Add godeps

pull/15/head
Jamie Hannaford 9 years ago
parent c36d1dfffe
commit ff277f9903

32
Godeps/Godeps.json generated

@ -1,6 +1,6 @@
{
"ImportPath": "github.com/CenturyLinkLabs/watchtower",
"GoVersion": "go1.4.2",
"GoVersion": "go1.5",
"Packages": [
"./..."
],
@ -16,27 +16,39 @@
"Rev": "bca61c476e3c752594983e4c9bcd5f62fb09f157"
},
{
"ImportPath": "github.com/docker/docker/pkg/units",
"Comment": "v1.4.1-4520-g469e234",
"Rev": "469e234dedd84c13eea6271a8c6cc804e46cf22b"
"ImportPath": "github.com/davecgh/go-spew/spew",
"Rev": "5215b55f46b2b919f50a1df0eaa5886afe4e3b3d"
},
{
"ImportPath": "github.com/docker/go-units",
"Comment": "v0.3.0",
"Rev": "5d2041e26a699eaca682e2ea41c8f891e1060444"
},
{
"ImportPath": "github.com/pmezard/go-difflib/difflib",
"Rev": "792786c7400a136282c1664665ae0a8db921c6c2"
},
{
"ImportPath": "github.com/samalba/dockerclient",
"Rev": "15ebe064ca62ad0d64834e7ef0d4ed8ce9d02cde"
"Rev": "f274bbd0e2eb35ad1444dc6e6660214f9fbbc08c"
},
{
"ImportPath": "github.com/samalba/dockerclient/mockclient",
"Rev": "f274bbd0e2eb35ad1444dc6e6660214f9fbbc08c"
},
{
"ImportPath": "github.com/stretchr/objx",
"Rev": "cbeaeb16a013161a98496fad62933b1d21786672"
"Rev": "1a9d0bb9f541897e62256577b352fdbc1fb4fd94"
},
{
"ImportPath": "github.com/stretchr/testify/assert",
"Comment": "v1.0-17-g089c718",
"Rev": "089c7181b8c728499929ff09b62d3fdd8df8adff"
"Comment": "v1.1.3-6-g6fe211e",
"Rev": "6fe211e493929a8aac0469b93f28b1d0688a9a3a"
},
{
"ImportPath": "github.com/stretchr/testify/mock",
"Comment": "v1.0-17-g089c718",
"Rev": "089c7181b8c728499929ff09b62d3fdd8df8adff"
"Comment": "v1.1.3-6-g6fe211e",
"Rev": "6fe211e493929a8aac0469b93f28b1d0688a9a3a"
}
]
}

@ -0,0 +1,13 @@
Copyright (c) 2012-2013 Dave Collins <dave@davec.name>
Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

@ -0,0 +1,151 @@
// Copyright (c) 2015 Dave Collins <dave@davec.name>
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// NOTE: Due to the following build constraints, this file will only be compiled
// when the code is not running on Google App Engine and "-tags disableunsafe"
// is not added to the go build command line.
// +build !appengine,!disableunsafe
package spew
import (
"reflect"
"unsafe"
)
const (
// UnsafeDisabled is a build-time constant which specifies whether or
// not access to the unsafe package is available.
UnsafeDisabled = false
// ptrSize is the size of a pointer on the current arch.
ptrSize = unsafe.Sizeof((*byte)(nil))
)
var (
// offsetPtr, offsetScalar, and offsetFlag are the offsets for the
// internal reflect.Value fields. These values are valid before golang
// commit ecccf07e7f9d which changed the format. The are also valid
// after commit 82f48826c6c7 which changed the format again to mirror
// the original format. Code in the init function updates these offsets
// as necessary.
offsetPtr = uintptr(ptrSize)
offsetScalar = uintptr(0)
offsetFlag = uintptr(ptrSize * 2)
// flagKindWidth and flagKindShift indicate various bits that the
// reflect package uses internally to track kind information.
//
// flagRO indicates whether or not the value field of a reflect.Value is
// read-only.
//
// flagIndir indicates whether the value field of a reflect.Value is
// the actual data or a pointer to the data.
//
// These values are valid before golang commit 90a7c3c86944 which
// changed their positions. Code in the init function updates these
// flags as necessary.
flagKindWidth = uintptr(5)
flagKindShift = uintptr(flagKindWidth - 1)
flagRO = uintptr(1 << 0)
flagIndir = uintptr(1 << 1)
)
func init() {
// Older versions of reflect.Value stored small integers directly in the
// ptr field (which is named val in the older versions). Versions
// between commits ecccf07e7f9d and 82f48826c6c7 added a new field named
// scalar for this purpose which unfortunately came before the flag
// field, so the offset of the flag field is different for those
// versions.
//
// This code constructs a new reflect.Value from a known small integer
// and checks if the size of the reflect.Value struct indicates it has
// the scalar field. When it does, the offsets are updated accordingly.
vv := reflect.ValueOf(0xf00)
if unsafe.Sizeof(vv) == (ptrSize * 4) {
offsetScalar = ptrSize * 2
offsetFlag = ptrSize * 3
}
// Commit 90a7c3c86944 changed the flag positions such that the low
// order bits are the kind. This code extracts the kind from the flags
// field and ensures it's the correct type. When it's not, the flag
// order has been changed to the newer format, so the flags are updated
// accordingly.
upf := unsafe.Pointer(uintptr(unsafe.Pointer(&vv)) + offsetFlag)
upfv := *(*uintptr)(upf)
flagKindMask := uintptr((1<<flagKindWidth - 1) << flagKindShift)
if (upfv&flagKindMask)>>flagKindShift != uintptr(reflect.Int) {
flagKindShift = 0
flagRO = 1 << 5
flagIndir = 1 << 6
// Commit adf9b30e5594 modified the flags to separate the
// flagRO flag into two bits which specifies whether or not the
// field is embedded. This causes flagIndir to move over a bit
// and means that flagRO is the combination of either of the
// original flagRO bit and the new bit.
//
// This code detects the change by extracting what used to be
// the indirect bit to ensure it's set. When it's not, the flag
// order has been changed to the newer format, so the flags are
// updated accordingly.
if upfv&flagIndir == 0 {
flagRO = 3 << 5
flagIndir = 1 << 7
}
}
}
// unsafeReflectValue converts the passed reflect.Value into a one that bypasses
// the typical safety restrictions preventing access to unaddressable and
// unexported data. It works by digging the raw pointer to the underlying
// value out of the protected value and generating a new unprotected (unsafe)
// reflect.Value to it.
//
// This allows us to check for implementations of the Stringer and error
// interfaces to be used for pretty printing ordinarily unaddressable and
// inaccessible values such as unexported struct fields.
func unsafeReflectValue(v reflect.Value) (rv reflect.Value) {
indirects := 1
vt := v.Type()
upv := unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + offsetPtr)
rvf := *(*uintptr)(unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + offsetFlag))
if rvf&flagIndir != 0 {
vt = reflect.PtrTo(v.Type())
indirects++
} else if offsetScalar != 0 {
// The value is in the scalar field when it's not one of the
// reference types.
switch vt.Kind() {
case reflect.Uintptr:
case reflect.Chan:
case reflect.Func:
case reflect.Map:
case reflect.Ptr:
case reflect.UnsafePointer:
default:
upv = unsafe.Pointer(uintptr(unsafe.Pointer(&v)) +
offsetScalar)
}
}
pv := reflect.NewAt(vt, upv)
rv = pv
for i := 0; i < indirects; i++ {
rv = rv.Elem()
}
return rv
}

@ -0,0 +1,37 @@
// Copyright (c) 2015 Dave Collins <dave@davec.name>
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// NOTE: Due to the following build constraints, this file will only be compiled
// when either the code is running on Google App Engine or "-tags disableunsafe"
// is added to the go build command line.
// +build appengine disableunsafe
package spew
import "reflect"
const (
// UnsafeDisabled is a build-time constant which specifies whether or
// not access to the unsafe package is available.
UnsafeDisabled = true
)
// unsafeReflectValue typically converts the passed reflect.Value into a one
// that bypasses the typical safety restrictions preventing access to
// unaddressable and unexported data. However, doing this relies on access to
// the unsafe package. This is a stub version which simply returns the passed
// reflect.Value when the unsafe package is not available.
func unsafeReflectValue(v reflect.Value) reflect.Value {
return v
}

@ -0,0 +1,341 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"io"
"reflect"
"sort"
"strconv"
)
// Some constants in the form of bytes to avoid string overhead. This mirrors
// the technique used in the fmt package.
var (
panicBytes = []byte("(PANIC=")
plusBytes = []byte("+")
iBytes = []byte("i")
trueBytes = []byte("true")
falseBytes = []byte("false")
interfaceBytes = []byte("(interface {})")
commaNewlineBytes = []byte(",\n")
newlineBytes = []byte("\n")
openBraceBytes = []byte("{")
openBraceNewlineBytes = []byte("{\n")
closeBraceBytes = []byte("}")
asteriskBytes = []byte("*")
colonBytes = []byte(":")
colonSpaceBytes = []byte(": ")
openParenBytes = []byte("(")
closeParenBytes = []byte(")")
spaceBytes = []byte(" ")
pointerChainBytes = []byte("->")
nilAngleBytes = []byte("<nil>")
maxNewlineBytes = []byte("<max depth reached>\n")
maxShortBytes = []byte("<max>")
circularBytes = []byte("<already shown>")
circularShortBytes = []byte("<shown>")
invalidAngleBytes = []byte("<invalid>")
openBracketBytes = []byte("[")
closeBracketBytes = []byte("]")
percentBytes = []byte("%")
precisionBytes = []byte(".")
openAngleBytes = []byte("<")
closeAngleBytes = []byte(">")
openMapBytes = []byte("map[")
closeMapBytes = []byte("]")
lenEqualsBytes = []byte("len=")
capEqualsBytes = []byte("cap=")
)
// hexDigits is used to map a decimal value to a hex digit.
var hexDigits = "0123456789abcdef"
// catchPanic handles any panics that might occur during the handleMethods
// calls.
func catchPanic(w io.Writer, v reflect.Value) {
if err := recover(); err != nil {
w.Write(panicBytes)
fmt.Fprintf(w, "%v", err)
w.Write(closeParenBytes)
}
}
// handleMethods attempts to call the Error and String methods on the underlying
// type the passed reflect.Value represents and outputes the result to Writer w.
//
// It handles panics in any called methods by catching and displaying the error
// as the formatted value.
func handleMethods(cs *ConfigState, w io.Writer, v reflect.Value) (handled bool) {
// We need an interface to check if the type implements the error or
// Stringer interface. However, the reflect package won't give us an
// interface on certain things like unexported struct fields in order
// to enforce visibility rules. We use unsafe, when it's available,
// to bypass these restrictions since this package does not mutate the
// values.
if !v.CanInterface() {
if UnsafeDisabled {
return false
}
v = unsafeReflectValue(v)
}
// Choose whether or not to do error and Stringer interface lookups against
// the base type or a pointer to the base type depending on settings.
// Technically calling one of these methods with a pointer receiver can
// mutate the value, however, types which choose to satisify an error or
// Stringer interface with a pointer receiver should not be mutating their
// state inside these interface methods.
if !cs.DisablePointerMethods && !UnsafeDisabled && !v.CanAddr() {
v = unsafeReflectValue(v)
}
if v.CanAddr() {
v = v.Addr()
}
// Is it an error or Stringer?
switch iface := v.Interface().(type) {
case error:
defer catchPanic(w, v)
if cs.ContinueOnMethod {
w.Write(openParenBytes)
w.Write([]byte(iface.Error()))
w.Write(closeParenBytes)
w.Write(spaceBytes)
return false
}
w.Write([]byte(iface.Error()))
return true
case fmt.Stringer:
defer catchPanic(w, v)
if cs.ContinueOnMethod {
w.Write(openParenBytes)
w.Write([]byte(iface.String()))
w.Write(closeParenBytes)
w.Write(spaceBytes)
return false
}
w.Write([]byte(iface.String()))
return true
}
return false
}
// printBool outputs a boolean value as true or false to Writer w.
func printBool(w io.Writer, val bool) {
if val {
w.Write(trueBytes)
} else {
w.Write(falseBytes)
}
}
// printInt outputs a signed integer value to Writer w.
func printInt(w io.Writer, val int64, base int) {
w.Write([]byte(strconv.FormatInt(val, base)))
}
// printUint outputs an unsigned integer value to Writer w.
func printUint(w io.Writer, val uint64, base int) {
w.Write([]byte(strconv.FormatUint(val, base)))
}
// printFloat outputs a floating point value using the specified precision,
// which is expected to be 32 or 64bit, to Writer w.
func printFloat(w io.Writer, val float64, precision int) {
w.Write([]byte(strconv.FormatFloat(val, 'g', -1, precision)))
}
// printComplex outputs a complex value using the specified float precision
// for the real and imaginary parts to Writer w.
func printComplex(w io.Writer, c complex128, floatPrecision int) {
r := real(c)
w.Write(openParenBytes)
w.Write([]byte(strconv.FormatFloat(r, 'g', -1, floatPrecision)))
i := imag(c)
if i >= 0 {
w.Write(plusBytes)
}
w.Write([]byte(strconv.FormatFloat(i, 'g', -1, floatPrecision)))
w.Write(iBytes)
w.Write(closeParenBytes)
}
// printHexPtr outputs a uintptr formatted as hexidecimal with a leading '0x'
// prefix to Writer w.
func printHexPtr(w io.Writer, p uintptr) {
// Null pointer.
num := uint64(p)
if num == 0 {
w.Write(nilAngleBytes)
return
}
// Max uint64 is 16 bytes in hex + 2 bytes for '0x' prefix
buf := make([]byte, 18)
// It's simpler to construct the hex string right to left.
base := uint64(16)
i := len(buf) - 1
for num >= base {
buf[i] = hexDigits[num%base]
num /= base
i--
}
buf[i] = hexDigits[num]
// Add '0x' prefix.
i--
buf[i] = 'x'
i--
buf[i] = '0'
// Strip unused leading bytes.
buf = buf[i:]
w.Write(buf)
}
// valuesSorter implements sort.Interface to allow a slice of reflect.Value
// elements to be sorted.
type valuesSorter struct {
values []reflect.Value
strings []string // either nil or same len and values
cs *ConfigState
}
// newValuesSorter initializes a valuesSorter instance, which holds a set of
// surrogate keys on which the data should be sorted. It uses flags in
// ConfigState to decide if and how to populate those surrogate keys.
func newValuesSorter(values []reflect.Value, cs *ConfigState) sort.Interface {
vs := &valuesSorter{values: values, cs: cs}
if canSortSimply(vs.values[0].Kind()) {
return vs
}
if !cs.DisableMethods {
vs.strings = make([]string, len(values))
for i := range vs.values {
b := bytes.Buffer{}
if !handleMethods(cs, &b, vs.values[i]) {
vs.strings = nil
break
}
vs.strings[i] = b.String()
}
}
if vs.strings == nil && cs.SpewKeys {
vs.strings = make([]string, len(values))
for i := range vs.values {
vs.strings[i] = Sprintf("%#v", vs.values[i].Interface())
}
}
return vs
}
// canSortSimply tests whether a reflect.Kind is a primitive that can be sorted
// directly, or whether it should be considered for sorting by surrogate keys
// (if the ConfigState allows it).
func canSortSimply(kind reflect.Kind) bool {
// This switch parallels valueSortLess, except for the default case.
switch kind {
case reflect.Bool:
return true
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
return true
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
return true
case reflect.Float32, reflect.Float64:
return true
case reflect.String:
return true
case reflect.Uintptr:
return true
case reflect.Array:
return true
}
return false
}
// Len returns the number of values in the slice. It is part of the
// sort.Interface implementation.
func (s *valuesSorter) Len() int {
return len(s.values)
}
// Swap swaps the values at the passed indices. It is part of the
// sort.Interface implementation.
func (s *valuesSorter) Swap(i, j int) {
s.values[i], s.values[j] = s.values[j], s.values[i]
if s.strings != nil {
s.strings[i], s.strings[j] = s.strings[j], s.strings[i]
}
}
// valueSortLess returns whether the first value should sort before the second
// value. It is used by valueSorter.Less as part of the sort.Interface
// implementation.
func valueSortLess(a, b reflect.Value) bool {
switch a.Kind() {
case reflect.Bool:
return !a.Bool() && b.Bool()
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
return a.Int() < b.Int()
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
return a.Uint() < b.Uint()
case reflect.Float32, reflect.Float64:
return a.Float() < b.Float()
case reflect.String:
return a.String() < b.String()
case reflect.Uintptr:
return a.Uint() < b.Uint()
case reflect.Array:
// Compare the contents of both arrays.
l := a.Len()
for i := 0; i < l; i++ {
av := a.Index(i)
bv := b.Index(i)
if av.Interface() == bv.Interface() {
continue
}
return valueSortLess(av, bv)
}
}
return a.String() < b.String()
}
// Less returns whether the value at index i should sort before the
// value at index j. It is part of the sort.Interface implementation.
func (s *valuesSorter) Less(i, j int) bool {
if s.strings == nil {
return valueSortLess(s.values[i], s.values[j])
}
return s.strings[i] < s.strings[j]
}
// sortValues is a sort function that handles both native types and any type that
// can be converted to error or Stringer. Other inputs are sorted according to
// their Value.String() value to ensure display stability.
func sortValues(values []reflect.Value, cs *ConfigState) {
if len(values) == 0 {
return
}
sort.Sort(newValuesSorter(values, cs))
}

