net/art: implement the stride table building block of ART

A stride table is an 8-bit routing table implemented as an array binary
tree, with a special tree updating function (allot) that enables lightning
fast address lookups and reasonably fast insertion and deletion.

Insertion, deletion and lookup are all allocation-free.

Updates #7781

                                        │    sec/op    │
StrideTableInsertion/10/random_order       16.79n ± 2%
StrideTableInsertion/10/largest_first      16.83n ± 1%
StrideTableInsertion/10/smallest_first     16.83n ± 0%
StrideTableInsertion/50/random_order       17.84n ± 1%
StrideTableInsertion/50/largest_first      20.04n ± 1%
StrideTableInsertion/50/smallest_first     16.39n ± 0%
StrideTableInsertion/100/random_order      14.63n ± 0%
StrideTableInsertion/100/largest_first     17.45n ± 4%
StrideTableInsertion/100/smallest_first    12.98n ± 0%
StrideTableInsertion/200/random_order      12.51n ± 4%
StrideTableInsertion/200/largest_first     18.36n ± 3%
StrideTableInsertion/200/smallest_first    9.609n ± 3%
StrideTableDeletion/10/random_order        19.50n ± 1%
StrideTableDeletion/10/largest_first       19.34n ± 0%
StrideTableDeletion/10/smallest_first      19.43n ± 0%
StrideTableDeletion/50/random_order        14.58n ± 1%
StrideTableDeletion/50/largest_first       14.27n ± 2%
StrideTableDeletion/50/smallest_first      15.51n ± 0%
StrideTableDeletion/100/random_order       12.02n ± 3%
StrideTableDeletion/100/largest_first      10.64n ± 0%
StrideTableDeletion/100/smallest_first     13.21n ± 3%
StrideTableDeletion/200/random_order       14.05n ± 4%
StrideTableDeletion/200/largest_first      9.288n ± 5%
StrideTableDeletion/200/smallest_first     18.51n ± 1%
StrideTableGet                            0.5010n ± 0%

                                        │  routes/s   │
StrideTableInsertion/10/random_order      59.55M ± 2%
StrideTableInsertion/10/largest_first     59.42M ± 1%
StrideTableInsertion/10/smallest_first    59.43M ± 0%
StrideTableInsertion/50/random_order      56.04M ± 1%
StrideTableInsertion/50/largest_first     49.91M ± 1%
StrideTableInsertion/50/smallest_first    61.00M ± 0%
StrideTableInsertion/100/random_order     68.35M ± 0%
StrideTableInsertion/100/largest_first    57.32M ± 3%
StrideTableInsertion/100/smallest_first   77.06M ± 0%
StrideTableInsertion/200/random_order     79.93M ± 4%
StrideTableInsertion/200/largest_first    54.47M ± 3%
StrideTableInsertion/200/smallest_first   104.1M ± 3%
StrideTableDeletion/10/random_order       51.28M ± 1%
StrideTableDeletion/10/largest_first      51.70M ± 0%
StrideTableDeletion/10/smallest_first     51.48M ± 0%
StrideTableDeletion/50/random_order       68.60M ± 1%
StrideTableDeletion/50/largest_first      70.09M ± 2%
StrideTableDeletion/50/smallest_first     64.45M ± 0%
StrideTableDeletion/100/random_order      83.21M ± 3%
StrideTableDeletion/100/largest_first     94.03M ± 0%
StrideTableDeletion/100/smallest_first    75.69M ± 3%
StrideTableDeletion/200/random_order      71.20M ± 5%
StrideTableDeletion/200/largest_first     107.7M ± 5%
StrideTableDeletion/200/smallest_first    54.02M ± 1%
StrideTableGet                            1.996G ± 0%

Signed-off-by: David Anderson <danderson@tailscale.com>
pull/7788/head
David Anderson 1 year ago committed by Dave Anderson
parent 6d5c3c1637
commit 4d1b3bc26f

@ -0,0 +1,226 @@
// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package art
import (
"bytes"
"fmt"
"io"
"math/bits"
"strconv"
"strings"
)
// strideEntry is a strideTable entry.
type strideEntry[T any] struct {
// prefixIndex is the prefixIndex(...) value that caused this stride entry's
// value to be populated, or 0 if value is nil.
