mirror of https://github.com/tailscale/tailscale/
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
227 lines
7.6 KiB
Go
227 lines
7.6 KiB
Go
2 years ago
|
// Copyright (c) Tailscale Inc & AUTHORS
|
||
|
// SPDX-License-Identifier: BSD-3-Clause
|
||
|
|
||
|
package art
|
||
|
|
||
|
import (
|
||
|
"bytes"
|
||
|
"fmt"
|
||
|
"io"
|
||
|
"math/bits"
|
||
|
"strconv"
|
||
|
"strings"
|
||
|
)
|
||
|
|
||
|
// strideEntry is a strideTable entry.
|
||
|
type strideEntry[T any] struct {
|
||
|
// prefixIndex is the prefixIndex(...) value that caused this stride entry's
|
||
|
// value to be populated, or 0 if value is nil.
|
||
|
//
|
||
|
// We need to keep track of this because allot() uses it to determine
|
||
|
// whether an entry was propagated from a parent entry, or if it's a
|
||
|
// different independent route.
|
||
|
prefixIndex int
|
||
|
// value is the value associated with the strideEntry, if any.
|
||
|
value *T
|
||
|
// child is the child strideTable associated with the strideEntry, if any.
|
||
|
child *strideTable[T]
|
||
|
}
|
||
|
|
||
|
// strideTable is a binary tree that implements an 8-bit routing table.
|
||
|
//
|
||
|
// The leaves of the binary tree are host routes (/8s). Each parent is a
|
||
|
// successively larger prefix that encompasses its children (/7 through /0).
|
||
|
type strideTable[T any] struct {
|
||
|
// entries is the nodes of the binary tree, laid out in a flattened array.
|
||
|
//
|
||
|
// The array indices are arranged by the prefixIndex function, such that the
|
||
|
// parent of the node at index i is located at index i>>1, and its children
|
||
|
// at indices i<<1 and (i<<1)+1.
|
||
|
//
|
||
|
// A few consequences of this arrangement: host routes (/8) occupy the last
|
||
|
// 256 entries in the table; the single default route /0 is at index 1, and
|
||
|
// index 0 is unused (in the original paper, it's hijacked through sneaky C
|
||
|
// memory trickery to store the refcount, but this is Go, where we don't
|
||
|
// store random bits in pointers lest we confuse the GC)
|
||
|
entries [lastHostIndex + 1]strideEntry[T]
|
||
|
// refs is the number of route entries and child strideTables referenced by
|
||
|
// this table. It is used in the multi-layered logic to determine when this
|
||
|
// table is empty and can be deleted.
|
||
|
refs int
|
||
|
}
|
||
|
|
||
|
const (
|
||
|
// firstHostIndex is the array index of the first host route. This is hostIndex(0/8).
|
||
|
firstHostIndex = 0b1_0000_0000
|
||
|
// lastHostIndex is the array index of the last host route. This is hostIndex(0xFF/8).
|
||
|
lastHostIndex = 0b1_1111_1111
|
||
|
)
|
||
|
|
||
|
// getChild returns the child strideTable pointer for addr (if any), and an
|
||
|
// internal array index that can be used with deleteChild.
|
||
|
func (t *strideTable[T]) getChild(addr uint8) (child *strideTable[T], idx int) {
|
||
|
idx = hostIndex(addr)
|
||
|
return t.entries[idx].child, idx
|
||
|
}
|
||
|
|
||
|
// deleteChild deletes the child strideTable at idx (if any). idx should be
|
||
|
// obtained via a call to getChild.
|
||
|
func (t *strideTable[T]) deleteChild(idx int) {
|
||
|
t.entries[idx].child = nil
|
||
|
t.refs--
|
||
|
}
|
||
|
|
||
|
// getOrCreateChild returns the child strideTable for addr, creating it if
|
||
|
// necessary.