@ -0,0 +1,298 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew_test
import (
"fmt"
"reflect"
"testing"
"github.com/davecgh/go-spew/spew"
)
// custom type to test Stinger interface on non-pointer receiver.
type stringer string
// String implements the Stringer interface for testing invocation of custom
// stringers on types with non-pointer receivers.
func (s stringer) String() string {
return "stringer " + string(s)
}
// custom type to test Stinger interface on pointer receiver.
type pstringer string
// String implements the Stringer interface for testing invocation of custom
// stringers on types with only pointer receivers.
func (s *pstringer) String() string {
return "stringer " + string(*s)
}
// xref1 and xref2 are cross referencing structs for testing circular reference
// detection.
type xref1 struct {
ps2 *xref2
}
type xref2 struct {
ps1 *xref1
}
// indirCir1, indirCir2, and indirCir3 are used to generate an indirect circular
// reference for testing detection.
type indirCir1 struct {
ps2 *indirCir2
}
type indirCir2 struct {
ps3 *indirCir3
}
type indirCir3 struct {
ps1 *indirCir1
}
// embed is used to test embedded structures.
type embed struct {
a string
}
// embedwrap is used to test embedded structures.
type embedwrap struct {
*embed
e *embed
}
// panicer is used to intentionally cause a panic for testing spew properly
// handles them
type panicer int
func (p panicer) String() string {
panic("test panic")
}
// customError is used to test custom error interface invocation.
type customError int
func (e customError) Error() string {
return fmt.Sprintf("error: %d", int(e))
}
// stringizeWants converts a slice of wanted test output into a format suitable
// for a test error message.
func stringizeWants(wants []string) string {
s := ""
for i, want := range wants {
if i > 0 {
s += fmt.Sprintf("want%d: %s", i+1, want)
} else {
s += "want: " + want
}
}
return s
}
// testFailed returns whether or not a test failed by checking if the result
// of the test is in the slice of wanted strings.
func testFailed(result string, wants []string) bool {
for _, want := range wants {
if result == want {
return false
}
}
return true
}
type sortableStruct struct {
x int
}
func (ss sortableStruct) String() string {
return fmt.Sprintf("ss.%d", ss.x)
}
type unsortableStruct struct {
x int
}
type sortTestCase struct {
input []reflect.Value
expected []reflect.Value
}
func helpTestSortValues(tests []sortTestCase, cs *spew.ConfigState, t *testing.T) {
getInterfaces := func(values []reflect.Value) []interface{} {
interfaces := []interface{}{}
for _, v := range values {
interfaces = append(interfaces, v.Interface())
}
return interfaces
}
for _, test := range tests {
spew.SortValues(test.input, cs)
// reflect.DeepEqual cannot really make sense of reflect.Value,
// probably because of all the pointer tricks. For instance,
// v(2.0) != v(2.0) on a 32-bits system. Turn them into interface{}
// instead.
input := getInterfaces(test.input)
expected := getInterfaces(test.expected)
if !reflect.DeepEqual(input, expected) {
t.Errorf("Sort mismatch:\n %v != %v", input, expected)
}
}
}
// TestSortValues ensures the sort functionality for relect.Value based sorting
// works as intended.
func TestSortValues(t *testing.T) {
v := reflect.ValueOf
a := v("a")
b := v("b")
c := v("c")
embedA := v(embed{"a"})
embedB := v(embed{"b"})
embedC := v(embed{"c"})
tests := []sortTestCase{
// No values.
{
[]reflect.Value{},
[]reflect.Value{},
},
// Bools.
{
[]reflect.Value{v(false), v(true), v(false)},
[]reflect.Value{v(false), v(false), v(true)},
},
// Ints.
{
[]reflect.Value{v(2), v(1), v(3)},
[]reflect.Value{v(1), v(2), v(3)},
},
// Uints.
{
[]reflect.Value{v(uint8(2)), v(uint8(1)), v(uint8(3))},
[]reflect.Value{v(uint8(1)), v(uint8(2)), v(uint8(3))},
},
// Floats.
{
[]reflect.Value{v(2.0), v(1.0), v(3.0)},
[]reflect.Value{v(1.0), v(2.0), v(3.0)},
},
// Strings.
{
[]reflect.Value{b, a, c},
[]reflect.Value{a, b, c},
},
// Array
{
[]reflect.Value{v([3]int{3, 2, 1}), v([3]int{1, 3, 2}), v([3]int{1, 2, 3})},
[]reflect.Value{v([3]int{1, 2, 3}), v([3]int{1, 3, 2}), v([3]int{3, 2, 1})},
},
// Uintptrs.
{
[]reflect.Value{v(uintptr(2)), v(uintptr(1)), v(uintptr(3))},
[]reflect.Value{v(uintptr(1)), v(uintptr(2)), v(uintptr(3))},
},
// SortableStructs.
{
// Note: not sorted - DisableMethods is set.
[]reflect.Value{v(sortableStruct{2}), v(sortableStruct{1}), v(sortableStruct{3})},
[]reflect.Value{v(sortableStruct{2}), v(sortableStruct{1}), v(sortableStruct{3})},
},
// UnsortableStructs.
{
// Note: not sorted - SpewKeys is false.
[]reflect.Value{v(unsortableStruct{2}), v(unsortableStruct{1}), v(unsortableStruct{3})},
[]reflect.Value{v(unsortableStruct{2}), v(unsortableStruct{1}), v(unsortableStruct{3})},
},
// Invalid.
{
[]reflect.Value{embedB, embedA, embedC},
[]reflect.Value{embedB, embedA, embedC},
},
}
cs := spew.ConfigState{DisableMethods: true, SpewKeys: false}
helpTestSortValues(tests, &cs, t)
}
// TestSortValuesWithMethods ensures the sort functionality for relect.Value
// based sorting works as intended when using string methods.
func TestSortValuesWithMethods(t *testing.T) {
v := reflect.ValueOf
a := v("a")
b := v("b")
c := v("c")
tests := []sortTestCase{
// Ints.
{
[]reflect.Value{v(2), v(1), v(3)},
[]reflect.Value{v(1), v(2), v(3)},
},
// Strings.
{
[]reflect.Value{b, a, c},
[]reflect.Value{a, b, c},
},
// SortableStructs.
{
[]reflect.Value{v(sortableStruct{2}), v(sortableStruct{1}), v(sortableStruct{3})},
[]reflect.Value{v(sortableStruct{1}), v(sortableStruct{2}), v(sortableStruct{3})},
},
// UnsortableStructs.
{
// Note: not sorted - SpewKeys is false.
[]reflect.Value{v(unsortableStruct{2}), v(unsortableStruct{1}), v(unsortableStruct{3})},
[]reflect.Value{v(unsortableStruct{2}), v(unsortableStruct{1}), v(unsortableStruct{3})},
},
}
cs := spew.ConfigState{DisableMethods: false, SpewKeys: false}
helpTestSortValues(tests, &cs, t)
}
// TestSortValuesWithSpew ensures the sort functionality for relect.Value
// based sorting works as intended when using spew to stringify keys.
func TestSortValuesWithSpew(t *testing.T) {
v := reflect.ValueOf
a := v("a")
b := v("b")
c := v("c")
tests := []sortTestCase{
// Ints.
{
[]reflect.Value{v(2), v(1), v(3)},
[]reflect.Value{v(1), v(2), v(3)},
},
// Strings.
{
[]reflect.Value{b, a, c},
[]reflect.Value{a, b, c},
},
// SortableStructs.
{
[]reflect.Value{v(sortableStruct{2}), v(sortableStruct{1}), v(sortableStruct{3})},
[]reflect.Value{v(sortableStruct{1}), v(sortableStruct{2}), v(sortableStruct{3})},
},
// UnsortableStructs.
{
[]reflect.Value{v(unsortableStruct{2}), v(unsortableStruct{1}), v(unsortableStruct{3})},
[]reflect.Value{v(unsortableStruct{1}), v(unsortableStruct{2}), v(unsortableStruct{3})},
},
}
cs := spew.ConfigState{DisableMethods: true, SpewKeys: true}
helpTestSortValues(tests, &cs, t)
}