//
// We need to keep track of this because allot() uses it to determine
// whether an entry was propagated from a parent entry, or if it's a
// different independent route.
prefixIndex int
// value is the value associated with the strideEntry, if any.
value *T
// child is the child strideTable associated with the strideEntry, if any.
child *strideTable[T]
}
// strideTable is a binary tree that implements an 8-bit routing table.
//
// The leaves of the binary tree are host routes (/8s). Each parent is a
// successively larger prefix that encompasses its children (/7 through /0).
type strideTable[T any] struct {
// entries is the nodes of the binary tree, laid out in a flattened array.
//
// The array indices are arranged by the prefixIndex function, such that the
// parent of the node at index i is located at index i>>1, and its children
// at indices i<<1 and (i<<1)+1.
//
// A few consequences of this arrangement: host routes (/8) occupy the last
// 256 entries in the table; the single default route /0 is at index 1, and
// index 0 is unused (in the original paper, it's hijacked through sneaky C
// memory trickery to store the refcount, but this is Go, where we don't
// store random bits in pointers lest we confuse the GC)
entries [lastHostIndex + 1]strideEntry[T]
// refs is the number of route entries and child strideTables referenced by
// this table. It is used in the multi-layered logic to determine when this
// table is empty and can be deleted.
refs int
}
const (
// firstHostIndex is the array index of the first host route. This is hostIndex(0/8).
firstHostIndex = 0b1_0000_0000
// lastHostIndex is the array index of the last host route. This is hostIndex(0xFF/8).
lastHostIndex = 0b1_1111_1111
)
// getChild returns the child strideTable pointer for addr (if any), and an
// internal array index that can be used with deleteChild.
func (t *strideTable[T]) getChild(addr uint8) (child *strideTable[T], idx int) {
idx = hostIndex(addr)
return t.entries[idx].child, idx
}
// deleteChild deletes the child strideTable at idx (if any). idx should be
// obtained via a call to getChild.
func (t *strideTable[T]) deleteChild(idx int) {
t.entries[idx].child = nil
t.refs--
}
// getOrCreateChild returns the child strideTable for addr, creating it if
// necessary.
func (t *strideTable[T]) getOrCreateChild(addr uint8) *strideTable[T] {
idx := hostIndex(addr)
if t.entries[idx].child == nil {
t.entries[idx].child = new(strideTable[T])
t.refs++
}
return t.entries[idx].child
}
// allot updates entries whose stored prefixIndex matches oldPrefixIndex, in the
// subtree rooted at idx. Matching entries have their stored prefixIndex set to
// newPrefixIndex, and their value set to val.
//
// allot is the core of the ART algorithm, enabling efficient insertion/deletion
// while preserving very fast lookups.
func (t *strideTable[T]) allot(idx int, oldPrefixIndex, newPrefixIndex int, val *T) {
if t.entries[idx].prefixIndex != oldPrefixIndex {
// current prefixIndex isn't what we expect. This is a recursive call
// that found a child subtree that already has a more specific route
// installed. Don't touch it.
return
}
t.entries[idx].value = val
t.entries[idx].prefixIndex = newPrefixIndex
if idx >= firstHostIndex {
// The entry we just updated was a host route, we're at the bottom of
// the binary tree.
return
}
// Propagate the allotment to this node's children.
left := idx << 1
t.allot(left, oldPrefixIndex, newPrefixIndex, val)
right := left + 1
t.allot(right, oldPrefixIndex, newPrefixIndex, val)
}
// insert adds the route addr/prefixLen to t, with value val.
func (t *strideTable[T]) insert(addr uint8, prefixLen int, val *T) {
idx := prefixIndex(addr, prefixLen)
old := t.entries[idx].value
oldIdx := t.entries[idx].prefixIndex
if oldIdx == idx && old == val {
// This exact prefix+value is already in the table.
return
}
t.allot(idx, oldIdx, idx, val)
if oldIdx != idx {
// This route entry was freshly created (not just updated), that's a new
// reference.
t.refs++
}
return
}
// delete removes the route addr/prefixLen from t.
func (t *strideTable[T]) delete(addr uint8, prefixLen int) *T {
idx := prefixIndex(addr, prefixLen)
recordedIdx := t.entries[idx].prefixIndex
if recordedIdx != idx {
// Route entry doesn't exist
return nil
}
val := t.entries[idx].value
parentIdx := idx >> 1
t.allot(idx, idx, t.entries[parentIdx].prefixIndex, t.entries[parentIdx].value)
t.refs--
return val
}
// get does a route lookup for addr and returns the associated value, or nil if
// no route matched.
