
return genHashSliceElements(eti)
case reflect.Array:
et := t.Elem()
eti := getTypeInfo(et)
return genHashArray(t, eti)
case reflect.Struct:
if t == timeTimeType {
return (*hasher).hashTimev
}
if t.Implements(appenderToType) {
return hashStructAppenderTo
}
return genHashStructFields(t)
case reflect.Pointer:
et := t.Elem()
if canMemHash(et) {
return genHashPtrToMemoryRange(et)
}
if t.Implements(appenderToType) {
return hashPointerAppenderTo
}
if !typeIsRecursive(t) {
eti := getTypeInfo(et)
return func(h *hasher, v reflect.Value) bool {
if v.IsNil() {
h.hashUint8(0) // indicates nil
return true
}
h.hashUint8(1) // indicates visiting a pointer
return eti.hasher()(h, v.Elem())
}
}
}
return func(h *hasher, v reflect.Value) bool {
if debug {
log.Printf("unhandled type %v", v.Type())
}
return false
}
}
// hashString hashes v, of kind String.
func (h *hasher) hashString(v reflect.Value) bool {
s := v.String()
h.hashLen(len(s))
h.bw.WriteString(s)
return true
}
func (h *hasher) hashFloat32v(v reflect.Value) bool {
h.hashUint32(math.Float32bits(float32(v.Float())))
return true
}
func (h *hasher) hashFloat64v(v reflect.Value) bool {
h.hashUint64(math.Float64bits(v.Float()))
return true
}
func (h *hasher) hashComplex64v(v reflect.Value) bool {
c := complex64(v.Complex())
h.hashUint32(math.Float32bits(real(c)))
h.hashUint32(math.Float32bits(imag(c)))
return true
}
func (h *hasher) hashComplex128v(v reflect.Value) bool {
c := v.Complex()
h.hashUint64(math.Float64bits(real(c)))
h.hashUint64(math.Float64bits(imag(c)))
return true
}
// hashString hashes v, of kind time.Time.
func (h *hasher) hashTimev(v reflect.Value) bool {
var t time.Time
if v.CanAddr() {
t = *(v.Addr().Interface().(*time.Time))
} else {
t = v.Interface().(time.Time)
}
b := t.AppendFormat(h.scratch[:1], time.RFC3339Nano)
b[0] = byte(len(b) - 1) // more than sufficient width; if not, good enough.
h.bw.Write(b)
return true
}
// hashSliceMem hashes v, of kind Slice, with a memhash-able element type.
func (h *hasher) hashSliceMem(v reflect.Value) bool {
vLen := v.Len()
h.hashUint64(uint64(vLen))
if vLen == 0 {
return true
}
h.bw.Write(unsafe.Slice((*byte)(v.UnsafePointer()), v.Type().Elem().Size()*uintptr(vLen)))
return true
}
func genHashArrayMem(n int, arraySize uintptr, efu *typeInfo) typeHasherFunc {
byElement := genHashArrayElements(n, efu)
return func(h *hasher, v reflect.Value) bool {
if v.CanAddr() {
h.bw.Write(unsafe.Slice((*byte)(v.Addr().UnsafePointer()), arraySize))
return true
}
return byElement(h, v)
}
}
func genHashArrayElements(n int, eti *typeInfo) typeHasherFunc {
return func(h *hasher, v reflect.Value) bool {
for i := 0; i < n; i++ {
if !eti.hasher()(h, v.Index(i)) {
return false
}
}
return true
}
}
func noopHasherFunc(h *hasher, v reflect.Value) bool { return true }
func genHashArray(t reflect.Type, eti *typeInfo) typeHasherFunc {
if t.Size() == 0 {
return noopHasherFunc
}
et := t.Elem()
if canMemHash(et) {
return genHashArrayMem(t.Len(), t.Size(), eti)
}
n := t.Len()
return genHashArrayElements(n, eti)
}
func genHashSliceElements(eti *typeInfo) typeHasherFunc {
return sliceElementHasher{eti}.hash
}
type sliceElementHasher struct {
eti *typeInfo
}
func (seh sliceElementHasher) hash(h *hasher, v reflect.Value) bool {
vLen := v.Len()
h.hashUint64(uint64(vLen))
for i := 0; i < vLen; i++ {
if !seh.eti.hasher()(h, v.Index(i)) {
return false
}
}
return true
}
func getTypeInfo(t reflect.Type) *typeInfo {
if f, ok := typeInfoMap.Load(t); ok {
return f.(*typeInfo)
@ -353,6 +778,13 @@ func (h *hasher) hashValueWithType(v reflect.Value, ti *typeInfo, forceCycleChec
w := h.bw
doCheckCycles := forceCycleChecking || ti.isRecursive
if !doCheckCycles {
hf := ti.hasher()
if hf(h, v) {
return
}
}
// Generic handling.
switch v.Kind() {
default:

@ -392,6 +392,238 @@ func TestCanMemHash(t *testing.T) {
}
}
func TestGetTypeHasher(t *testing.T) {
switch runtime.GOARCH {
case "amd64", "arm64", "arm", "386", "riscv64":
default:
// Test outputs below are specifically for little-endian machines.