@ -0,0 +1,297 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"io"
"os"
)
// ConfigState houses the configuration options used by spew to format and
// display values. There is a global instance, Config, that is used to control
// all top-level Formatter and Dump functionality. Each ConfigState instance
// provides methods equivalent to the top-level functions.
//
// The zero value for ConfigState provides no indentation. You would typically
// want to set it to a space or a tab.
//
// Alternatively, you can use NewDefaultConfig to get a ConfigState instance
// with default settings. See the documentation of NewDefaultConfig for default
// values.
type ConfigState struct {
// Indent specifies the string to use for each indentation level. The
// global config instance that all top-level functions use set this to a
// single space by default. If you would like more indentation, you might
// set this to a tab with "\t" or perhaps two spaces with " ".
Indent string
// MaxDepth controls the maximum number of levels to descend into nested
// data structures. The default, 0, means there is no limit.
//
// NOTE: Circular data structures are properly detected, so it is not
// necessary to set this value unless you specifically want to limit deeply
// nested data structures.
MaxDepth int
// DisableMethods specifies whether or not error and Stringer interfaces are
// invoked for types that implement them.
DisableMethods bool
// DisablePointerMethods specifies whether or not to check for and invoke
// error and Stringer interfaces on types which only accept a pointer
// receiver when the current type is not a pointer.
//
// NOTE: This might be an unsafe action since calling one of these methods
// with a pointer receiver could technically mutate the value, however,
// in practice, types which choose to satisify an error or Stringer
// interface with a pointer receiver should not be mutating their state
// inside these interface methods. As a result, this option relies on
// access to the unsafe package, so it will not have any effect when
// running in environments without access to the unsafe package such as
// Google App Engine or with the "disableunsafe" build tag specified.
DisablePointerMethods bool
// ContinueOnMethod specifies whether or not recursion should continue once
// a custom error or Stringer interface is invoked. The default, false,
// means it will print the results of invoking the custom error or Stringer
// interface and return immediately instead of continuing to recurse into
// the internals of the data type.
//
// NOTE: This flag does not have any effect if method invocation is disabled
// via the DisableMethods or DisablePointerMethods options.
ContinueOnMethod bool
// SortKeys specifies map keys should be sorted before being printed. Use
// this to have a more deterministic, diffable output. Note that only
// native types (bool, int, uint, floats, uintptr and string) and types
// that support the error or Stringer interfaces (if methods are
// enabled) are supported, with other types sorted according to the
// reflect.Value.String() output which guarantees display stability.
SortKeys bool
// SpewKeys specifies that, as a last resort attempt, map keys should
// be spewed to strings and sorted by those strings. This is only
// considered if SortKeys is true.
SpewKeys bool
}
// Config is the active configuration of the top-level functions.
// The configuration can be changed by modifying the contents of spew.Config.
var Config = ConfigState{Indent: " "}
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the formatted string as a value that satisfies error. See NewFormatter
// for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Errorf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Errorf(format string, a ...interface{}) (err error) {
return fmt.Errorf(format, c.convertArgs(a)...)
}
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprint(w, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprint(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprint(w, c.convertArgs(a)...)
}
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintf(w, format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
return fmt.Fprintf(w, format, c.convertArgs(a)...)
}
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it
// passed with a Formatter interface returned by c.NewFormatter. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintln(w, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprintln(w, c.convertArgs(a)...)
}
// Print is a wrapper for fmt.Print that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Print(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Print(a ...interface{}) (n int, err error) {
return fmt.Print(c.convertArgs(a)...)
}
// Printf is a wrapper for fmt.Printf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Printf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Printf(format string, a ...interface{}) (n int, err error) {
return fmt.Printf(format, c.convertArgs(a)...)
}
// Println is a wrapper for fmt.Println that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Println(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Println(a ...interface{}) (n int, err error) {
return fmt.Println(c.convertArgs(a)...)
}
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprint(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprint(a ...interface{}) string {
return fmt.Sprint(c.convertArgs(a)...)
}
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprintf(format string, a ...interface{}) string {
return fmt.Sprintf(format, c.convertArgs(a)...)
}
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it
// were passed with a Formatter interface returned by c.NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintln(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprintln(a ...interface{}) string {
return fmt.Sprintln(c.convertArgs(a)...)
}
/*
NewFormatter returns a custom formatter that satisfies the fmt.Formatter
interface. As a result, it integrates cleanly with standard fmt package
printing functions. The formatter is useful for inline printing of smaller data
types similar to the standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), and %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Typically this function shouldn't be called directly. It is much easier to make
use of the custom formatter by calling one of the convenience functions such as
c.Printf, c.Println, or c.Printf.
*/
func (c *ConfigState) NewFormatter(v interface{}) fmt.Formatter {
return newFormatter(c, v)
}
// Fdump formats and displays the passed arguments to io.Writer w. It formats
// exactly the same as Dump.
func (c *ConfigState) Fdump(w io.Writer, a ...interface{}) {
fdump(c, w, a...)
}
/*
Dump displays the passed parameters to standard out with newlines, customizable
indentation, and additional debug information such as complete types and all
pointer addresses used to indirect to the final value. It provides the
following features over the built-in printing facilities provided by the fmt
package:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output
The configuration options are controlled by modifying the public members
of c. See ConfigState for options documentation.
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to
get the formatted result as a string.
*/
func (c *ConfigState) Dump(a ...interface{}) {
fdump(c, os.Stdout, a...)
}
// Sdump returns a string with the passed arguments formatted exactly the same
// as Dump.
func (c *ConfigState) Sdump(a ...interface{}) string {
var buf bytes.Buffer
fdump(c, &buf, a...)
return buf.String()
}
// convertArgs accepts a slice of arguments and returns a slice of the same
// length with each argument converted to a spew Formatter interface using
// the ConfigState associated with s.
func (c *ConfigState) convertArgs(args []interface{}) (formatters []interface{}) {
formatters = make([]interface{}, len(args))
for index, arg := range args {
formatters[index] = newFormatter(c, arg)
}
return formatters
}
// NewDefaultConfig returns a ConfigState with the following default settings.
//
// Indent: " "
// MaxDepth: 0
// DisableMethods: false
// DisablePointerMethods: false
// ContinueOnMethod: false
// SortKeys: false
func NewDefaultConfig() *ConfigState {
return &ConfigState{Indent: " "}
}

@ -0,0 +1,202 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
Package spew implements a deep pretty printer for Go data structures to aid in
debugging.
A quick overview of the additional features spew provides over the built-in
printing facilities for Go data types are as follows:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output (only when using
Dump style)
There are two different approaches spew allows for dumping Go data structures:
* Dump style which prints with newlines, customizable indentation,
and additional debug information such as types and all pointer addresses
used to indirect to the final value
* A custom Formatter interface that integrates cleanly with the standard fmt
package and replaces %v, %+v, %#v, and %#+v to provide inline printing
similar to the default %v while providing the additional functionality
outlined above and passing unsupported format verbs such as %x and %q
along to fmt
Quick Start
This section demonstrates how to quickly get started with spew. See the
sections below for further details on formatting and configuration options.
To dump a variable with full newlines, indentation, type, and pointer
information use Dump, Fdump, or Sdump:
spew.Dump(myVar1, myVar2, ...)
spew.Fdump(someWriter, myVar1, myVar2, ...)
str := spew.Sdump(myVar1, myVar2, ...)
Alternatively, if you would prefer to use format strings with a compacted inline
printing style, use the convenience wrappers Printf, Fprintf, etc with
%v (most compact), %+v (adds pointer addresses), %#v (adds types), or
%#+v (adds types and pointer addresses):
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
spew.Fprintf(someWriter, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Fprintf(someWriter, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
Configuration Options
Configuration of spew is handled by fields in the ConfigState type. For
convenience, all of the top-level functions use a global state available
via the spew.Config global.
It is also possible to create a ConfigState instance that provides methods
equivalent to the top-level functions. This allows concurrent configuration
options. See the ConfigState documentation for more details.
The following configuration options are available:
* Indent
String to use for each indentation level for Dump functions.
It is a single space by default. A popular alternative is "\t".
* MaxDepth
Maximum number of levels to descend into nested data structures.
There is no limit by default.
* DisableMethods
Disables invocation of error and Stringer interface methods.
Method invocation is enabled by default.
* DisablePointerMethods
Disables invocation of error and Stringer interface methods on types
which only accept pointer receivers from non-pointer variables.
Pointer method invocation is enabled by default.
* ContinueOnMethod
Enables recursion into types after invoking error and Stringer interface
methods. Recursion after method invocation is disabled by default.
* SortKeys
Specifies map keys should be sorted before being printed. Use
this to have a more deterministic, diffable output. Note that
only native types (bool, int, uint, floats, uintptr and string)
and types which implement error or Stringer interfaces are
supported with other types sorted according to the
reflect.Value.String() output which guarantees display
stability. Natural map order is used by default.
* SpewKeys
Specifies that, as a last resort attempt, map keys should be
spewed to strings and sorted by those strings. This is only
considered if SortKeys is true.
Dump Usage
Simply call spew.Dump with a list of variables you want to dump:
spew.Dump(myVar1, myVar2, ...)
You may also call spew.Fdump if you would prefer to output to an arbitrary
io.Writer. For example, to dump to standard error:
spew.Fdump(os.Stderr, myVar1, myVar2, ...)
A third option is to call spew.Sdump to get the formatted output as a string:
str := spew.Sdump(myVar1, myVar2, ...)
Sample Dump Output
See the Dump example for details on the setup of the types and variables being
shown here.
(main.Foo) {
unexportedField: (*main.Bar)(0xf84002e210)({
flag: (main.Flag) flagTwo,
data: (uintptr) <nil>
}),
ExportedField: (map[interface {}]interface {}) (len=1) {
(string) (len=3) "one": (bool) true
}
}
Byte (and uint8) arrays and slices are displayed uniquely like the hexdump -C
command as shown.
([]uint8) (len=32 cap=32) {
00000000 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 |............... |
00000010 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 |!"#$%&'()*+,-./0|
00000020 31 32 |12|
}
Custom Formatter
Spew provides a custom formatter that implements the fmt.Formatter interface
so that it integrates cleanly with standard fmt package printing functions. The
formatter is useful for inline printing of smaller data types similar to the
standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Custom Formatter Usage
The simplest way to make use of the spew custom formatter is to call one of the
convenience functions such as spew.Printf, spew.Println, or spew.Printf. The
functions have syntax you are most likely already familiar with:
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
spew.Println(myVar, myVar2)
spew.Fprintf(os.Stderr, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Fprintf(os.Stderr, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
See the Index for the full list convenience functions.
Sample Formatter Output
Double pointer to a uint8:
%v: <**>5
%+v: <**>(0xf8400420d0->0xf8400420c8)5
%#v: (**uint8)5
%#+v: (**uint8)(0xf8400420d0->0xf8400420c8)5
Pointer to circular struct with a uint8 field and a pointer to itself:
%v: <*>{1 <*><shown>}
%+v: <*>(0xf84003e260){ui8:1 c:<*>(0xf84003e260)<shown>}
%#v: (*main.circular){ui8:(uint8)1 c:(*main.circular)<shown>}
%#+v: (*main.circular)(0xf84003e260){ui8:(uint8)1 c:(*main.circular)(0xf84003e260)<shown>}
See the Printf example for details on the setup of variables being shown
here.
Errors
Since it is possible for custom Stringer/error interfaces to panic, spew
detects them and handles them internally by printing the panic information
inline with the output. Since spew is intended to provide deep pretty printing
capabilities on structures, it intentionally does not return any errors.
*/
package spew