func (t *strideTable[T]) get(addr uint8) *T {
return t.entries[hostIndex(addr)].value
}
// TableDebugString returns the contents of t, formatted as a table with one
// line per entry.
func (t *strideTable[T]) tableDebugString() string {
var ret bytes.Buffer
for i, ent := range t.entries {
if i == 0 {
continue
}
v := "(nil)"
if ent.value != nil {
v = fmt.Sprint(*ent.value)
}
fmt.Fprintf(&ret, "idx=%3d (%s), parent=%3d (%s), val=%v\n", i, formatPrefixTable(inversePrefixIndex(i)), ent.prefixIndex, formatPrefixTable(inversePrefixIndex((ent.prefixIndex))), v)
}
return ret.String()
}
// treeDebugString returns the contents of t, formatted as a sparse tree. Each
// line is one entry, indented such that it is contained by all its parents, and
// non-overlapping with any of its siblings.
func (t *strideTable[T]) treeDebugString() string {
var ret bytes.Buffer
t.treeDebugStringRec(&ret, 1, 0) // index of 0/0, and 0 indent
return ret.String()
}
func (t *strideTable[T]) treeDebugStringRec(w io.Writer, idx, indent int) {
addr, len := inversePrefixIndex(idx)
if t.entries[idx].prefixIndex != 0 && t.entries[idx].prefixIndex == idx {
fmt.Fprintf(w, "%s%d/%d (%d/%d) = %v\n", strings.Repeat(" ", indent), addr, len, addr, len, *t.entries[idx].value)
indent += 2
}
if idx >= firstHostIndex {
return
}
left := idx << 1
t.treeDebugStringRec(w, left, indent)
right := left + 1
t.treeDebugStringRec(w, right, indent)
}
// prefixIndex returns the array index of the tree node for addr/prefixLen.
func prefixIndex(addr uint8, prefixLen int) int {
// the prefixIndex of addr/prefixLen is the prefixLen most significant bits
// of addr, with a 1 tacked onto the left-hand side. For example:
//
// - 0/0 is 1: 0 bits of the addr, with a 1 tacked on
// - 42/8 is 1_00101010 (298): all bits of 42, with a 1 tacked on
// - 48/4 is 1_0011 (19): 4 most-significant bits of 48, with a 1 tacked on
return (int(addr) >> (8 - prefixLen)) + (1 << prefixLen)
}
// hostIndex returns the array index of the host route for addr.
// It is equivalent to prefixIndex(addr, 8).
func hostIndex(addr uint8) int {
return int(addr) + 1<<8
}
// inversePrefixIndex returns the address and prefix length of idx. It is the
// inverse of prefixIndex. Only used for debugging and in tests.
func inversePrefixIndex(idx int) (addr uint8, len int) {
lz := bits.LeadingZeros(uint(idx))
len = strconv.IntSize - lz - 1
addr = uint8(idx&(0xFF>>(8-len))) << (8 - len)
return addr, len
}
// formatPrefixTable formats addr and len as addr/len, with a constant width
// suitable for use in table formatting.
func formatPrefixTable(addr uint8, len int) string {
if len < 0 { // this happens for inversePrefixIndex(0)
return "<nil>"
}
return fmt.Sprintf("%3d/%d", addr, len)
}

@ -0,0 +1,378 @@
// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package art
import (
"bytes"
"fmt"
"math/rand"
"sort"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"tailscale.com/types/ptr"
)
func TestInversePrefix(t *testing.T) {
for i := 0; i < 256; i++ {
for len := 0; len < 9; len++ {
addr := i & (0xFF << (8 - len))
idx := prefixIndex(uint8(addr), len)
addr2, len2 := inversePrefixIndex(idx)
if addr2 != uint8(addr) || len2 != len {
t.Errorf("inverse(index(%d/%d)) != %d/%d", addr, len, addr2, len2)
}
}
}
}
func TestHostIndex(t *testing.T) {
for i := 0; i < 256; i++ {
got := hostIndex(uint8(i))
want := prefixIndex(uint8(i), 8)
if got != want {
t.Errorf("hostIndex(%d) = %d, want %d", i, got, want)
}
}
}
func TestStrideTableInsert(t *testing.T) {
// Verify that strideTable's lookup results after a bunch of inserts exactly
// match those of a naive implementation that just scans all prefixes on
// every lookup. The naive implementation is very slow, but its behavior is
// easy to verify by inspection.
