|
|
|
@ -3,6 +3,8 @@ __all__ = ['aes_encrypt', 'key_expansion', 'aes_ctr_decrypt', 'aes_decrypt_text'
|
|
|
|
|
import base64
|
|
|
|
|
from math import ceil
|
|
|
|
|
|
|
|
|
|
from .utils import bytes_to_intlist
|
|
|
|
|
|
|
|
|
|
BLOCK_SIZE_BYTES = 16
|
|
|
|
|
|
|
|
|
|
def aes_ctr_decrypt(data, key, counter):
|
|
|
|
@ -16,7 +18,7 @@ def aes_ctr_decrypt(data, key, counter):
|
|
|
|
|
@returns {int[]} decrypted data
|
|
|
|
|
"""
|
|
|
|
|
expanded_key = key_expansion(key)
|
|
|
|
|
block_count = int(ceil(float(len(data)) / BLOCK_SIZE_BYTES))
|
|
|
|
|
block_count = int(ceil(float(len(data)) // BLOCK_SIZE_BYTES))
|
|
|
|
|
|
|
|
|
|
decrypted_data=[]
|
|
|
|
|
for i in range(block_count):
|
|
|
|
@ -40,7 +42,7 @@ def key_expansion(data):
|
|
|
|
|
data = data[:] # copy
|
|
|
|
|
rcon_iteration = 1
|
|
|
|
|
key_size_bytes = len(data)
|
|
|
|
|
expanded_key_size_bytes = (key_size_bytes/4 + 7) * BLOCK_SIZE_BYTES
|
|
|
|
|
expanded_key_size_bytes = (key_size_bytes // 4 + 7) * BLOCK_SIZE_BYTES
|
|
|
|
|
|
|
|
|
|
while len(data) < expanded_key_size_bytes:
|
|
|
|
|
temp = data[-4:]
|
|
|
|
@ -72,7 +74,7 @@ def aes_encrypt(data, expanded_key):
|
|
|
|
|
@param {int[]} expanded_key 176/208/240-Byte expanded key
|
|
|
|
|
@returns {int[]} 16-Byte cipher
|
|
|
|
|
"""
|
|
|
|
|
rounds = len(expanded_key) / BLOCK_SIZE_BYTES - 1
|
|
|
|
|
rounds = len(expanded_key) // BLOCK_SIZE_BYTES - 1
|
|
|
|
|
|
|
|
|
|
data = xor(data, expanded_key[:BLOCK_SIZE_BYTES])
|
|
|
|
|
for i in range(1, rounds+1):
|
|
|
|
@ -99,11 +101,11 @@ def aes_decrypt_text(data, password, key_size_bytes):
|
|
|
|
|
"""
|
|
|
|
|
NONCE_LENGTH_BYTES = 8
|
|
|
|
|
|
|
|
|
|
data = map(lambda c: ord(c), base64.b64decode(data))
|
|
|
|
|
password = map(lambda c: ord(c), password.encode('utf-8'))
|
|
|
|
|
data = bytes_to_intlist(base64.b64decode(data))
|
|
|
|
|
password = bytes_to_intlist(password.encode('utf-8'))
|
|
|
|
|
|
|
|
|
|
key = password[:key_size_bytes] + [0]*(key_size_bytes - len(password))
|
|
|
|
|
key = aes_encrypt(key[:BLOCK_SIZE_BYTES], key_expansion(key)) * (key_size_bytes / BLOCK_SIZE_BYTES)
|
|
|
|
|
key = aes_encrypt(key[:BLOCK_SIZE_BYTES], key_expansion(key)) * (key_size_bytes // BLOCK_SIZE_BYTES)
|
|
|
|
|
|
|
|
|
|
nonce = data[:NONCE_LENGTH_BYTES]
|
|
|
|
|
cipher = data[NONCE_LENGTH_BYTES:]
|
|
|
|
@ -143,7 +145,7 @@ MIX_COLUMN_MATRIX = ((2,3,1,1),
|
|
|
|
|
(3,1,1,2))
|
|
|
|
|
|
|
|
|
|
def sub_bytes(data):
|
|
|
|
|
return map(lambda x: SBOX[x], data)
|
|
|
|
|
return [SBOX[x] for x in data]
|
|
|
|
|
|
|
|
|
|
def rotate(data):
|
|
|
|
|
return data[1:] + [data[0]]
|
|
|
|
@ -156,7 +158,7 @@ def key_schedule_core(data, rcon_iteration):
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
def xor(data1, data2):
|
|
|
|
|
return map(lambda (x,y): x^y, zip(data1, data2))
|
|
|
|
|
return [x^y for x, y in zip(data1, data2)]
|
|
|
|
|
|
|
|
|
|
def mix_column(data):
|
|
|
|
|
data_mixed = []
|
|
|
|
|