@ -0,0 +1,509 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"encoding/hex"
"fmt"
"io"
"os"
"reflect"
"regexp"
"strconv"
"strings"
)
var (
// uint8Type is a reflect.Type representing a uint8. It is used to
// convert cgo types to uint8 slices for hexdumping.
uint8Type = reflect.TypeOf(uint8(0))
// cCharRE is a regular expression that matches a cgo char.
// It is used to detect character arrays to hexdump them.
cCharRE = regexp.MustCompile("^.*\\._Ctype_char$")
// cUnsignedCharRE is a regular expression that matches a cgo unsigned
// char. It is used to detect unsigned character arrays to hexdump
// them.
cUnsignedCharRE = regexp.MustCompile("^.*\\._Ctype_unsignedchar$")
// cUint8tCharRE is a regular expression that matches a cgo uint8_t.
// It is used to detect uint8_t arrays to hexdump them.
cUint8tCharRE = regexp.MustCompile("^.*\\._Ctype_uint8_t$")
)
// dumpState contains information about the state of a dump operation.
type dumpState struct {
w io.Writer
depth int
pointers map[uintptr]int
ignoreNextType bool
ignoreNextIndent bool
cs *ConfigState
}
// indent performs indentation according to the depth level and cs.Indent
// option.
func (d *dumpState) indent() {
if d.ignoreNextIndent {
d.ignoreNextIndent = false
return
}
d.w.Write(bytes.Repeat([]byte(d.cs.Indent), d.depth))
}
// unpackValue returns values inside of non-nil interfaces when possible.
// This is useful for data types like structs, arrays, slices, and maps which
// can contain varying types packed inside an interface.
func (d *dumpState) unpackValue(v reflect.Value) reflect.Value {
if v.Kind() == reflect.Interface && !v.IsNil() {
v = v.Elem()
}
return v
}
// dumpPtr handles formatting of pointers by indirecting them as necessary.
func (d *dumpState) dumpPtr(v reflect.Value) {
// Remove pointers at or below the current depth from map used to detect
// circular refs.
for k, depth := range d.pointers {
if depth >= d.depth {
delete(d.pointers, k)
}
}
// Keep list of all dereferenced pointers to show later.
pointerChain := make([]uintptr, 0)
// Figure out how many levels of indirection there are by dereferencing
// pointers and unpacking interfaces down the chain while detecting circular
// references.
nilFound := false
cycleFound := false
indirects := 0
ve := v
for ve.Kind() == reflect.Ptr {
if ve.IsNil() {
nilFound = true
break
}
indirects++
addr := ve.Pointer()
pointerChain = append(pointerChain, addr)
if pd, ok := d.pointers[addr]; ok && pd < d.depth {
cycleFound = true
indirects--
break
}
d.pointers[addr] = d.depth
ve = ve.Elem()
if ve.Kind() == reflect.Interface {
if ve.IsNil() {
nilFound = true
break
}
ve = ve.Elem()
}
}
// Display type information.
d.w.Write(openParenBytes)
d.w.Write(bytes.Repeat(asteriskBytes, indirects))
d.w.Write([]byte(ve.Type().String()))
d.w.Write(closeParenBytes)
// Display pointer information.
if len(pointerChain) > 0 {
d.w.Write(openParenBytes)
for i, addr := range pointerChain {
if i > 0 {
d.w.Write(pointerChainBytes)
}
printHexPtr(d.w, addr)
}
d.w.Write(closeParenBytes)
}
// Display dereferenced value.
d.w.Write(openParenBytes)
switch {
case nilFound == true:
d.w.Write(nilAngleBytes)
case cycleFound == true:
d.w.Write(circularBytes)
default:
d.ignoreNextType = true
d.dump(ve)
}
d.w.Write(closeParenBytes)
}
// dumpSlice handles formatting of arrays and slices. Byte (uint8 under
// reflection) arrays and slices are dumped in hexdump -C fashion.
func (d *dumpState) dumpSlice(v reflect.Value) {
// Determine whether this type should be hex dumped or not. Also,
// for types which should be hexdumped, try to use the underlying data
// first, then fall back to trying to convert them to a uint8 slice.
var buf []uint8
doConvert := false
doHexDump := false
numEntries := v.Len()
if numEntries > 0 {
vt := v.Index(0).Type()
vts := vt.String()
switch {
// C types that need to be converted.
case cCharRE.MatchString(vts):
fallthrough
case cUnsignedCharRE.MatchString(vts):
fallthrough
case cUint8tCharRE.MatchString(vts):
doConvert = true
// Try to use existing uint8 slices and fall back to converting
// and copying if that fails.
case vt.Kind() == reflect.Uint8:
// We need an addressable interface to convert the type
// to a byte slice. However, the reflect package won't
// give us an interface on certain things like
// unexported struct fields in order to enforce
// visibility rules. We use unsafe, when available, to
// bypass these restrictions since this package does not
// mutate the values.
vs := v
if !vs.CanInterface() || !vs.CanAddr() {
vs = unsafeReflectValue(vs)
}
if !UnsafeDisabled {
vs = vs.Slice(0, numEntries)
// Use the existing uint8 slice if it can be
// type asserted.
iface := vs.Interface()
if slice, ok := iface.([]uint8); ok {
buf = slice
doHexDump = true
break
}
}
// The underlying data needs to be converted if it can't
// be type asserted to a uint8 slice.
doConvert = true
}
// Copy and convert the underlying type if needed.
if doConvert && vt.ConvertibleTo(uint8Type) {
// Convert and copy each element into a uint8 byte
// slice.
buf = make([]uint8, numEntries)
for i := 0; i < numEntries; i++ {
vv := v.Index(i)
buf[i] = uint8(vv.Convert(uint8Type).Uint())
}
doHexDump = true
}
}
// Hexdump the entire slice as needed.
if doHexDump {
indent := strings.Repeat(d.cs.Indent, d.depth)
str := indent + hex.Dump(buf)
str = strings.Replace(str, "\n", "\n"+indent, -1)
str = strings.TrimRight(str, d.cs.Indent)
d.w.Write([]byte(str))
return
}
// Recursively call dump for each item.
for i := 0; i < numEntries; i++ {
d.dump(d.unpackValue(v.Index(i)))
if i < (numEntries - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
// dump is the main workhorse for dumping a value. It uses the passed reflect
// value to figure out what kind of object we are dealing with and formats it
// appropriately. It is a recursive function, however circular data structures
// are detected and handled properly.
func (d *dumpState) dump(v reflect.Value) {
// Handle invalid reflect values immediately.
kind := v.Kind()
if kind == reflect.Invalid {
d.w.Write(invalidAngleBytes)
return
}
// Handle pointers specially.
if kind == reflect.Ptr {
d.indent()
d.dumpPtr(v)
return
}
// Print type information unless already handled elsewhere.
if !d.ignoreNextType {
d.indent()
d.w.Write(openParenBytes)
d.w.Write([]byte(v.Type().String()))
d.w.Write(closeParenBytes)
d.w.Write(spaceBytes)
}
d.ignoreNextType = false
// Display length and capacity if the built-in len and cap functions
// work with the value's kind and the len/cap itself is non-zero.
valueLen, valueCap := 0, 0
switch v.Kind() {
case reflect.Array, reflect.Slice, reflect.Chan:
valueLen, valueCap = v.Len(), v.Cap()
case reflect.Map, reflect.String:
valueLen = v.Len()
}
if valueLen != 0 || valueCap != 0 {
d.w.Write(openParenBytes)
if valueLen != 0 {
d.w.Write(lenEqualsBytes)
printInt(d.w, int64(valueLen), 10)
}
if valueCap != 0 {
if valueLen != 0 {
d.w.Write(spaceBytes)
}
d.w.Write(capEqualsBytes)
printInt(d.w, int64(valueCap), 10)
}
d.w.Write(closeParenBytes)
d.w.Write(spaceBytes)
}
// Call Stringer/error interfaces if they exist and the handle methods flag
// is enabled
if !d.cs.DisableMethods {
if (kind != reflect.Invalid) && (kind != reflect.Interface) {
if handled := handleMethods(d.cs, d.w, v); handled {
return
}
}
}
switch kind {
case reflect.Invalid:
// Do nothing. We should never get here since invalid has already
// been handled above.
case reflect.Bool:
printBool(d.w, v.Bool())
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
printInt(d.w, v.Int(), 10)
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
printUint(d.w, v.Uint(), 10)
case reflect.Float32:
printFloat(d.w, v.Float(), 32)
case reflect.Float64:
printFloat(d.w, v.Float(), 64)
case reflect.Complex64:
printComplex(d.w, v.Complex(), 32)
case reflect.Complex128:
printComplex(d.w, v.Complex(), 64)
case reflect.Slice:
if v.IsNil() {
d.w.Write(nilAngleBytes)
break
}
fallthrough
case reflect.Array:
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
d.dumpSlice(v)
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.String:
d.w.Write([]byte(strconv.Quote(v.String())))
case reflect.Interface:
// The only time we should get here is for nil interfaces due to
// unpackValue calls.
if v.IsNil() {
d.w.Write(nilAngleBytes)
}
case reflect.Ptr:
// Do nothing. We should never get here since pointers have already
// been handled above.
case reflect.Map:
// nil maps should be indicated as different than empty maps
if v.IsNil() {
d.w.Write(nilAngleBytes)
break
}
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
numEntries := v.Len()
keys := v.MapKeys()
if d.cs.SortKeys {
sortValues(keys, d.cs)
}
for i, key := range keys {
d.dump(d.unpackValue(key))
d.w.Write(colonSpaceBytes)
d.ignoreNextIndent = true
d.dump(d.unpackValue(v.MapIndex(key)))
if i < (numEntries - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.Struct:
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
vt := v.Type()
numFields := v.NumField()
for i := 0; i < numFields; i++ {
d.indent()
vtf := vt.Field(i)
d.w.Write([]byte(vtf.Name))
d.w.Write(colonSpaceBytes)
d.ignoreNextIndent = true
d.dump(d.unpackValue(v.Field(i)))
if i < (numFields - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.Uintptr:
printHexPtr(d.w, uintptr(v.Uint()))
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
printHexPtr(d.w, v.Pointer())
// There were not any other types at the time this code was written, but
// fall back to letting the default fmt package handle it in case any new
// types are added.
default:
if v.CanInterface() {
fmt.Fprintf(d.w, "%v", v.Interface())
} else {
fmt.Fprintf(d.w, "%v", v.String())
}
}
}
// fdump is a helper function to consolidate the logic from the various public
// methods which take varying writers and config states.
func fdump(cs *ConfigState, w io.Writer, a ...interface{}) {
for _, arg := range a {
if arg == nil {
w.Write(interfaceBytes)
w.Write(spaceBytes)
w.Write(nilAngleBytes)
w.Write(newlineBytes)
continue
}
d := dumpState{w: w, cs: cs}
d.pointers = make(map[uintptr]int)
d.dump(reflect.ValueOf(arg))
d.w.Write(newlineBytes)
}
}
// Fdump formats and displays the passed arguments to io.Writer w. It formats
// exactly the same as Dump.
func Fdump(w io.Writer, a ...interface{}) {
fdump(&Config, w, a...)
}
// Sdump returns a string with the passed arguments formatted exactly the same
// as Dump.
func Sdump(a ...interface{}) string {
var buf bytes.Buffer
fdump(&Config, &buf, a...)
return buf.String()
}
/*
Dump displays the passed parameters to standard out with newlines, customizable
indentation, and additional debug information such as complete types and all
pointer addresses used to indirect to the final value. It provides the
following features over the built-in printing facilities provided by the fmt
package:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output
The configuration options are controlled by an exported package global,
spew.Config. See ConfigState for options documentation.
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to
get the formatted result as a string.
*/
func Dump(a ...interface{}) {
fdump(&Config, os.Stdout, a...)
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,98 @@
// Copyright (c) 2013 Dave Collins <dave@davec.name>
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// NOTE: Due to the following build constraints, this file will only be compiled
// when both cgo is supported and "-tags testcgo" is added to the go test
// command line. This means the cgo tests are only added (and hence run) when
// specifially requested. This configuration is used because spew itself
// does not require cgo to run even though it does handle certain cgo types
// specially. Rather than forcing all clients to require cgo and an external
// C compiler just to run the tests, this scheme makes them optional.
// +build cgo,testcgo
package spew_test
import (
"fmt"
"github.com/davecgh/go-spew/spew/testdata"
)
func addCgoDumpTests() {
// C char pointer.
v := testdata.GetCgoCharPointer()
nv := testdata.GetCgoNullCharPointer()
pv := &v
vcAddr := fmt.Sprintf("%p", v)
vAddr := fmt.Sprintf("%p", pv)
pvAddr := fmt.Sprintf("%p", &pv)
vt := "*testdata._Ctype_char"
vs := "116"
addDumpTest(v, "("+vt+")("+vcAddr+")("+vs+")\n")
addDumpTest(pv, "(*"+vt+")("+vAddr+"->"+vcAddr+")("+vs+")\n")
addDumpTest(&pv, "(**"+vt+")("+pvAddr+"->"+vAddr+"->"+vcAddr+")("+vs+")\n")
addDumpTest(nv, "("+vt+")(<nil>)\n")
// C char array.
v2, v2l, v2c := testdata.GetCgoCharArray()
v2Len := fmt.Sprintf("%d", v2l)
v2Cap := fmt.Sprintf("%d", v2c)
v2t := "[6]testdata._Ctype_char"
v2s := "(len=" + v2Len + " cap=" + v2Cap + ") " +
"{\n 00000000 74 65 73 74 32 00 " +
" |test2.|\n}"
addDumpTest(v2, "("+v2t+") "+v2s+"\n")
// C unsigned char array.
v3, v3l, v3c := testdata.GetCgoUnsignedCharArray()
v3Len := fmt.Sprintf("%d", v3l)
v3Cap := fmt.Sprintf("%d", v3c)
v3t := "[6]testdata._Ctype_unsignedchar"
v3s := "(len=" + v3Len + " cap=" + v3Cap + ") " +
"{\n 00000000 74 65 73 74 33 00 " +
" |test3.|\n}"
addDumpTest(v3, "("+v3t+") "+v3s+"\n")
// C signed char array.
v4, v4l, v4c := testdata.GetCgoSignedCharArray()
v4Len := fmt.Sprintf("%d", v4l)
v4Cap := fmt.Sprintf("%d", v4c)
v4t := "[6]testdata._Ctype_schar"
v4t2 := "testdata._Ctype_schar"
v4s := "(len=" + v4Len + " cap=" + v4Cap + ") " +
"{\n (" + v4t2 + ") 116,\n (" + v4t2 + ") 101,\n (" + v4t2 +
") 115,\n (" + v4t2 + ") 116,\n (" + v4t2 + ") 52,\n (" + v4t2 +
") 0\n}"
addDumpTest(v4, "("+v4t+") "+v4s+"\n")
// C uint8_t array.
v5, v5l, v5c := testdata.GetCgoUint8tArray()
v5Len := fmt.Sprintf("%d", v5l)
v5Cap := fmt.Sprintf("%d", v5c)
v5t := "[6]testdata._Ctype_uint8_t"
v5s := "(len=" + v5Len + " cap=" + v5Cap + ") " +
"{\n 00000000 74 65 73 74 35 00 " +
" |test5.|\n}"
addDumpTest(v5, "("+v5t+") "+v5s+"\n")
// C typedefed unsigned char array.
v6, v6l, v6c := testdata.GetCgoTypdefedUnsignedCharArray()
v6Len := fmt.Sprintf("%d", v6l)
v6Cap := fmt.Sprintf("%d", v6c)
v6t := "[6]testdata._Ctype_custom_uchar_t"
v6s := "(len=" + v6Len + " cap=" + v6Cap + ") " +
"{\n 00000000 74 65 73 74 36 00 " +
" |test6.|\n}"
addDumpTest(v6, "("+v6t+") "+v6s+"\n")
}

@ -0,0 +1,26 @@
// Copyright (c) 2013 Dave Collins <dave@davec.name>
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// NOTE: Due to the following build constraints, this file will only be compiled
// when either cgo is not supported or "-tags testcgo" is not added to the go
// test command line. This file intentionally does not setup any cgo tests in
// this scenario.
// +build !cgo !testcgo
package spew_test
func addCgoDumpTests() {
// Don't add any tests for cgo since this file is only compiled when
// there should not be any cgo tests.
}

@ -0,0 +1,226 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew_test
import (
"fmt"
"github.com/davecgh/go-spew/spew"
)
type Flag int
const (
flagOne Flag = iota
flagTwo
)
var flagStrings = map[Flag]string{
flagOne: "flagOne",
flagTwo: "flagTwo",
}
func (f Flag) String() string {
if s, ok := flagStrings[f]; ok {
return s
}
return fmt.Sprintf("Unknown flag (%d)", int(f))
}
type Bar struct {
data uintptr
}
type Foo struct {
unexportedField Bar
ExportedField map[interface{}]interface{}
}
// This example demonstrates how to use Dump to dump variables to stdout.
func ExampleDump() {
// The following package level declarations are assumed for this example:
/*
type Flag int
const (
flagOne Flag = iota
flagTwo
)
var flagStrings = map[Flag]string{
flagOne: "flagOne",
flagTwo: "flagTwo",
}
func (f Flag) String() string {
if s, ok := flagStrings[f]; ok {
return s
}
return fmt.Sprintf("Unknown flag (%d)", int(f))
}
type Bar struct {
data uintptr
}
type Foo struct {
unexportedField Bar
ExportedField map[interface{}]interface{}
}
*/
// Setup some sample data structures for the example.
bar := Bar{uintptr(0)}
s1 := Foo{bar, map[interface{}]interface{}{"one": true}}
f := Flag(5)
b := []byte{
0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,
0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20,
0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30,
0x31, 0x32,
}
// Dump!
spew.Dump(s1, f, b)
// Output:
// (spew_test.Foo) {
// unexportedField: (spew_test.Bar) {
// data: (uintptr) <nil>
// },
// ExportedField: (map[interface {}]interface {}) (len=1) {
// (string) (len=3) "one": (bool) true
// }
// }
// (spew_test.Flag) Unknown flag (5)
// ([]uint8) (len=34 cap=34) {
// 00000000 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 |............... |
// 00000010 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 |!"#$%&'()*+,-./0|
// 00000020 31 32 |12|
// }
//
}
// This example demonstrates how to use Printf to display a variable with a
// format string and inline formatting.
func ExamplePrintf() {
// Create a double pointer to a uint 8.
ui8 := uint8(5)
pui8 := &ui8
ppui8 := &pui8
// Create a circular data type.
type circular struct {
ui8 uint8
c *circular
}
c := circular{ui8: 1}
c.c = &c
// Print!
spew.Printf("ppui8: %v\n", ppui8)
spew.Printf("circular: %v\n", c)
// Output:
// ppui8: <**>5
// circular: {1 <*>{1 <*><shown>}}
}
// This example demonstrates how to use a ConfigState.
func ExampleConfigState() {
// Modify the indent level of the ConfigState only. The global
// configuration is not modified.
scs := spew.ConfigState{Indent: "\t"}
// Output using the ConfigState instance.
v := map[string]int{"one": 1}
scs.Printf("v: %v\n", v)
scs.Dump(v)
// Output:
// v: map[one:1]
// (map[string]int) (len=1) {
// (string) (len=3) "one": (int) 1
// }
}
// This example demonstrates how to use ConfigState.Dump to dump variables to
// stdout
func ExampleConfigState_Dump() {
// See the top-level Dump example for details on the types used in this
// example.
// Create two ConfigState instances with different indentation.
scs := spew.ConfigState{Indent: "\t"}
scs2 := spew.ConfigState{Indent: " "}
// Setup some sample data structures for the example.
bar := Bar{uintptr(0)}
s1 := Foo{bar, map[interface{}]interface{}{"one": true}}
// Dump using the ConfigState instances.
scs.Dump(s1)
scs2.Dump(s1)
// Output:
// (spew_test.Foo) {
// unexportedField: (spew_test.Bar) {
// data: (uintptr) <nil>
// },
// ExportedField: (map[interface {}]interface {}) (len=1) {
// (string) (len=3) "one": (bool) true
// }
// }
// (spew_test.Foo) {
// unexportedField: (spew_test.Bar) {
// data: (uintptr) <nil>
// },
// ExportedField: (map[interface {}]interface {}) (len=1) {
// (string) (len=3) "one": (bool) true
// }
// }
//
}
// This example demonstrates how to use ConfigState.Printf to display a variable
// with a format string and inline formatting.
func ExampleConfigState_Printf() {
// See the top-level Dump example for details on the types used in this
// example.
// Create two ConfigState instances and modify the method handling of the
// first ConfigState only.
scs := spew.NewDefaultConfig()
scs2 := spew.NewDefaultConfig()
scs.DisableMethods = true
// Alternatively
// scs := spew.ConfigState{Indent: " ", DisableMethods: true}
// scs2 := spew.ConfigState{Indent: " "}
// This is of type Flag which implements a Stringer and has raw value 1.
f := flagTwo
// Dump using the ConfigState instances.
scs.Printf("f: %v\n", f)
scs2.Printf("f: %v\n", f)
// Output:
// f: 1
// f: flagTwo
}