|
||
|
func (t *strideTable[T]) getOrCreateChild(addr uint8) *strideTable[T] {
|
||
|
idx := hostIndex(addr)
|
||
|
if t.entries[idx].child == nil {
|
||
|
t.entries[idx].child = new(strideTable[T])
|
||
|
t.refs++
|
||
|
}
|
||
|
return t.entries[idx].child
|
||
|
}
|
||
|
|
||
|
// allot updates entries whose stored prefixIndex matches oldPrefixIndex, in the
|
||
|
// subtree rooted at idx. Matching entries have their stored prefixIndex set to
|
||
|
// newPrefixIndex, and their value set to val.
|
||
|
//
|
||
|
// allot is the core of the ART algorithm, enabling efficient insertion/deletion
|
||
|
// while preserving very fast lookups.
|
||
|
func (t *strideTable[T]) allot(idx int, oldPrefixIndex, newPrefixIndex int, val *T) {
|
||
|
if t.entries[idx].prefixIndex != oldPrefixIndex {
|
||
|
// current prefixIndex isn't what we expect. This is a recursive call
|
||
|
// that found a child subtree that already has a more specific route
|
||
|
// installed. Don't touch it.
|
||
|
return
|
||
|
}
|
||
|
t.entries[idx].value = val
|
||
|
t.entries[idx].prefixIndex = newPrefixIndex
|
||
|
if idx >= firstHostIndex {
|
||
|
// The entry we just updated was a host route, we're at the bottom of
|
||
|
// the binary tree.
|
||
|
return
|
||
|
}
|
||
|
// Propagate the allotment to this node's children.
|
||
|
left := idx << 1
|
||
|
t.allot(left, oldPrefixIndex, newPrefixIndex, val)
|
||
|
right := left + 1
|
||
|
t.allot(right, oldPrefixIndex, newPrefixIndex, val)
|
||
|
}
|
||
|
|
||
|
// insert adds the route addr/prefixLen to t, with value val.
|
||
|
func (t *strideTable[T]) insert(addr uint8, prefixLen int, val *T) {
|
||
|
idx := prefixIndex(addr, prefixLen)
|
||
|
old := t.entries[idx].value
|
||
|
oldIdx := t.entries[idx].prefixIndex
|
||
|
if oldIdx == idx && old == val {
|
||
|
// This exact prefix+value is already in the table.
|
||
|
return
|
||
|
}
|
||
|
t.allot(idx, oldIdx, idx, val)
|
||
|
if oldIdx != idx {
|
||
|
// This route entry was freshly created (not just updated), that's a new
|
||
|
// reference.
|
||
|
t.refs++
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// delete removes the route addr/prefixLen from t.
|
||
|
func (t *strideTable[T]) delete(addr uint8, prefixLen int) *T {
|
||
|
idx := prefixIndex(addr, prefixLen)
|
||
|
recordedIdx := t.entries[idx].prefixIndex
|
||
|
if recordedIdx != idx {
|
||
|
// Route entry doesn't exist
|
||
|
return nil
|
||
|
}
|
||
|
val := t.entries[idx].value
|
||
|
|
||
|
parentIdx := idx >> 1
|
||
|
t.allot(idx, idx, t.entries[parentIdx].prefixIndex, t.entries[parentIdx].value)
|
||
|
t.refs--
|
||
|
return val
|
||
|
}
|
||
|
|
||
|
// get does a route lookup for addr and returns the associated value, or nil if
|
||
|
// no route matched.
|
||
|
func (t *strideTable[T]) get(addr uint8) *T {
|
||
|
return t.entries[hostIndex(addr)].value
|
||
|
}
|
||
|
|
||
|
// TableDebugString returns the contents of t, formatted as a table with one
|
||
|
// line per entry.