// Just skip everything else for now. Feel free to add more above if
// you have the hardware to test and it's little-endian.
t.Skipf("skipping on %v", runtime.GOARCH)
}
type typedString string
var (
someInt = int('A')
someComplex128 = complex128(1 + 2i)
someIP = netaddr.MustParseIP("1.2.3.4")
)
tests := []struct {
name string
val any
want bool // set true automatically if out != ""
out string
out32 string // overwrites out if 32-bit
}{
{
name: "int",
val: int(1),
out: "\x01\x00\x00\x00\x00\x00\x00\x00",
},
{
name: "int_negative",
val: int(-1),
out: "\xff\xff\xff\xff\xff\xff\xff\xff",
},
{
name: "int8",
val: int8(1),
out: "\x01",
},
{
name: "float64",
val: float64(1.0),
out: "\x00\x00\x00\x00\x00\x00\xf0?",
},
{
name: "float32",
val: float32(1.0),
out: "\x00\x00\x80?",
},
{
name: "string",
val: "foo",
out: "\x03\x00\x00\x00\x00\x00\x00\x00foo",
},
{
name: "typedString",
val: typedString("foo"),
out: "\x03\x00\x00\x00\x00\x00\x00\x00foo",
},
{
name: "string_slice",
val: []string{"foo", "bar"},
out: "\x02\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00foo\x03\x00\x00\x00\x00\x00\x00\x00bar",
},
{
name: "int_slice",
val: []int{1, 0, -1},
out: "\x03\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff",
out32: "\x03\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff",
},
{
name: "struct",
val: struct {
a, b int
c uint16
}{1, -1, 2},
out: "\x01\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\xff\xff\xff\xff\x02\x00",
},
{
name: "nil_int_ptr",
val: (*int)(nil),
out: "\x00",
},
{
name: "int_ptr",
val: &someInt,
out: "\x01A\x00\x00\x00\x00\x00\x00\x00",
out32: "\x01A\x00\x00\x00",
},
{
name: "nil_uint32_ptr",
val: (*uint32)(nil),
out: "\x00",
},
{
name: "complex128_ptr",
val: &someComplex128,
out: "\x01\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\x00@",
},
{
name: "packet_filter",
val: filterRules,
out: "\x04\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00*\v\x00\x00\x00\x00\x00\x00\x0010.1.3.4/32\v\x00\x00\x00\x00\x00\x00\x0010.0.0.0/24\x03\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\n\x00\x00\x00\x00\x00\x00\x001.2.3.4/32\x01 \x00\x00\x00\x00\x00\x00\x00\x01\x00\x02\x00\x04\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\n\x00\x00\x00\x00\x00\x00\x001.2.3.4/32\x01\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00foo\x01\x00\x00\x00\x00\x00\x00\x00\v\x00\x00\x00\x00\x00\x00\x00foooooooooo\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\f\x00\x00\x00\x00\x00\x00\x00baaaaaarrrrr\x00\x01\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\v\x00\x00\x00\x00\x00\x00\x00foooooooooo\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\f\x00\x00\x00\x00\x00\x00\x00baaaaaarrrrr\x00\x01\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\v\x00\x00\x00\x00\x00\x00\x00foooooooooo\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\f\x00\x00\x00\x00\x00\x00\x00baaaaaarrrrr\x00\x01\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
out32: "\x04\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00*\v\x00\x00\x00\x00\x00\x00\x0010.1.3.4/32\v\x00\x00\x00\x00\x00\x00\x0010.0.0.0/24\x03\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\n\x00\x00\x00\x00\x00\x00\x001.2.3.4/32\x01 \x00\x00\x00\x01\x00\x02\x00\x04\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\n\x00\x00\x00\x00\x00\x00\x001.2.3.4/32\x01\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00foo\x01\x00\x00\x00\x00\x00\x00\x00\v\x00\x00\x00\x00\x00\x00\x00foooooooooo\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\f\x00\x00\x00\x00\x00\x00\x00baaaaaarrrrr\x00\x01\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\v\x00\x00\x00\x00\x00\x00\x00foooooooooo\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\f\x00\x00\x00\x00\x00\x00\x00baaaaaarrrrr\x00\x01\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\v\x00\x00\x00\x00\x00\x00\x00foooooooooo\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\f\x00\x00\x00\x00\x00\x00\x00baaaaaarrrrr\x00\x01\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
},
{
name: "netaddr.IP",
val: netaddr.MustParseIP("fe80::123%foo"),
out: "\r\x00\x00\x00\x00\x00\x00\x00fe80::123%foo",
},
{
name: "ptr-netaddr.IP",
val: &someIP,
out: "\x01\a\x00\x00\x00\x00\x00\x00\x001.2.3.4",
},
{
name: "ptr-nil-netaddr.IP",
val: (*netaddr.IP)(nil),
out: "\x00",
},
{
name: "time",
val: time.Unix(0, 0).In(time.UTC),
out: "\x141970-01-01T00:00:00Z",
},
{
name: "time_custom_zone",
val: time.Unix(1655311822, 0).In(time.FixedZone("FOO", -60*60)),
out: "\x192022-06-15T15:50:22-01:00",
},
{
name: "time_nil",
val: (*time.Time)(nil),
out: "\x00",
},
{
name: "array_memhash",
val: [4]byte{1, 2, 3, 4},
out: "\x01\x02\x03\x04",
},
{
name: "array_ptr_memhash",
val: ptrTo([4]byte{1, 2, 3, 4}),
out: "\x01\x01\x02\x03\x04",
},
{
name: "ptr_to_struct_partially_memhashable",
val: &struct {
A int16
B int16
C *int
}{5, 6, nil},
out: "\x01\x05\x00\x06\x00\x00",
},
{
name: "struct_partially_memhashable_but_cant_addr",
val: struct {
A int16
B int16
C *int
}{5, 6, nil},
out: "\x05\x00\x06\x00\x00",
},
{
name: "array_elements",
val: [4]byte{1, 2, 3, 4},
out: "\x01\x02\x03\x04",
},
{
name: "bool",
val: true,
out: "\x01",
},
{
name: "IntIntByteInt",
val: IntIntByteInt{1, 2, 3, 4},
out: "\x01\x00\x00\x00\x02\x00\x00\x00\x03\x04\x00\x00\x00",
},
{
name: "IntIntByteInt-canddr",
val: &IntIntByteInt{1, 2, 3, 4},
out: "\x01\x01\x00\x00\x00\x02\x00\x00\x00\x03\x04\x00\x00\x00",
},
{
name: "array-IntIntByteInt",
val: [2]IntIntByteInt{
{1, 2, 3, 4},
{5, 6, 7, 8},
},
out: "\x01\x00\x00\x00\x02\x00\x00\x00\x03\x04\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\a\b\x00\x00\x00",
},
{
name: "array-IntIntByteInt-canaddr",
val: &[2]IntIntByteInt{
{1, 2, 3, 4},
{5, 6, 7, 8},
},
out: "\x01\x01\x00\x00\x00\x02\x00\x00\x00\x03\x04\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\a\b\x00\x00\x00",
},
{
name: "tailcfg.Node",
val: &tailcfg.Node{},
out: "\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x140001-01-01T00:00:00Z\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x140001-01-01T00:00:00Z\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
rv := reflect.ValueOf(tt.val)
fn := getTypeInfo(rv.Type()).hasher()
var buf bytes.Buffer
h := &hasher{
bw: bufio.NewWriter(&buf),
}
got := fn(h, rv)
const ptrSize = 32 << uintptr(^uintptr(0)>>63)
if tt.out32 != "" && ptrSize == 32 {
tt.out = tt.out32
}
if tt.out != "" {
tt.want = true
}
if got != tt.want {
t.Fatalf("func returned %v; want %v", got, tt.want)
}
if err := h.bw.Flush(); err != nil {
t.Fatal(err)
}
if got := buf.String(); got != tt.out {
t.Fatalf("got %q; want %q", got, tt.out)
}
})
}
}
var sink = Hash("foo")
func BenchmarkHash(b *testing.B) {
@ -448,8 +680,9 @@ var filterRules = []tailcfg.FilterRule{
func BenchmarkHashPacketFilter(b *testing.B) {
b.ReportAllocs()
hash := HasherForType[[]tailcfg.FilterRule]()
for i := 0; i < b.N; i++ {
sink = Hash(filterRules)
sink = hash(filterRules)
}
}

Loading…
Cancel
Save