@ -0,0 +1,419 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"reflect"
"strconv"
"strings"
)
// supportedFlags is a list of all the character flags supported by fmt package.
const supportedFlags = "0-+# "
// formatState implements the fmt.Formatter interface and contains information
// about the state of a formatting operation. The NewFormatter function can
// be used to get a new Formatter which can be used directly as arguments
// in standard fmt package printing calls.
type formatState struct {
value interface{}
fs fmt.State
depth int
pointers map[uintptr]int
ignoreNextType bool
cs *ConfigState
}
// buildDefaultFormat recreates the original format string without precision
// and width information to pass in to fmt.Sprintf in the case of an
// unrecognized type. Unless new types are added to the language, this
// function won't ever be called.
func (f *formatState) buildDefaultFormat() (format string) {
buf := bytes.NewBuffer(percentBytes)
for _, flag := range supportedFlags {
if f.fs.Flag(int(flag)) {
buf.WriteRune(flag)
}
}
buf.WriteRune('v')
format = buf.String()
return format
}
// constructOrigFormat recreates the original format string including precision
// and width information to pass along to the standard fmt package. This allows
// automatic deferral of all format strings this package doesn't support.
func (f *formatState) constructOrigFormat(verb rune) (format string) {
buf := bytes.NewBuffer(percentBytes)
for _, flag := range supportedFlags {
if f.fs.Flag(int(flag)) {
buf.WriteRune(flag)
}
}
if width, ok := f.fs.Width(); ok {
buf.WriteString(strconv.Itoa(width))
}
if precision, ok := f.fs.Precision(); ok {
buf.Write(precisionBytes)
buf.WriteString(strconv.Itoa(precision))
}
buf.WriteRune(verb)
format = buf.String()
return format
}
// unpackValue returns values inside of non-nil interfaces when possible and
// ensures that types for values which have been unpacked from an interface
// are displayed when the show types flag is also set.
// This is useful for data types like structs, arrays, slices, and maps which
// can contain varying types packed inside an interface.
func (f *formatState) unpackValue(v reflect.Value) reflect.Value {
if v.Kind() == reflect.Interface {
f.ignoreNextType = false
if !v.IsNil() {
v = v.Elem()
}
}
return v
}
// formatPtr handles formatting of pointers by indirecting them as necessary.
func (f *formatState) formatPtr(v reflect.Value) {
// Display nil if top level pointer is nil.
showTypes := f.fs.Flag('#')
if v.IsNil() && (!showTypes || f.ignoreNextType) {
f.fs.Write(nilAngleBytes)
return
}
// Remove pointers at or below the current depth from map used to detect
// circular refs.
for k, depth := range f.pointers {
if depth >= f.depth {
delete(f.pointers, k)
}
}
// Keep list of all dereferenced pointers to possibly show later.
pointerChain := make([]uintptr, 0)
// Figure out how many levels of indirection there are by derferencing
// pointers and unpacking interfaces down the chain while detecting circular
// references.
nilFound := false
cycleFound := false
indirects := 0
ve := v
for ve.Kind() == reflect.Ptr {
if ve.IsNil() {
nilFound = true
break
}
indirects++
addr := ve.Pointer()
pointerChain = append(pointerChain, addr)
if pd, ok := f.pointers[addr]; ok && pd < f.depth {
cycleFound = true
indirects--
break
}
f.pointers[addr] = f.depth
ve = ve.Elem()
if ve.Kind() == reflect.Interface {
if ve.IsNil() {
nilFound = true
break
}
ve = ve.Elem()
}
}
// Display type or indirection level depending on flags.
if showTypes && !f.ignoreNextType {
f.fs.Write(openParenBytes)
f.fs.Write(bytes.Repeat(asteriskBytes, indirects))
f.fs.Write([]byte(ve.Type().String()))
f.fs.Write(closeParenBytes)
} else {
if nilFound || cycleFound {
indirects += strings.Count(ve.Type().String(), "*")
}
f.fs.Write(openAngleBytes)
f.fs.Write([]byte(strings.Repeat("*", indirects)))
f.fs.Write(closeAngleBytes)
}
// Display pointer information depending on flags.
if f.fs.Flag('+') && (len(pointerChain) > 0) {
f.fs.Write(openParenBytes)
for i, addr := range pointerChain {
if i > 0 {
f.fs.Write(pointerChainBytes)
}
printHexPtr(f.fs, addr)
}
f.fs.Write(closeParenBytes)
}
// Display dereferenced value.
switch {
case nilFound == true:
f.fs.Write(nilAngleBytes)
case cycleFound == true:
f.fs.Write(circularShortBytes)
default:
f.ignoreNextType = true
f.format(ve)
}
}
// format is the main workhorse for providing the Formatter interface. It
// uses the passed reflect value to figure out what kind of object we are
// dealing with and formats it appropriately. It is a recursive function,
// however circular data structures are detected and handled properly.
func (f *formatState) format(v reflect.Value) {
// Handle invalid reflect values immediately.
kind := v.Kind()
if kind == reflect.Invalid {
f.fs.Write(invalidAngleBytes)
return
}
// Handle pointers specially.
if kind == reflect.Ptr {
f.formatPtr(v)
return
}
// Print type information unless already handled elsewhere.
if !f.ignoreNextType && f.fs.Flag('#') {
f.fs.Write(openParenBytes)
f.fs.Write([]byte(v.Type().String()))
f.fs.Write(closeParenBytes)
}
f.ignoreNextType = false
// Call Stringer/error interfaces if they exist and the handle methods
// flag is enabled.
if !f.cs.DisableMethods {
if (kind != reflect.Invalid) && (kind != reflect.Interface) {
if handled := handleMethods(f.cs, f.fs, v); handled {
return
}
}
}
switch kind {
case reflect.Invalid:
// Do nothing. We should never get here since invalid has already
// been handled above.
case reflect.Bool:
printBool(f.fs, v.Bool())
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
printInt(f.fs, v.Int(), 10)
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
printUint(f.fs, v.Uint(), 10)
case reflect.Float32:
printFloat(f.fs, v.Float(), 32)
case reflect.Float64:
printFloat(f.fs, v.Float(), 64)
case reflect.Complex64:
printComplex(f.fs, v.Complex(), 32)
case reflect.Complex128:
printComplex(f.fs, v.Complex(), 64)
case reflect.Slice:
if v.IsNil() {
f.fs.Write(nilAngleBytes)
break
}
fallthrough
case reflect.Array:
f.fs.Write(openBracketBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
numEntries := v.Len()
for i := 0; i < numEntries; i++ {
if i > 0 {
f.fs.Write(spaceBytes)
}
f.ignoreNextType = true
f.format(f.unpackValue(v.Index(i)))
}
}
f.depth--
f.fs.Write(closeBracketBytes)
case reflect.String:
f.fs.Write([]byte(v.String()))
case reflect.Interface:
// The only time we should get here is for nil interfaces due to
// unpackValue calls.
if v.IsNil() {
f.fs.Write(nilAngleBytes)
}
case reflect.Ptr:
// Do nothing. We should never get here since pointers have already
// been handled above.
case reflect.Map:
// nil maps should be indicated as different than empty maps
if v.IsNil() {
f.fs.Write(nilAngleBytes)
break
}
f.fs.Write(openMapBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
keys := v.MapKeys()
if f.cs.SortKeys {
sortValues(keys, f.cs)
}
for i, key := range keys {
if i > 0 {
f.fs.Write(spaceBytes)
}
f.ignoreNextType = true
f.format(f.unpackValue(key))
f.fs.Write(colonBytes)
f.ignoreNextType = true
f.format(f.unpackValue(v.MapIndex(key)))
}
}
f.depth--
f.fs.Write(closeMapBytes)
case reflect.Struct:
numFields := v.NumField()
f.fs.Write(openBraceBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
vt := v.Type()
for i := 0; i < numFields; i++ {
if i > 0 {
f.fs.Write(spaceBytes)
}
vtf := vt.Field(i)
if f.fs.Flag('+') || f.fs.Flag('#') {
f.fs.Write([]byte(vtf.Name))
f.fs.Write(colonBytes)
}
f.format(f.unpackValue(v.Field(i)))
}
}
f.depth--
f.fs.Write(closeBraceBytes)
case reflect.Uintptr:
printHexPtr(f.fs, uintptr(v.Uint()))
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
printHexPtr(f.fs, v.Pointer())
// There were not any other types at the time this code was written, but
// fall back to letting the default fmt package handle it if any get added.
default:
format := f.buildDefaultFormat()
if v.CanInterface() {
fmt.Fprintf(f.fs, format, v.Interface())
} else {
fmt.Fprintf(f.fs, format, v.String())
}
}
}
// Format satisfies the fmt.Formatter interface. See NewFormatter for usage
// details.
func (f *formatState) Format(fs fmt.State, verb rune) {
f.fs = fs
// Use standard formatting for verbs that are not v.
if verb != 'v' {
format := f.constructOrigFormat(verb)
fmt.Fprintf(fs, format, f.value)
return
}
if f.value == nil {
if fs.Flag('#') {
fs.Write(interfaceBytes)
}
fs.Write(nilAngleBytes)
return
}
f.format(reflect.ValueOf(f.value))
}
// newFormatter is a helper function to consolidate the logic from the various
// public methods which take varying config states.
func newFormatter(cs *ConfigState, v interface{}) fmt.Formatter {
fs := &formatState{value: v, cs: cs}
fs.pointers = make(map[uintptr]int)
return fs
}
/*
NewFormatter returns a custom formatter that satisfies the fmt.Formatter
interface. As a result, it integrates cleanly with standard fmt package
printing functions. The formatter is useful for inline printing of smaller data
types similar to the standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Typically this function shouldn't be called directly. It is much easier to make
use of the custom formatter by calling one of the convenience functions such as
Printf, Println, or Fprintf.
*/
func NewFormatter(v interface{}) fmt.Formatter {
return newFormatter(&Config, v)
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,87 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
This test file is part of the spew package rather than than the spew_test
package because it needs access to internals to properly test certain cases
which are not possible via the public interface since they should never happen.
*/
package spew
import (
"bytes"
"reflect"
"testing"
)
// dummyFmtState implements a fake fmt.State to use for testing invalid
// reflect.Value handling. This is necessary because the fmt package catches
// invalid values before invoking the formatter on them.
type dummyFmtState struct {
bytes.Buffer
}
func (dfs *dummyFmtState) Flag(f int) bool {
if f == int('+') {
return true
}
return false
}
func (dfs *dummyFmtState) Precision() (int, bool) {
return 0, false
}
func (dfs *dummyFmtState) Width() (int, bool) {
return 0, false
}
// TestInvalidReflectValue ensures the dump and formatter code handles an
// invalid reflect value properly. This needs access to internal state since it
// should never happen in real code and therefore can't be tested via the public
// API.
func TestInvalidReflectValue(t *testing.T) {
i := 1
// Dump invalid reflect value.
v := new(reflect.Value)
buf := new(bytes.Buffer)
d := dumpState{w: buf, cs: &Config}
d.dump(*v)
s := buf.String()
want := "<invalid>"
if s != want {
t.Errorf("InvalidReflectValue #%d\n got: %s want: %s", i, s, want)
}
i++
// Formatter invalid reflect value.
buf2 := new(dummyFmtState)
f := formatState{value: *v, cs: &Config, fs: buf2}
f.format(*v)
s = buf2.String()
want = "<invalid>"
if s != want {
t.Errorf("InvalidReflectValue #%d got: %s want: %s", i, s, want)
}
}
// SortValues makes the internal sortValues function available to the test
// package.
func SortValues(values []reflect.Value, cs *ConfigState) {
sortValues(values, cs)
}