pfxs := shufflePrefixes(allPrefixes())[:100]
slow := slowTable[int]{pfxs}
fast := strideTable[int]{}
t.Logf("slow table:\n%s", slow.String())
for _, pfx := range pfxs {
fast.insert(pfx.addr, pfx.len, pfx.val)
t.Logf("after insert %d/%d:\n%s", pfx.addr, pfx.len, fast.tableDebugString())
}
for i := 0; i < 256; i++ {
addr := uint8(i)
slowVal := slow.get(addr)
fastVal := fast.get(addr)
if slowVal != fastVal {
t.Fatalf("strideTable.get(%d) = %v, want %v", addr, *fastVal, *slowVal)
}
}
}
func TestStrideTableInsertShuffled(t *testing.T) {
// The order in which routes are inserted into a route table does not
// influence the final shape of the table, as long as the same set of
// prefixes is being inserted. This test verifies that strideTable behaves
// this way.
//
// In addition to the basic shuffle test, we also check that this behavior
// is maintained if all inserted routes have the same value pointer. This
// shouldn't matter (the strideTable still needs to correctly account for
// each inserted route, regardless of associated value), but during initial
// development a subtle bug made the table corrupt itself in that setup, so
// this test includes a regression test for that.
routes := shufflePrefixes(allPrefixes())[:100]
zero := 0
rt := strideTable[int]{}
rtZero := strideTable[int]{}
for _, route := range routes {
rt.insert(route.addr, route.len, route.val)
rtZero.insert(route.addr, route.len, &zero)
}
// Order of insertion should not affect the final shape of the stride table.
routes2 := append([]slowEntry[int](nil), routes...) // dup so we can print both slices on fail
for i := 0; i < 100; i++ {
rand.Shuffle(len(routes2), func(i, j int) { routes2[i], routes2[j] = routes2[j], routes2[i] })
rt2 := strideTable[int]{}
for _, route := range routes2 {
rt2.insert(route.addr, route.len, route.val)
}
if diff := cmp.Diff(rt, rt2, cmp.AllowUnexported(strideTable[int]{}, strideEntry[int]{})); diff != "" {
t.Errorf("tables ended up different with different insertion order (-got+want):\n%s\n\nOrder 1: %v\nOrder 2: %v", diff, formatSlowEntriesShort(routes), formatSlowEntriesShort(routes2))
}
rtZero2 := strideTable[int]{}
for _, route := range routes2 {
rtZero2.insert(route.addr, route.len, &zero)
}
if diff := cmp.Diff(rtZero, rtZero2, cmp.AllowUnexported(strideTable[int]{}, strideEntry[int]{})); diff != "" {
t.Errorf("tables with identical vals ended up different with different insertion order (-got+want):\n%s\n\nOrder 1: %v\nOrder 2: %v", diff, formatSlowEntriesShort(routes), formatSlowEntriesShort(routes2))
}
}
}
func TestStrideTableDelete(t *testing.T) {
// Compare route deletion to our reference slowTable.
pfxs := shufflePrefixes(allPrefixes())[:100]
slow := slowTable[int]{pfxs}
fast := strideTable[int]{}
t.Logf("slow table:\n%s", slow.String())
for _, pfx := range pfxs {
fast.insert(pfx.addr, pfx.len, pfx.val)
t.Logf("after insert %d/%d:\n%s", pfx.addr, pfx.len, fast.tableDebugString())
}
toDelete := pfxs[:50]
for _, pfx := range toDelete {
slow.delete(pfx.addr, pfx.len)
fast.delete(pfx.addr, pfx.len)
}
// Sanity check that slowTable seems to have done the right thing.
if cnt := len(slow.prefixes); cnt != 50 {
t.Fatalf("slowTable has %d entries after deletes, want 50", cnt)
}
for i := 0; i < 256; i++ {
addr := uint8(i)
slowVal := slow.get(addr)
fastVal := fast.get(addr)
if slowVal != fastVal {
t.Fatalf("strideTable.get(%d) = %v, want %v", addr, *fastVal, *slowVal)
}
}
}
func TestStrideTableDeleteShuffle(t *testing.T) {
// Same as TestStrideTableInsertShuffle, the order in which prefixes are
// deleted should not impact the final shape of the route table.