|
||
|
func (t *strideTable[T]) tableDebugString() string {
|
||
|
var ret bytes.Buffer
|
||
|
for i, ent := range t.entries {
|
||
|
if i == 0 {
|
||
|
continue
|
||
|
}
|
||
|
v := "(nil)"
|
||
|
if ent.value != nil {
|
||
|
v = fmt.Sprint(*ent.value)
|
||
|
}
|
||
|
fmt.Fprintf(&ret, "idx=%3d (%s), parent=%3d (%s), val=%v\n", i, formatPrefixTable(inversePrefixIndex(i)), ent.prefixIndex, formatPrefixTable(inversePrefixIndex((ent.prefixIndex))), v)
|
||
|
}
|
||
|
return ret.String()
|
||
|
}
|
||
|
|
||
|
// treeDebugString returns the contents of t, formatted as a sparse tree. Each
|
||
|
// line is one entry, indented such that it is contained by all its parents, and
|
||
|
// non-overlapping with any of its siblings.
|
||
|
func (t *strideTable[T]) treeDebugString() string {
|
||
|
var ret bytes.Buffer
|
||
|
t.treeDebugStringRec(&ret, 1, 0) // index of 0/0, and 0 indent
|
||
|
return ret.String()
|
||
|
}
|
||
|
|
||
|
func (t *strideTable[T]) treeDebugStringRec(w io.Writer, idx, indent int) {
|
||
|
addr, len := inversePrefixIndex(idx)
|
||
|
if t.entries[idx].prefixIndex != 0 && t.entries[idx].prefixIndex == idx {
|
||
|
fmt.Fprintf(w, "%s%d/%d (%d/%d) = %v\n", strings.Repeat(" ", indent), addr, len, addr, len, *t.entries[idx].value)
|
||
|
indent += 2
|
||
|
}
|
||
|
if idx >= firstHostIndex {
|
||
|
return
|
||
|
}
|
||
|
left := idx << 1
|
||
|
t.treeDebugStringRec(w, left, indent)
|
||
|
right := left + 1
|
||
|
t.treeDebugStringRec(w, right, indent)
|
||
|
}
|
||
|
|
||
|
// prefixIndex returns the array index of the tree node for addr/prefixLen.
|
||
|
func prefixIndex(addr uint8, prefixLen int) int {
|
||
|
// the prefixIndex of addr/prefixLen is the prefixLen most significant bits
|
||
|
// of addr, with a 1 tacked onto the left-hand side. For example:
|
||
|
//
|
||
|
// - 0/0 is 1: 0 bits of the addr, with a 1 tacked on
|
||
|
// - 42/8 is 1_00101010 (298): all bits of 42, with a 1 tacked on
|
||
|
// - 48/4 is 1_0011 (19): 4 most-significant bits of 48, with a 1 tacked on
|
||
|
return (int(addr) >> (8 - prefixLen)) + (1 << prefixLen)
|
||
|
}
|
||
|
|
||
|
// hostIndex returns the array index of the host route for addr.
|
||
|
// It is equivalent to prefixIndex(addr, 8).
|
||
|
func hostIndex(addr uint8) int {
|
||
|
return int(addr) + 1<<8
|
||
|
}
|
||
|
|
||
|
// inversePrefixIndex returns the address and prefix length of idx. It is the
|
||
|
// inverse of prefixIndex. Only used for debugging and in tests.
|
||
|
func inversePrefixIndex(idx int) (addr uint8, len int) {
|
||
|
lz := bits.LeadingZeros(uint(idx))
|
||
|
len = strconv.IntSize - lz - 1
|
||
|
addr = uint8(idx&(0xFF>>(8-len))) << (8 - len)
|
||
|
return addr, len
|
||
|
}
|
||
|
|
||
|
// formatPrefixTable formats addr and len as addr/len, with a constant width
|
||
|
// suitable for use in table formatting.
|
||
|
func formatPrefixTable(addr uint8, len int) string {
|
||
|
if len < 0 { // this happens for inversePrefixIndex(0)
|
||
|
return "<nil>"
|
||
|
}
|
||
|
return fmt.Sprintf("%3d/%d", addr, len)
|
||
|
}
|