issue #508: master: minify all Mitogen/ansible_mitogen sources.
Minify-safe files are marked with a magical "# !mitogen: minify_safe" comment anywhere in the file, which activates the minifier. The result is naturally cached by ModuleResponder, therefore lru_cache is gone too. Given: import os, mitogen @mitogen.main() def main(router): c = router.ssh(hostname='k3') c.call(os.getpid) router.sudo(via=c) SSH footprint drops from 56.2 KiB to 42.75 KiB (-23.9%) Ansible "shell: hostname" drops 149.26 KiB to 117.42 KiB (-21.3%)pull/564/head
parent
cfb94e463f
commit
0e193c223c
@ -1,288 +0,0 @@
|
||||
# encoding: utf-8
|
||||
"""Selected backports from Python stdlib functools module
|
||||
"""
|
||||
# Written by Nick Coghlan <ncoghlan at gmail.com>,
|
||||
# Raymond Hettinger <python at rcn.com>,
|
||||
# and Łukasz Langa <lukasz at langa.pl>.
|
||||
# Copyright (C) 2006-2013 Python Software Foundation.
|
||||
|
||||
__all__ = [
|
||||
'update_wrapper', 'wraps', 'WRAPPER_ASSIGNMENTS', 'WRAPPER_UPDATES',
|
||||
'lru_cache',
|
||||
]
|
||||
|
||||
from threading import RLock
|
||||
|
||||
|
||||
################################################################################
|
||||
### update_wrapper() and wraps() decorator
|
||||
################################################################################
|
||||
|
||||
# update_wrapper() and wraps() are tools to help write
|
||||
# wrapper functions that can handle naive introspection
|
||||
|
||||
WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__qualname__', '__doc__',
|
||||
'__annotations__')
|
||||
WRAPPER_UPDATES = ('__dict__',)
|
||||
def update_wrapper(wrapper,
|
||||
wrapped,
|
||||
assigned = WRAPPER_ASSIGNMENTS,
|
||||
updated = WRAPPER_UPDATES):
|
||||
"""Update a wrapper function to look like the wrapped function
|
||||
wrapper is the function to be updated
|
||||
wrapped is the original function
|
||||
assigned is a tuple naming the attributes assigned directly
|
||||
from the wrapped function to the wrapper function (defaults to
|
||||
functools.WRAPPER_ASSIGNMENTS)
|
||||
updated is a tuple naming the attributes of the wrapper that
|
||||
are updated with the corresponding attribute from the wrapped
|
||||
function (defaults to functools.WRAPPER_UPDATES)
|
||||
"""
|
||||
for attr in assigned:
|
||||
try:
|
||||
value = getattr(wrapped, attr)
|
||||
except AttributeError:
|
||||
pass
|
||||
else:
|
||||
setattr(wrapper, attr, value)
|
||||
for attr in updated:
|
||||
getattr(wrapper, attr).update(getattr(wrapped, attr, {}))
|
||||
# Issue #17482: set __wrapped__ last so we don't inadvertently copy it
|
||||
# from the wrapped function when updating __dict__
|
||||
wrapper.__wrapped__ = wrapped
|
||||
# Return the wrapper so this can be used as a decorator via partial()
|
||||
return wrapper
|
||||
|
||||
def wraps(wrapped,
|
||||
assigned = WRAPPER_ASSIGNMENTS,
|
||||
updated = WRAPPER_UPDATES):
|
||||
"""Decorator factory to apply update_wrapper() to a wrapper function
|
||||
Returns a decorator that invokes update_wrapper() with the decorated
|
||||
function as the wrapper argument and the arguments to wraps() as the
|
||||
remaining arguments. Default arguments are as for update_wrapper().
|
||||
This is a convenience function to simplify applying partial() to
|
||||
update_wrapper().
|
||||
"""
|
||||
return partial(update_wrapper, wrapped=wrapped,
|
||||
assigned=assigned, updated=updated)
|
||||
|
||||
|
||||
################################################################################
|
||||
### partial() argument application
|
||||
################################################################################
|
||||
|
||||
# Purely functional, no descriptor behaviour
|
||||
def partial(func, *args, **keywords):
|
||||
"""New function with partial application of the given arguments
|
||||
and keywords.