routes := shufflePrefixes(allPrefixes())[:100]
toDelete := routes[:50]
zero := 0
rt := strideTable[int]{}
rtZero := strideTable[int]{}
for _, route := range routes {
rt.insert(route.addr, route.len, route.val)
rtZero.insert(route.addr, route.len, &zero)
}
for _, route := range toDelete {
rt.delete(route.addr, route.len)
rtZero.delete(route.addr, route.len)
}
// Order of deletion should not affect the final shape of the stride table.
toDelete2 := append([]slowEntry[int](nil), toDelete...) // dup so we can print both slices on fail
for i := 0; i < 100; i++ {
rand.Shuffle(len(toDelete2), func(i, j int) { toDelete2[i], toDelete2[j] = toDelete2[j], toDelete2[i] })
rt2 := strideTable[int]{}
for _, route := range routes {
rt2.insert(route.addr, route.len, route.val)
}
for _, route := range toDelete2 {
rt2.delete(route.addr, route.len)
}
if diff := cmp.Diff(rt, rt2, cmp.AllowUnexported(strideTable[int]{}, strideEntry[int]{})); diff != "" {
t.Errorf("tables ended up different with different deletion order (-got+want):\n%s\n\nOrder 1: %v\nOrder 2: %v", diff, formatSlowEntriesShort(toDelete), formatSlowEntriesShort(toDelete2))
}
rtZero2 := strideTable[int]{}
for _, route := range routes {
rtZero2.insert(route.addr, route.len, &zero)
}
for _, route := range toDelete2 {
rtZero2.delete(route.addr, route.len)
}
if diff := cmp.Diff(rtZero, rtZero2, cmp.AllowUnexported(strideTable[int]{}, strideEntry[int]{})); diff != "" {
t.Errorf("tables with identical vals ended up different with different deletion order (-got+want):\n%s\n\nOrder 1: %v\nOrder 2: %v", diff, formatSlowEntriesShort(toDelete), formatSlowEntriesShort(toDelete2))
}
}
}
var benchRouteCount = []int{10, 50, 100, 200}
// forCountAndOrdering runs the benchmark fn with different sets of routes.
//
// fn is called once for each combination of {num_routes, order}, where
// num_routes is the values in benchRouteCount, and order is the order of the
// routes in the list: random, largest prefix first (/0 to /8), and smallest
// prefix first (/8 to /0).
func forCountAndOrdering(b *testing.B, fn func(b *testing.B, routes []slowEntry[int])) {
routes := shufflePrefixes(allPrefixes())
for _, nroutes := range benchRouteCount {
b.Run(fmt.Sprint(nroutes), func(b *testing.B) {
routes := append([]slowEntry[int](nil), routes[:nroutes]...)
b.Run("random_order", func(b *testing.B) {
b.ReportAllocs()
fn(b, routes)
})
sort.Slice(routes, func(i, j int) bool {
if routes[i].len < routes[j].len {
return true
}
return routes[i].addr < routes[j].addr
})
b.Run("largest_first", func(b *testing.B) {
b.ReportAllocs()
fn(b, routes)
})
sort.Slice(routes, func(i, j int) bool {
if routes[j].len < routes[i].len {
return true
}
return routes[j].addr < routes[i].addr
})
b.Run("smallest_first", func(b *testing.B) {
b.ReportAllocs()
fn(b, routes)
})
})
}
}
func BenchmarkStrideTableInsertion(b *testing.B) {
forCountAndOrdering(b, func(b *testing.B, routes []slowEntry[int]) {
val := 0
for i := 0; i < b.N; i++ {
var rt strideTable[int]
for _, route := range routes {
rt.insert(route.addr, route.len, &val)
}
}
inserts := float64(b.N) * float64(len(routes))
elapsed := float64(b.Elapsed().Nanoseconds())
elapsedSec := b.Elapsed().Seconds()
b.ReportMetric(elapsed/inserts, "ns/op")
b.ReportMetric(inserts/elapsedSec, "routes/s")
})
}
func BenchmarkStrideTableDeletion(b *testing.B) {
forCountAndOrdering(b, func(b *testing.B, routes []slowEntry[int]) {
val := 0
var rt strideTable[int]
for _, route := range routes {
rt.insert(route.addr, route.len, &val)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
rt2 := rt
for _, route := range routes {
rt2.delete(route.addr, route.len)
}
}
deletes := float64(b.N) * float64(len(routes))
elapsed := float64(b.Elapsed().Nanoseconds())
elapsedSec := b.Elapsed().Seconds()
b.ReportMetric(elapsed/deletes, "ns/op")
b.ReportMetric(deletes/elapsedSec, "routes/s")
})
}
var writeSink *int
func BenchmarkStrideTableGet(b *testing.B) {
// No need to forCountAndOrdering here, route lookup time is independent of
// the route count.