@ -0,0 +1,101 @@
// Copyright (c) 2013-2015 Dave Collins <dave@davec.name>
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// NOTE: Due to the following build constraints, this file will only be compiled
// when the code is not running on Google App Engine and "-tags disableunsafe"
// is not added to the go build command line.
// +build !appengine,!disableunsafe
/*
This test file is part of the spew package rather than than the spew_test
package because it needs access to internals to properly test certain cases
which are not possible via the public interface since they should never happen.
*/
package spew
import (
"bytes"
"reflect"
"testing"
"unsafe"
)
// changeKind uses unsafe to intentionally change the kind of a reflect.Value to
// the maximum kind value which does not exist. This is needed to test the
// fallback code which punts to the standard fmt library for new types that
// might get added to the language.
func changeKind(v *reflect.Value, readOnly bool) {
rvf := (*uintptr)(unsafe.Pointer(uintptr(unsafe.Pointer(v)) + offsetFlag))
*rvf = *rvf | ((1<<flagKindWidth - 1) << flagKindShift)
if readOnly {
*rvf |= flagRO
} else {
*rvf &= ^uintptr(flagRO)
}
}
// TestAddedReflectValue tests functionaly of the dump and formatter code which
// falls back to the standard fmt library for new types that might get added to
// the language.
func TestAddedReflectValue(t *testing.T) {
i := 1
// Dump using a reflect.Value that is exported.
v := reflect.ValueOf(int8(5))
changeKind(&v, false)
buf := new(bytes.Buffer)
d := dumpState{w: buf, cs: &Config}
d.dump(v)
s := buf.String()
want := "(int8) 5"
if s != want {
t.Errorf("TestAddedReflectValue #%d\n got: %s want: %s", i, s, want)
}
i++
// Dump using a reflect.Value that is not exported.
changeKind(&v, true)
buf.Reset()
d.dump(v)
s = buf.String()
want = "(int8) <int8 Value>"
if s != want {
t.Errorf("TestAddedReflectValue #%d\n got: %s want: %s", i, s, want)
}
i++
// Formatter using a reflect.Value that is exported.
changeKind(&v, false)
buf2 := new(dummyFmtState)
f := formatState{value: v, cs: &Config, fs: buf2}
f.format(v)
s = buf2.String()
want = "5"
if s != want {
t.Errorf("TestAddedReflectValue #%d got: %s want: %s", i, s, want)
}
i++
// Formatter using a reflect.Value that is not exported.
changeKind(&v, true)
buf2.Reset()
f = formatState{value: v, cs: &Config, fs: buf2}
f.format(v)
s = buf2.String()
want = "<int8 Value>"
if s != want {
t.Errorf("TestAddedReflectValue #%d got: %s want: %s", i, s, want)
}
}

@ -0,0 +1,148 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"fmt"
"io"
)
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the formatted string as a value that satisfies error. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Errorf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Errorf(format string, a ...interface{}) (err error) {
return fmt.Errorf(format, convertArgs(a)...)
}
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprint(w, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprint(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprint(w, convertArgs(a)...)
}
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintf(w, format, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
return fmt.Fprintf(w, format, convertArgs(a)...)
}
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it
// passed with a default Formatter interface returned by NewFormatter. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintln(w, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprintln(w, convertArgs(a)...)
}
// Print is a wrapper for fmt.Print that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Print(spew.NewFormatter(a), spew.NewFormatter(b))
func Print(a ...interface{}) (n int, err error) {
return fmt.Print(convertArgs(a)...)
}
// Printf is a wrapper for fmt.Printf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Printf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Printf(format string, a ...interface{}) (n int, err error) {
return fmt.Printf(format, convertArgs(a)...)
}
// Println is a wrapper for fmt.Println that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Println(spew.NewFormatter(a), spew.NewFormatter(b))
func Println(a ...interface{}) (n int, err error) {
return fmt.Println(convertArgs(a)...)
}
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprint(spew.NewFormatter(a), spew.NewFormatter(b))
func Sprint(a ...interface{}) string {
return fmt.Sprint(convertArgs(a)...)
}
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Sprintf(format string, a ...interface{}) string {
return fmt.Sprintf(format, convertArgs(a)...)
}
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it
// were passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintln(spew.NewFormatter(a), spew.NewFormatter(b))
func Sprintln(a ...interface{}) string {
return fmt.Sprintln(convertArgs(a)...)
}
// convertArgs accepts a slice of arguments and returns a slice of the same
// length with each argument converted to a default spew Formatter interface.
func convertArgs(args []interface{}) (formatters []interface{}) {
formatters = make([]interface{}, len(args))
for index, arg := range args {
formatters[index] = NewFormatter(arg)
}
return formatters
}

@ -0,0 +1,309 @@
/*
* Copyright (c) 2013 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew_test
import (
"bytes"
"fmt"
"io/ioutil"
"os"
"testing"
"github.com/davecgh/go-spew/spew"
)
// spewFunc is used to identify which public function of the spew package or
// ConfigState a test applies to.
type spewFunc int
const (
fCSFdump spewFunc = iota
fCSFprint
fCSFprintf
fCSFprintln
fCSPrint
fCSPrintln
fCSSdump
fCSSprint
fCSSprintf
fCSSprintln
fCSErrorf
fCSNewFormatter
fErrorf
fFprint
fFprintln
fPrint
fPrintln
fSdump
fSprint
fSprintf
fSprintln
)
// Map of spewFunc values to names for pretty printing.
var spewFuncStrings = map[spewFunc]string{
fCSFdump: "ConfigState.Fdump",
fCSFprint: "ConfigState.Fprint",
fCSFprintf: "ConfigState.Fprintf",
fCSFprintln: "ConfigState.Fprintln",
fCSSdump: "ConfigState.Sdump",
fCSPrint: "ConfigState.Print",
fCSPrintln: "ConfigState.Println",
fCSSprint: "ConfigState.Sprint",
fCSSprintf: "ConfigState.Sprintf",
fCSSprintln: "ConfigState.Sprintln",
fCSErrorf: "ConfigState.Errorf",
fCSNewFormatter: "ConfigState.NewFormatter",
fErrorf: "spew.Errorf",
fFprint: "spew.Fprint",
fFprintln: "spew.Fprintln",
fPrint: "spew.Print",
fPrintln: "spew.Println",
fSdump: "spew.Sdump",
fSprint: "spew.Sprint",
fSprintf: "spew.Sprintf",
fSprintln: "spew.Sprintln",
}
func (f spewFunc) String() string {
if s, ok := spewFuncStrings[f]; ok {
return s
}
return fmt.Sprintf("Unknown spewFunc (%d)", int(f))
}
// spewTest is used to describe a test to be performed against the public
// functions of the spew package or ConfigState.
type spewTest struct {
cs *spew.ConfigState
f spewFunc
format string
in interface{}
want string
}
// spewTests houses the tests to be performed against the public functions of
// the spew package and ConfigState.
//
// These tests are only intended to ensure the public functions are exercised
// and are intentionally not exhaustive of types. The exhaustive type
// tests are handled in the dump and format tests.
var spewTests []spewTest
// redirStdout is a helper function to return the standard output from f as a
// byte slice.
func redirStdout(f func()) ([]byte, error) {
tempFile, err := ioutil.TempFile("", "ss-test")
if err != nil {
return nil, err
}
fileName := tempFile.Name()
defer os.Remove(fileName) // Ignore error
origStdout := os.Stdout
os.Stdout = tempFile
f()
os.Stdout = origStdout
tempFile.Close()
return ioutil.ReadFile(fileName)
}
func initSpewTests() {
// Config states with various settings.
scsDefault := spew.NewDefaultConfig()
scsNoMethods := &spew.ConfigState{Indent: " ", DisableMethods: true}
scsNoPmethods := &spew.ConfigState{Indent: " ", DisablePointerMethods: true}
scsMaxDepth := &spew.ConfigState{Indent: " ", MaxDepth: 1}
scsContinue := &spew.ConfigState{Indent: " ", ContinueOnMethod: true}
// Variables for tests on types which implement Stringer interface with and
// without a pointer receiver.
ts := stringer("test")
tps := pstringer("test")
// depthTester is used to test max depth handling for structs, array, slices
// and maps.
type depthTester struct {
ic indirCir1
arr [1]string
slice []string
m map[string]int
}
dt := depthTester{indirCir1{nil}, [1]string{"arr"}, []string{"slice"},
map[string]int{"one": 1}}
// Variable for tests on types which implement error interface.
te := customError(10)
spewTests = []spewTest{
{scsDefault, fCSFdump, "", int8(127), "(int8) 127\n"},
{scsDefault, fCSFprint, "", int16(32767), "32767"},
{scsDefault, fCSFprintf, "%v", int32(2147483647), "2147483647"},
{scsDefault, fCSFprintln, "", int(2147483647), "2147483647\n"},
{scsDefault, fCSPrint, "", int64(9223372036854775807), "9223372036854775807"},
{scsDefault, fCSPrintln, "", uint8(255), "255\n"},
{scsDefault, fCSSdump, "", uint8(64), "(uint8) 64\n"},
{scsDefault, fCSSprint, "", complex(1, 2), "(1+2i)"},
{scsDefault, fCSSprintf, "%v", complex(float32(3), 4), "(3+4i)"},
{scsDefault, fCSSprintln, "", complex(float64(5), 6), "(5+6i)\n"},
{scsDefault, fCSErrorf, "%#v", uint16(65535), "(uint16)65535"},
{scsDefault, fCSNewFormatter, "%v", uint32(4294967295), "4294967295"},
{scsDefault, fErrorf, "%v", uint64(18446744073709551615), "18446744073709551615"},
{scsDefault, fFprint, "", float32(3.14), "3.14"},
{scsDefault, fFprintln, "", float64(6.28), "6.28\n"},
{scsDefault, fPrint, "", true, "true"},
{scsDefault, fPrintln, "", false, "false\n"},
{scsDefault, fSdump, "", complex(-10, -20), "(complex128) (-10-20i)\n"},
{scsDefault, fSprint, "", complex(-1, -2), "(-1-2i)"},
{scsDefault, fSprintf, "%v", complex(float32(-3), -4), "(-3-4i)"},
{scsDefault, fSprintln, "", complex(float64(-5), -6), "(-5-6i)\n"},
{scsNoMethods, fCSFprint, "", ts, "test"},
{scsNoMethods, fCSFprint, "", &ts, "<*>test"},
{scsNoMethods, fCSFprint, "", tps, "test"},
{scsNoMethods, fCSFprint, "", &tps, "<*>test"},
{scsNoPmethods, fCSFprint, "", ts, "stringer test"},
{scsNoPmethods, fCSFprint, "", &ts, "<*>stringer test"},
{scsNoPmethods, fCSFprint, "", tps, "test"},
{scsNoPmethods, fCSFprint, "", &tps, "<*>stringer test"},
{scsMaxDepth, fCSFprint, "", dt, "{{<max>} [<max>] [<max>] map[<max>]}"},
{scsMaxDepth, fCSFdump, "", dt, "(spew_test.depthTester) {\n" +
" ic: (spew_test.indirCir1) {\n <max depth reached>\n },\n" +
" arr: ([1]string) (len=1 cap=1) {\n <max depth reached>\n },\n" +
" slice: ([]string) (len=1 cap=1) {\n <max depth reached>\n },\n" +
" m: (map[string]int) (len=1) {\n <max depth reached>\n }\n}\n"},
{scsContinue, fCSFprint, "", ts, "(stringer test) test"},
{scsContinue, fCSFdump, "", ts, "(spew_test.stringer) " +
"(len=4) (stringer test) \"test\"\n"},
{scsContinue, fCSFprint, "", te, "(error: 10) 10"},
{scsContinue, fCSFdump, "", te, "(spew_test.customError) " +
"(error: 10) 10\n"},
}
}
// TestSpew executes all of the tests described by spewTests.
func TestSpew(t *testing.T) {
initSpewTests()
t.Logf("Running %d tests", len(spewTests))
for i, test := range spewTests {
buf := new(bytes.Buffer)
switch test.f {
case fCSFdump:
test.cs.Fdump(buf, test.in)
case fCSFprint:
test.cs.Fprint(buf, test.in)
case fCSFprintf:
test.cs.Fprintf(buf, test.format, test.in)
case fCSFprintln:
test.cs.Fprintln(buf, test.in)
case fCSPrint:
b, err := redirStdout(func() { test.cs.Print(test.in) })
if err != nil {
t.Errorf("%v #%d %v", test.f, i, err)
continue
}
buf.Write(b)
case fCSPrintln:
b, err := redirStdout(func() { test.cs.Println(test.in) })
if err != nil {
t.Errorf("%v #%d %v", test.f, i, err)
continue
}
buf.Write(b)
case fCSSdump:
str := test.cs.Sdump(test.in)
buf.WriteString(str)
case fCSSprint:
str := test.cs.Sprint(test.in)
buf.WriteString(str)
case fCSSprintf:
str := test.cs.Sprintf(test.format, test.in)
buf.WriteString(str)
case fCSSprintln:
str := test.cs.Sprintln(test.in)
buf.WriteString(str)
case fCSErrorf:
err := test.cs.Errorf(test.format, test.in)
buf.WriteString(err.Error())
case fCSNewFormatter:
fmt.Fprintf(buf, test.format, test.cs.NewFormatter(test.in))
case fErrorf:
err := spew.Errorf(test.format, test.in)
buf.WriteString(err.Error())
case fFprint:
spew.Fprint(buf, test.in)
case fFprintln:
spew.Fprintln(buf, test.in)
case fPrint:
b, err := redirStdout(func() { spew.Print(test.in) })
if err != nil {
t.Errorf("%v #%d %v", test.f, i, err)
continue
}
buf.Write(b)
case fPrintln:
b, err := redirStdout(func() { spew.Println(test.in) })
if err != nil {
t.Errorf("%v #%d %v", test.f, i, err)
continue
}
buf.Write(b)
case fSdump:
str := spew.Sdump(test.in)
buf.WriteString(str)
case fSprint:
str := spew.Sprint(test.in)
buf.WriteString(str)
case fSprintf:
str := spew.Sprintf(test.format, test.in)
buf.WriteString(str)
case fSprintln:
str := spew.Sprintln(test.in)
buf.WriteString(str)
default:
t.Errorf("%v #%d unrecognized function", test.f, i)
continue
}
s := buf.String()
if test.want != s {
t.Errorf("ConfigState #%d\n got: %s want: %s", i, s, test.want)
continue
}
}
}