|
||||
"""
|
||||
if hasattr(func, 'func'):
|
||||
args = func.args + args
|
||||
tmpkw = func.keywords.copy()
|
||||
tmpkw.update(keywords)
|
||||
keywords = tmpkw
|
||||
del tmpkw
|
||||
func = func.func
|
||||
|
||||
def newfunc(*fargs, **fkeywords):
|
||||
newkeywords = keywords.copy()
|
||||
newkeywords.update(fkeywords)
|
||||
return func(*(args + fargs), **newkeywords)
|
||||
newfunc.func = func
|
||||
newfunc.args = args
|
||||
newfunc.keywords = keywords
|
||||
return newfunc
|
||||
|
||||
|
||||
################################################################################
|
||||
### LRU Cache function decorator
|
||||
################################################################################
|
||||
|
||||
class _HashedSeq(list):
|
||||
""" This class guarantees that hash() will be called no more than once
|
||||
per element. This is important because the lru_cache() will hash
|
||||
the key multiple times on a cache miss.
|
||||
"""
|
||||
|
||||
__slots__ = 'hashvalue'
|
||||
|
||||
def __init__(self, tup, hash=hash):
|
||||
self[:] = tup
|
||||
self.hashvalue = hash(tup)
|
||||
|
||||
def __hash__(self):
|
||||
return self.hashvalue
|
||||
|
||||
def _make_key(args, kwds, typed,
|
||||
kwd_mark = (object(),),
|
||||
fasttypes = set([int, str, frozenset, type(None)]),
|
||||
sorted=sorted, tuple=tuple, type=type, len=len):
|
||||
"""Make a cache key from optionally typed positional and keyword arguments
|
||||
The key is constructed in a way that is flat as possible rather than
|
||||
as a nested structure that would take more memory.
|
||||
If there is only a single argument and its data type is known to cache
|
||||
its hash value, then that argument is returned without a wrapper. This
|
||||
saves space and improves lookup speed.
|
||||
"""
|
||||
key = args
|
||||
if kwds:
|
||||
sorted_items = sorted(kwds.items())
|
||||
key += kwd_mark
|
||||
for item in sorted_items:
|
||||
key += item
|
||||
if typed:
|
||||
key += tuple(type(v) for v in args)
|
||||
if kwds:
|
||||
key += tuple(type(v) for k, v in sorted_items)
|
||||
elif len(key) == 1 and type(key[0]) in fasttypes:
|
||||
return key[0]
|
||||
return _HashedSeq(key)
|
||||
|
||||
def lru_cache(maxsize=128, typed=False):
|
||||
"""Least-recently-used cache decorator.
|
||||
If *maxsize* is set to None, the LRU features are disabled and the cache
|
||||
can grow without bound.
|
||||
If *typed* is True, arguments of different types will be cached separately.
|
||||
For example, f(3.0) and f(3) will be treated as distinct calls with
|
||||
distinct results.
|
||||
Arguments to the cached function must be hashable.
|
||||
View the cache statistics named tuple (hits, misses, maxsize, currsize)
|
||||
with f.cache_info(). Clear the cache and statistics with f.cache_clear().
|
||||
Access the underlying function with f.__wrapped__.
|
||||
See: http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
|
||||
"""