routes := shufflePrefixes(allPrefixes())[:100]
var rt strideTable[int]
for _, route := range routes {
rt.insert(route.addr, route.len, route.val)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
writeSink = rt.get(uint8(i))
}
gets := float64(b.N)
elapsedSec := b.Elapsed().Seconds()
b.ReportMetric(gets/elapsedSec, "routes/s")
}
// slowTable is an 8-bit routing table implemented as a set of prefixes that are
// explicitly scanned in full for every route lookup. It is very slow, but also
// reasonably easy to verify by inspection, and so a good comparison target for
// strideTable.
type slowTable[T any] struct {
prefixes []slowEntry[T]
}
type slowEntry[T any] struct {
addr uint8
len int
val *T
}
func (t *slowTable[T]) String() string {
pfxs := append([]slowEntry[T](nil), t.prefixes...)
sort.Slice(pfxs, func(i, j int) bool {
if pfxs[i].len != pfxs[j].len {
return pfxs[i].len < pfxs[j].len
}
return pfxs[i].addr < pfxs[j].addr
})
var ret bytes.Buffer
for _, pfx := range pfxs {
fmt.Fprintf(&ret, "%3d/%d (%08b/%08b) = %v\n", pfx.addr, pfx.len, pfx.addr, pfxMask(pfx.len), *pfx.val)
}
return ret.String()
}
func (t *slowTable[T]) insert(addr uint8, prefixLen int, val *T) {
t.delete(addr, prefixLen) // no-op if prefix doesn't exist
t.prefixes = append(t.prefixes, slowEntry[T]{addr, prefixLen, val})
}
func (t *slowTable[T]) delete(addr uint8, prefixLen int) {
pfx := make([]slowEntry[T], 0, len(t.prefixes))
for _, e := range t.prefixes {
if e.addr == addr && e.len == prefixLen {
continue
}
pfx = append(pfx, e)
}
t.prefixes = pfx
}
func (t *slowTable[T]) get(addr uint8) *T {
var (
ret *T
curLen = -1
)
for _, e := range t.prefixes {
if addr&pfxMask(e.len) == e.addr && e.len >= curLen {
ret = e.val
curLen = e.len
}
}
return ret
}
func pfxMask(pfxLen int) uint8 {
return 0xFF << (8 - pfxLen)
}
func allPrefixes() []slowEntry[int] {
ret := make([]slowEntry[int], 0, lastHostIndex)
for i := 1; i < lastHostIndex+1; i++ {
a, l := inversePrefixIndex(i)
ret = append(ret, slowEntry[int]{a, l, ptr.To(i)})
}
return ret
}
func shufflePrefixes(pfxs []slowEntry[int]) []slowEntry[int] {
rand.Shuffle(len(pfxs), func(i, j int) { pfxs[i], pfxs[j] = pfxs[j], pfxs[i] })
return pfxs
}
func formatSlowEntriesShort[T any](ents []slowEntry[T]) string {
var ret []string
for _, ent := range ents {
ret = append(ret, fmt.Sprintf("%d/%d", ent.addr, ent.len))
}
return "[" + strings.Join(ret, " ") + "]"
}

@ -0,0 +1,13 @@
// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
// Package art provides a routing table that implements the Allotment Routing
// Table (ART) algorithm by Donald Knuth, as described in the paper by Yoichi
// Hariguchi.
//
// ART outperforms the traditional radix tree implementations for route lookups,
// insertions, and deletions.
//
// For more information, see Yoichi Hariguchi's paper:
// https://cseweb.ucsd.edu//~varghese/TEACH/cs228/artlookup.pdf
package art
Loading…
Cancel
Save