@ -1,46 +0,0 @@
package units
import (
"testing"
"time"
)
func TestHumanDuration(t *testing.T) {
// Useful duration abstractions
day := 24 * time.Hour
week := 7 * day
month := 30 * day
year := 365 * day
assertEquals(t, "Less than a second", HumanDuration(450*time.Millisecond))
assertEquals(t, "47 seconds", HumanDuration(47*time.Second))
assertEquals(t, "About a minute", HumanDuration(1*time.Minute))
assertEquals(t, "3 minutes", HumanDuration(3*time.Minute))
assertEquals(t, "35 minutes", HumanDuration(35*time.Minute))
assertEquals(t, "35 minutes", HumanDuration(35*time.Minute+40*time.Second))
assertEquals(t, "About an hour", HumanDuration(1*time.Hour))
assertEquals(t, "About an hour", HumanDuration(1*time.Hour+45*time.Minute))
assertEquals(t, "3 hours", HumanDuration(3*time.Hour))
assertEquals(t, "3 hours", HumanDuration(3*time.Hour+59*time.Minute))
assertEquals(t, "4 hours", HumanDuration(3*time.Hour+60*time.Minute))
assertEquals(t, "24 hours", HumanDuration(24*time.Hour))
assertEquals(t, "36 hours", HumanDuration(1*day+12*time.Hour))
assertEquals(t, "2 days", HumanDuration(2*day))
assertEquals(t, "7 days", HumanDuration(7*day))
assertEquals(t, "13 days", HumanDuration(13*day+5*time.Hour))
assertEquals(t, "2 weeks", HumanDuration(2*week))
assertEquals(t, "2 weeks", HumanDuration(2*week+4*day))
assertEquals(t, "3 weeks", HumanDuration(3*week))
assertEquals(t, "4 weeks", HumanDuration(4*week))
assertEquals(t, "4 weeks", HumanDuration(4*week+3*day))
assertEquals(t, "4 weeks", HumanDuration(1*month))
assertEquals(t, "6 weeks", HumanDuration(1*month+2*week))
assertEquals(t, "8 weeks", HumanDuration(2*month))
assertEquals(t, "3 months", HumanDuration(3*month+1*week))
assertEquals(t, "5 months", HumanDuration(5*month+2*week))
assertEquals(t, "13 months", HumanDuration(13*month))
assertEquals(t, "23 months", HumanDuration(23*month))
assertEquals(t, "24 months", HumanDuration(24*month))
assertEquals(t, "2 years", HumanDuration(24*month+2*week))
assertEquals(t, "3 years", HumanDuration(3*year+2*month))
}

@ -1,108 +0,0 @@
package units
import (
"reflect"
"runtime"
"strings"
"testing"
)
func TestBytesSize(t *testing.T) {
assertEquals(t, "1 KiB", BytesSize(1024))
assertEquals(t, "1 MiB", BytesSize(1024*1024))
assertEquals(t, "1 MiB", BytesSize(1048576))
assertEquals(t, "2 MiB", BytesSize(2*MiB))
assertEquals(t, "3.42 GiB", BytesSize(3.42*GiB))
assertEquals(t, "5.372 TiB", BytesSize(5.372*TiB))
assertEquals(t, "2.22 PiB", BytesSize(2.22*PiB))
}
func TestHumanSize(t *testing.T) {
assertEquals(t, "1 kB", HumanSize(1000))
assertEquals(t, "1.024 kB", HumanSize(1024))
assertEquals(t, "1 MB", HumanSize(1000000))
assertEquals(t, "1.049 MB", HumanSize(1048576))
assertEquals(t, "2 MB", HumanSize(2*MB))
assertEquals(t, "3.42 GB", HumanSize(float64(3.42*GB)))
assertEquals(t, "5.372 TB", HumanSize(float64(5.372*TB)))
assertEquals(t, "2.22 PB", HumanSize(float64(2.22*PB)))
}
func TestFromHumanSize(t *testing.T) {
assertSuccessEquals(t, 32, FromHumanSize, "32")
assertSuccessEquals(t, 32, FromHumanSize, "32b")
assertSuccessEquals(t, 32, FromHumanSize, "32B")
assertSuccessEquals(t, 32*KB, FromHumanSize, "32k")
assertSuccessEquals(t, 32*KB, FromHumanSize, "32K")
assertSuccessEquals(t, 32*KB, FromHumanSize, "32kb")
assertSuccessEquals(t, 32*KB, FromHumanSize, "32Kb")
assertSuccessEquals(t, 32*MB, FromHumanSize, "32Mb")
assertSuccessEquals(t, 32*GB, FromHumanSize, "32Gb")
assertSuccessEquals(t, 32*TB, FromHumanSize, "32Tb")
assertSuccessEquals(t, 32*PB, FromHumanSize, "32Pb")
assertError(t, FromHumanSize, "")
assertError(t, FromHumanSize, "hello")
assertError(t, FromHumanSize, "-32")
assertError(t, FromHumanSize, "32.3")
assertError(t, FromHumanSize, " 32 ")
assertError(t, FromHumanSize, "32.3Kb")
assertError(t, FromHumanSize, "32 mb")
assertError(t, FromHumanSize, "32m b")
assertError(t, FromHumanSize, "32bm")
}
func TestRAMInBytes(t *testing.T) {
assertSuccessEquals(t, 32, RAMInBytes, "32")
assertSuccessEquals(t, 32, RAMInBytes, "32b")
assertSuccessEquals(t, 32, RAMInBytes, "32B")
assertSuccessEquals(t, 32*KiB, RAMInBytes, "32k")
assertSuccessEquals(t, 32*KiB, RAMInBytes, "32K")
assertSuccessEquals(t, 32*KiB, RAMInBytes, "32kb")
assertSuccessEquals(t, 32*KiB, RAMInBytes, "32Kb")
assertSuccessEquals(t, 32*MiB, RAMInBytes, "32Mb")
assertSuccessEquals(t, 32*GiB, RAMInBytes, "32Gb")
assertSuccessEquals(t, 32*TiB, RAMInBytes, "32Tb")
assertSuccessEquals(t, 32*PiB, RAMInBytes, "32Pb")
assertSuccessEquals(t, 32*PiB, RAMInBytes, "32PB")
assertSuccessEquals(t, 32*PiB, RAMInBytes, "32P")
assertError(t, RAMInBytes, "")
assertError(t, RAMInBytes, "hello")
assertError(t, RAMInBytes, "-32")
assertError(t, RAMInBytes, "32.3")
assertError(t, RAMInBytes, " 32 ")
assertError(t, RAMInBytes, "32.3Kb")
assertError(t, RAMInBytes, "32 mb")
assertError(t, RAMInBytes, "32m b")
assertError(t, RAMInBytes, "32bm")
}
func assertEquals(t *testing.T, expected, actual interface{}) {
if expected != actual {
t.Errorf("Expected '%v' but got '%v'", expected, actual)
}
}
// func that maps to the parse function signatures as testing abstraction
type parseFn func(string) (int64, error)
// Define 'String()' for pretty-print
func (fn parseFn) String() string {
fnName := runtime.FuncForPC(reflect.ValueOf(fn).Pointer()).Name()
return fnName[strings.LastIndex(fnName, ".")+1:]
}
func assertSuccessEquals(t *testing.T, expected int64, fn parseFn, arg string) {
res, err := fn(arg)
if err != nil || res != expected {
t.Errorf("%s(\"%s\") -> expected '%d' but got '%d' with error '%v'", fn, arg, expected, res, err)
}
}
func assertError(t *testing.T, fn parseFn, arg string) {
res, err := fn(arg)
if err == nil && res != -1 {
t.Errorf("%s(\"%s\") -> expected error but got '%d'", fn, arg, res)
}
}

@ -0,0 +1,67 @@
# Contributing to go-units
Want to hack on go-units? Awesome! Here are instructions to get you started.
go-units is a part of the [Docker](https://www.docker.com) project, and follows
the same rules and principles. If you're already familiar with the way
Docker does things, you'll feel right at home.
Otherwise, go read Docker's
[contributions guidelines](https://github.com/docker/docker/blob/master/CONTRIBUTING.md),
[issue triaging](https://github.com/docker/docker/blob/master/project/ISSUE-TRIAGE.md),
[review process](https://github.com/docker/docker/blob/master/project/REVIEWING.md) and
[branches and tags](https://github.com/docker/docker/blob/master/project/BRANCHES-AND-TAGS.md).
### Sign your work
The sign-off is a simple line at the end of the explanation for the patch. Your
signature certifies that you wrote the patch or otherwise have the right to pass
it on as an open-source patch. The rules are pretty simple: if you can certify
the below (from [developercertificate.org](http://developercertificate.org/)):
```
Developer Certificate of Origin
Version 1.1
Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
660 York Street, Suite 102,
San Francisco, CA 94110 USA
Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.
Developer's Certificate of Origin 1.1
By making a contribution to this project, I certify that:
(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or
(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or
(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.
(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.
```
Then you just add a line to every git commit message:
Signed-off-by: Joe Smith <joe.smith@email.com>
Use your real name (sorry, no pseudonyms or anonymous contributions.)
If you set your `user.name` and `user.email` git configs, you can sign your
commit automatically with `git commit -s`.

@ -0,0 +1,191 @@
Apache License
Version 2.0, January 2004
https://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
Copyright 2015 Docker, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