|
||||
|
||||
# Users should only access the lru_cache through its public API:
|
||||
# cache_info, cache_clear, and f.__wrapped__
|
||||
# The internals of the lru_cache are encapsulated for thread safety and
|
||||
# to allow the implementation to change (including a possible C version).
|
||||
|
||||
# Early detection of an erroneous call to @lru_cache without any arguments
|
||||
# resulting in the inner function being passed to maxsize instead of an
|
||||
# integer or None.
|
||||
if maxsize is not None and not isinstance(maxsize, int):
|
||||
raise TypeError('Expected maxsize to be an integer or None')
|
||||
|
||||
def decorating_function(user_function):
|
||||
wrapper = _lru_cache_wrapper(user_function, maxsize, typed)
|
||||
return update_wrapper(wrapper, user_function)
|
||||
|
||||
return decorating_function
|
||||
|
||||
def _lru_cache_wrapper(user_function, maxsize, typed):
|
||||
# Constants shared by all lru cache instances:
|
||||
sentinel = object() # unique object used to signal cache misses
|
||||
make_key = _make_key # build a key from the function arguments
|
||||
PREV, NEXT, KEY, RESULT = 0, 1, 2, 3 # names for the link fields
|
||||
|
||||
cache = {}
|
||||
cache_get = cache.get # bound method to lookup a key or return None
|
||||
lock = RLock() # because linkedlist updates aren't threadsafe
|
||||
root = [] # root of the circular doubly linked list
|
||||
root[:] = [root, root, None, None] # initialize by pointing to self
|
||||
hits_misses_full_root = [0, 0, False, root]
|
||||
HITS,MISSES,FULL,ROOT = 0, 1, 2, 3
|
||||
|
||||
if maxsize == 0:
|
||||
|
||||
def wrapper(*args, **kwds):
|
||||
# No caching -- just a statistics update after a successful call
|
||||
result = user_function(*args, **kwds)
|
||||
hits_misses_full_root[MISSES] += 1
|
||||
return result
|
||||
|
||||
elif maxsize is None:
|
||||
|
||||
def wrapper(*args, **kwds):
|
||||
# Simple caching without ordering or size limit
|
||||
key = make_key(args, kwds, typed)
|
||||
result = cache_get(key, sentinel)
|
||||
if result is not sentinel:
|
||||
hits_misses_full_root[HITS] += 1
|
||||
return result
|
||||
result = user_function(*args, **kwds)
|
||||
cache[key] = result
|
||||
hits_misses_full_root[MISSES] += 1
|
||||
return result
|
||||
|
||||
else:
|
||||
|
||||
def wrapper(*args, **kwds):
|
||||
# Size limited caching that tracks accesses by recency
|
||||
key = make_key(args, kwds, typed)
|
||||
lock.acquire()
|
||||
try:
|
||||
link = cache_get(key)
|
||||
if link is not None:
|
||||
# Move the link to the front of the circular queue
|
||||
root = hits_misses_full_root[ROOT]
|
||||
link_prev, link_next, _key, result = link
|
||||
link_prev[NEXT] = link_next
|
||||
link_next[PREV] = link_prev
|
||||
last = root[PREV]
|
||||
last[NEXT] = root[PREV] = link
|
||||
link[PREV] = last
|
||||
link[NEXT] = root
|
||||
hits_misses_full_root[HITS] += 1
|
||||
return result
|
||||
finally:
|
||||
lock.release()
|
||||
result = user_function(*args, **kwds)
|
||||
lock.acquire()
|
||||
try:
|
||||
if key in cache:
|
||||
# Getting here means that this same key was added to the
|
||||
# cache while the lock was released. Since the link
|
||||
# update is already done, we need only return the
|
||||
# computed result and update the count of misses.
|
||||
pass
|
||||
elif hits_misses_full_root[FULL]:
|
||||
# Use the old root to store the new key and result.
|
||||
oldroot = root = hits_misses_full_root[ROOT]
|
||||
oldroot[KEY] = key
|
||||
oldroot[RESULT] = result
|
||||
# Empty the oldest link and make it the new root.
|
||||
# Keep a reference to the old key and old result to
|
||||
# prevent their ref counts from going to zero during the
|
||||
# update. That will prevent potentially arbitrary object
|
||||
# clean-up code (i.e. __del__) from running while we're
|
||||
# still adjusting the links.
|
||||
root = hits_misses_full_root[ROOT] = oldroot[NEXT]
|
||||
oldkey = root[KEY]
|
||||
oldresult = root[RESULT]
|
||||
root[KEY] = root[RESULT] = None
|
||||
# Now update the cache dictionary.
|
||||
del cache[oldkey]
|
||||
# Save the potentially reentrant cache[key] assignment
|
||||
# for last, after the root and links have been put in
|
||||
# a consistent state.
|
||||
cache[key] = oldroot
|
||||
else:
|
||||
# Put result in a new link at the front of the queue.
|
||||
root = hits_misses_full_root[ROOT]
|
||||
last = root[PREV]
|
||||
link = [last, root, key, result]
|
||||
last[NEXT] = root[PREV] = cache[key] = link
|
||||
# Use the __len__() method instead of the len() function
|
||||
# which could potentially be wrapped in an lru_cache itself.
|
||||
hits_misses_full_root[FULL] = (cache.__len__() >= maxsize)
|
||||
hits_misses_full_root[MISSES]
|
||||
finally:
|
||||
lock.release()
|
||||
return result
|
||||
|
||||
def cache_clear():
|
||||
"""Clear the cache and cache statistics"""
|
||||
lock.acquire()
|
||||
try:
|
||||
cache.clear()
|
||||
root = hits_misses_full_root[ROOT]
|
||||
root[:] = [root, root, None, None]
|
||||
hits_misses_full[HITS] = 0
|
||||
hits_misses_full[MISSES] = 0
|
||||
hits_misses_full[FULL] = False
|
||||
finally:
|
||||
lock.release()
|
||||
|
||||
wrapper.cache_clear = cache_clear
|
||||
return wrapper
|
Loading…
Reference in New Issue