@ -0,0 +1,425 @@
Attribution-ShareAlike 4.0 International
=======================================================================
Creative Commons Corporation ("Creative Commons") is not a law firm and
does not provide legal services or legal advice. Distribution of
Creative Commons public licenses does not create a lawyer-client or
other relationship. Creative Commons makes its licenses and related
information available on an "as-is" basis. Creative Commons gives no
warranties regarding its licenses, any material licensed under their
terms and conditions, or any related information. Creative Commons
disclaims all liability for damages resulting from their use to the
fullest extent possible.
Using Creative Commons Public Licenses
Creative Commons public licenses provide a standard set of terms and
conditions that creators and other rights holders may use to share
original works of authorship and other material subject to copyright
and certain other rights specified in the public license below. The
following considerations are for informational purposes only, are not
exhaustive, and do not form part of our licenses.
Considerations for licensors: Our public licenses are
intended for use by those authorized to give the public
permission to use material in ways otherwise restricted by
copyright and certain other rights. Our licenses are
irrevocable. Licensors should read and understand the terms
and conditions of the license they choose before applying it.
Licensors should also secure all rights necessary before
applying our licenses so that the public can reuse the
material as expected. Licensors should clearly mark any
material not subject to the license. This includes other CC-
licensed material, or material used under an exception or
limitation to copyright. More considerations for licensors:
wiki.creativecommons.org/Considerations_for_licensors
Considerations for the public: By using one of our public
licenses, a licensor grants the public permission to use the
licensed material under specified terms and conditions. If
the licensor's permission is not necessary for any reason--for
example, because of any applicable exception or limitation to
copyright--then that use is not regulated by the license. Our
licenses grant only permissions under copyright and certain
other rights that a licensor has authority to grant. Use of
the licensed material may still be restricted for other
reasons, including because others have copyright or other
rights in the material. A licensor may make special requests,
such as asking that all changes be marked or described.
Although not required by our licenses, you are encouraged to
respect those requests where reasonable. More_considerations
for the public:
wiki.creativecommons.org/Considerations_for_licensees
=======================================================================
Creative Commons Attribution-ShareAlike 4.0 International Public
License
By exercising the Licensed Rights (defined below), You accept and agree
to be bound by the terms and conditions of this Creative Commons
Attribution-ShareAlike 4.0 International Public License ("Public
License"). To the extent this Public License may be interpreted as a
contract, You are granted the Licensed Rights in consideration of Your
acceptance of these terms and conditions, and the Licensor grants You
such rights in consideration of benefits the Licensor receives from
making the Licensed Material available under these terms and
conditions.
Section 1 -- Definitions.
a. Adapted Material means material subject to Copyright and Similar
Rights that is derived from or based upon the Licensed Material
and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring
permission under the Copyright and Similar Rights held by the
Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording,
Adapted Material is always produced where the Licensed Material is
synched in timed relation with a moving image.
b. Adapter's License means the license You apply to Your Copyright
and Similar Rights in Your contributions to Adapted Material in
accordance with the terms and conditions of this Public License.
c. BY-SA Compatible License means a license listed at
creativecommons.org/compatiblelicenses, approved by Creative
Commons as essentially the equivalent of this Public License.
d. Copyright and Similar Rights means copyright and/or similar rights
closely related to copyright including, without limitation,
performance, broadcast, sound recording, and Sui Generis Database
Rights, without regard to how the rights are labeled or
categorized. For purposes of this Public License, the rights
specified in Section 2(b)(1)-(2) are not Copyright and Similar
Rights.
e. Effective Technological Measures means those measures that, in the
absence of proper authority, may not be circumvented under laws
fulfilling obligations under Article 11 of the WIPO Copyright
Treaty adopted on December 20, 1996, and/or similar international
agreements.
f. Exceptions and Limitations means fair use, fair dealing, and/or
any other exception or limitation to Copyright and Similar Rights
that applies to Your use of the Licensed Material.
g. License Elements means the license attributes listed in the name
of a Creative Commons Public License. The License Elements of this
Public License are Attribution and ShareAlike.
h. Licensed Material means the artistic or literary work, database,
or other material to which the Licensor applied this Public
License.
i. Licensed Rights means the rights granted to You subject to the
terms and conditions of this Public License, which are limited to
all Copyright and Similar Rights that apply to Your use of the
Licensed Material and that the Licensor has authority to license.
j. Licensor means the individual(s) or entity(ies) granting rights
under this Public License.
k. Share means to provide material to the public by any means or
process that requires permission under the Licensed Rights, such
as reproduction, public display, public performance, distribution,
dissemination, communication, or importation, and to make material
available to the public including in ways that members of the
public may access the material from a place and at a time
individually chosen by them.
l. Sui Generis Database Rights means rights other than copyright
resulting from Directive 96/9/EC of the European Parliament and of
the Council of 11 March 1996 on the legal protection of databases,
as amended and/or succeeded, as well as other essentially
equivalent rights anywhere in the world.
m. You means the individual or entity exercising the Licensed Rights
under this Public License. Your has a corresponding meaning.
Section 2 -- Scope.
a. License grant.
1. Subject to the terms and conditions of this Public License,
the Licensor hereby grants You a worldwide, royalty-free,
non-sublicensable, non-exclusive, irrevocable license to
exercise the Licensed Rights in the Licensed Material to:
a. reproduce and Share the Licensed Material, in whole or
in part; and
b. produce, reproduce, and Share Adapted Material.
2. Exceptions and Limitations. For the avoidance of doubt, where
Exceptions and Limitations apply to Your use, this Public
License does not apply, and You do not need to comply with
its terms and conditions.
3. Term. The term of this Public License is specified in Section
6(a).
4. Media and formats; technical modifications allowed. The
Licensor authorizes You to exercise the Licensed Rights in
all media and formats whether now known or hereafter created,
and to make technical modifications necessary to do so. The
Licensor waives and/or agrees not to assert any right or
authority to forbid You from making technical modifications
necessary to exercise the Licensed Rights, including
technical modifications necessary to circumvent Effective
Technological Measures. For purposes of this Public License,
simply making modifications authorized by this Section 2(a)
(4) never produces Adapted Material.
5. Downstream recipients.
a. Offer from the Licensor -- Licensed Material. Every
recipient of the Licensed Material automatically
receives an offer from the Licensor to exercise the
Licensed Rights under the terms and conditions of this
Public License.
b. Additional offer from the Licensor -- Adapted Material.
Every recipient of Adapted Material from You
automatically receives an offer from the Licensor to
exercise the Licensed Rights in the Adapted Material
under the conditions of the Adapter's License You apply.
c. No downstream restrictions. You may not offer or impose
any additional or different terms or conditions on, or
apply any Effective Technological Measures to, the
Licensed Material if doing so restricts exercise of the
Licensed Rights by any recipient of the Licensed
Material.
6. No endorsement. Nothing in this Public License constitutes or
may be construed as permission to assert or imply that You
are, or that Your use of the Licensed Material is, connected
with, or sponsored, endorsed, or granted official status by,
the Licensor or others designated to receive attribution as
provided in Section 3(a)(1)(A)(i).
b. Other rights.
1. Moral rights, such as the right of integrity, are not
licensed under this Public License, nor are publicity,
privacy, and/or other similar personality rights; however, to
the extent possible, the Licensor waives and/or agrees not to
assert any such rights held by the Licensor to the limited
extent necessary to allow You to exercise the Licensed
Rights, but not otherwise.
2. Patent and trademark rights are not licensed under this
Public License.
3. To the extent possible, the Licensor waives any right to
collect royalties from You for the exercise of the Licensed
Rights, whether directly or through a collecting society
under any voluntary or waivable statutory or compulsory
licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.
Section 3 -- License Conditions.
Your exercise of the Licensed Rights is expressly made subject to the
following conditions.
a. Attribution.
1. If You Share the Licensed Material (including in modified
form), You must:
a. retain the following if it is supplied by the Licensor
with the Licensed Material:
i. identification of the creator(s) of the Licensed
Material and any others designated to receive
attribution, in any reasonable manner requested by
the Licensor (including by pseudonym if
designated);
ii. a copyright notice;
iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of
warranties;
v. a URI or hyperlink to the Licensed Material to the
extent reasonably practicable;
b. indicate if You modified the Licensed Material and
retain an indication of any previous modifications; and
c. indicate the Licensed Material is licensed under this
Public License, and include the text of, or the URI or
hyperlink to, this Public License.
2. You may satisfy the conditions in Section 3(a)(1) in any
reasonable manner based on the medium, means, and context in
which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or
hyperlink to a resource that includes the required
information.
3. If requested by the Licensor, You must remove any of the
information required by Section 3(a)(1)(A) to the extent
reasonably practicable.
b. ShareAlike.
In addition to the conditions in Section 3(a), if You Share
Adapted Material You produce, the following conditions also apply.
1. The Adapter's License You apply must be a Creative Commons
license with the same License Elements, this version or
later, or a BY-SA Compatible License.
2. You must include the text of, or the URI or hyperlink to, the
Adapter's License You apply. You may satisfy this condition
in any reasonable manner based on the medium, means, and
context in which You Share Adapted Material.
3. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological
Measures to, Adapted Material that restrict exercise of the
rights granted under the Adapter's License You apply.
Section 4 -- Sui Generis Database Rights.
Where the Licensed Rights include Sui Generis Database Rights that
apply to Your use of the Licensed Material:
a. for the avoidance of doubt, Section 2(a)(1) grants You the right
to extract, reuse, reproduce, and Share all or a substantial
portion of the contents of the database;
b. if You include all or a substantial portion of the database
contents in a database in which You have Sui Generis Database
Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material,
including for purposes of Section 3(b); and
c. You must comply with the conditions in Section 3(a) if You Share
all or a substantial portion of the contents of the database.
For the avoidance of doubt, this Section 4 supplements and does not
replace Your obligations under this Public License where the Licensed
Rights include other Copyright and Similar Rights.
Section 5 -- Disclaimer of Warranties and Limitation of Liability.
a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
c. The disclaimer of warranties and limitation of liability provided
above shall be interpreted in a manner that, to the extent
possible, most closely approximates an absolute disclaimer and
waiver of all liability.
Section 6 -- Term and Termination.
a. This Public License applies for the term of the Copyright and
Similar Rights licensed here. However, if You fail to comply with
this Public License, then Your rights under this Public License
terminate automatically.
b. Where Your right to use the Licensed Material has terminated under
Section 6(a), it reinstates:
1. automatically as of the date the violation is cured, provided
it is cured within 30 days of Your discovery of the
violation; or
2. upon express reinstatement by the Licensor.
For the avoidance of doubt, this Section 6(b) does not affect any
right the Licensor may have to seek remedies for Your violations
of this Public License.
c. For the avoidance of doubt, the Licensor may also offer the
Licensed Material under separate terms or conditions or stop
distributing the Licensed Material at any time; however, doing so
will not terminate this Public License.
d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
License.
Section 7 -- Other Terms and Conditions.
a. The Licensor shall not be bound by any additional or different
terms or conditions communicated by You unless expressly agreed.
b. Any arrangements, understandings, or agreements regarding the
Licensed Material not stated herein are separate from and
independent of the terms and conditions of this Public License.
Section 8 -- Interpretation.
a. For the avoidance of doubt, this Public License does not, and
shall not be interpreted to, reduce, limit, restrict, or impose
conditions on any use of the Licensed Material that could lawfully
be made without permission under this Public License.
b. To the extent possible, if any provision of this Public License is
deemed unenforceable, it shall be automatically reformed to the
minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License
without affecting the enforceability of the remaining terms and
conditions.
c. No term or condition of this Public License will be waived and no
failure to comply consented to unless expressly agreed to by the
Licensor.
d. Nothing in this Public License constitutes or may be interpreted
as a limitation upon, or waiver of, any privileges and immunities
that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
=======================================================================
Creative Commons is not a party to its public licenses.
Notwithstanding, Creative Commons may elect to apply one of its public
licenses to material it publishes and in those instances will be
considered the "Licensor." Except for the limited purpose of indicating
that material is shared under a Creative Commons public license or as
otherwise permitted by the Creative Commons policies published at
creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark "Creative Commons" or any other trademark or logo
of Creative Commons without its prior written consent including,
without limitation, in connection with any unauthorized modifications
to any of its public licenses or any other arrangements,
understandings, or agreements concerning use of licensed material. For
the avoidance of doubt, this paragraph does not form part of the public
licenses.
Creative Commons may be contacted at creativecommons.org.

@ -0,0 +1,27 @@
# go-connections maintainers file
#
# This file describes who runs the docker/go-connections project and how.
# This is a living document - if you see something out of date or missing, speak up!
#
# It is structured to be consumable by both humans and programs.
# To extract its contents programmatically, use any TOML-compliant parser.
#
# This file is compiled into the MAINTAINERS file in docker/opensource.
#
[Org]
[Org."Core maintainers"]
people = [
"calavera",
]
[people]
# A reference list of all people associated with the project.
# All other sections should refer to people by their canonical key
# in the people section.
# ADD YOURSELF HERE IN ALPHABETICAL ORDER
[people.calavera]
Name = "David Calavera"
Email = "david.calavera@gmail.com"
GitHub = "calavera"

@ -0,0 +1,18 @@
[![GoDoc](https://godoc.org/github.com/docker/go-units?status.svg)](https://godoc.org/github.com/docker/go-units)
# Introduction
go-units is a library to transform human friendly measurements into machine friendly values.
## Usage
See the [docs in godoc](https://godoc.org/github.com/docker/go-units) for examples and documentation.
## Copyright and license
Copyright © 2015 Docker, Inc. All rights reserved, except as follows. Code
is released under the Apache 2.0 license. The README.md file, and files in the
"docs" folder are licensed under the Creative Commons Attribution 4.0
International License under the terms and conditions set forth in the file
"LICENSE.docs". You may obtain a duplicate copy of the same license, titled
CC-BY-SA-4.0, at http://creativecommons.org/licenses/by/4.0/.

@ -0,0 +1,11 @@
dependencies:
post:
# install golint
- go get github.com/golang/lint/golint
test:
pre:
# run analysis before tests
- go vet ./...
- test -z "$(golint ./... | tee /dev/stderr)"
- test -z "$(gofmt -s -l . | tee /dev/stderr)"

@ -1,3 +1,5 @@
// Package units provides helper function to parse and print size and time units
// in human-readable format.
package units
import (
@ -6,7 +8,7 @@ import (
)
// HumanDuration returns a human-readable approximation of a duration
// (eg. "About a minute", "4 hours ago", etc.)
// (eg. "About a minute", "4 hours ago", etc.).
func HumanDuration(d time.Duration) string {
if seconds := int(d.Seconds()); seconds < 1 {
return "Less than a second"

@ -31,14 +31,14 @@ type unitMap map[string]int64
var (
decimalMap = unitMap{"k": KB, "m": MB, "g": GB, "t": TB, "p": PB}
binaryMap = unitMap{"k": KiB, "m": MiB, "g": GiB, "t": TiB, "p": PiB}
sizeRegex = regexp.MustCompile(`^(\d+)([kKmMgGtTpP])?[bB]?$`)
sizeRegex = regexp.MustCompile(`^(\d+(\.\d+)*) ?([kKmMgGtTpP])?[bB]?$`)
)
var decimapAbbrs = []string{"B", "kB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB"}
var binaryAbbrs = []string{"B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB", "ZiB", "YiB"}
// CustomSize returns a human-readable approximation of a size
// using custom format
// using custom format.
func CustomSize(format string, size float64, base float64, _map []string) string {
i := 0
for size >= base {
@ -49,17 +49,19 @@ func CustomSize(format string, size float64, base float64, _map []string) string
}
// HumanSize returns a human-readable approximation of a size
// using SI standard (eg. "44kB", "17MB")
// capped at 4 valid numbers (eg. "2.746 MB", "796 KB").
func HumanSize(size float64) string {
return CustomSize("%.4g %s", size, 1000.0, decimapAbbrs)
}
// BytesSize returns a human-readable size in bytes, kibibytes,
// mebibytes, gibibytes, or tebibytes (eg. "44kiB", "17MiB").
func BytesSize(size float64) string {
return CustomSize("%.4g %s", size, 1024.0, binaryAbbrs)
}
// FromHumanSize returns an integer from a human-readable specification of a
// size using SI standard (eg. "44kB", "17MB")
// size using SI standard (eg. "44kB", "17MB").
func FromHumanSize(size string) (int64, error) {
return parseSize(size, decimalMap)
}
@ -72,22 +74,22 @@ func RAMInBytes(size string) (int64, error) {
return parseSize(size, binaryMap)
}
// Parses the human-readable size string into the amount it represents
// Parses the human-readable size string into the amount it represents.
func parseSize(sizeStr string, uMap unitMap) (int64, error) {
matches := sizeRegex.FindStringSubmatch(sizeStr)
if len(matches) != 3 {
if len(matches) != 4 {
return -1, fmt.Errorf("invalid size: '%s'", sizeStr)
}
size, err := strconv.ParseInt(matches[1], 10, 0)
size, err := strconv.ParseFloat(matches[1], 64)
if err != nil {
return -1, err
}
unitPrefix := strings.ToLower(matches[2])
unitPrefix := strings.ToLower(matches[3])
if mul, ok := uMap[unitPrefix]; ok {
size *= mul
size *= float64(mul)
}
return size, nil
return int64(size), nil
}

@ -0,0 +1,118 @@
package units
import (
"fmt"
"strconv"
"strings"
)
// Ulimit is a human friendly version of Rlimit.
type Ulimit struct {
Name string
Hard int64
Soft int64
}
// Rlimit specifies the resource limits, such as max open files.
type Rlimit struct {
Type int `json:"type,omitempty"`
Hard uint64 `json:"hard,omitempty"`
Soft uint64 `json:"soft,omitempty"`
}
const (
// magic numbers for making the syscall
// some of these are defined in the syscall package, but not all.
// Also since Windows client doesn't get access to the syscall package, need to
// define these here
rlimitAs = 9
rlimitCore = 4
rlimitCPU = 0
rlimitData = 2
rlimitFsize = 1
rlimitLocks = 10
rlimitMemlock = 8
rlimitMsgqueue = 12
rlimitNice = 13
rlimitNofile = 7
rlimitNproc = 6
rlimitRss = 5
rlimitRtprio = 14
rlimitRttime = 15
rlimitSigpending = 11
rlimitStack = 3
)
var ulimitNameMapping = map[string]int{
//"as": rlimitAs, // Disabled since this doesn't seem usable with the way Docker inits a container.
"core": rlimitCore,
"cpu": rlimitCPU,
"data": rlimitData,
"fsize": rlimitFsize,
"locks": rlimitLocks,
"memlock": rlimitMemlock,
"msgqueue": rlimitMsgqueue,
"nice": rlimitNice,
"nofile": rlimitNofile,
"nproc": rlimitNproc,
"rss": rlimitRss,
"rtprio": rlimitRtprio,
"rttime": rlimitRttime,
"sigpending": rlimitSigpending,
"stack": rlimitStack,
}
// ParseUlimit parses and returns a Ulimit from the specified string.
func ParseUlimit(val string) (*Ulimit, error) {
parts := strings.SplitN(val, "=", 2)
if len(parts) != 2 {
return nil, fmt.Errorf("invalid ulimit argument: %s", val)
}
if _, exists := ulimitNameMapping[parts[0]]; !exists {
return nil, fmt.Errorf("invalid ulimit type: %s", parts[0])
}
var (
soft int64
hard = &soft // default to soft in case no hard was set
temp int64
err error
)
switch limitVals := strings.Split(parts[1], ":"); len(limitVals) {
case 2:
temp, err = strconv.ParseInt(limitVals[1], 10, 64)
if err != nil {
return nil, err
}
hard = &temp
fallthrough
case 1:
soft, err = strconv.ParseInt(limitVals[0], 10, 64)
if err != nil {
return nil, err
}
default:
return nil, fmt.Errorf("too many limit value arguments - %s, can only have up to two, `soft[:hard]`", parts[1])
}
if soft > *hard {
return nil, fmt.Errorf("ulimit soft limit must be less than or equal to hard limit: %d > %d", soft, *hard)
}
return &Ulimit{Name: parts[0], Soft: soft, Hard: *hard}, nil
}
// GetRlimit returns the RLimit corresponding to Ulimit.
func (u *Ulimit) GetRlimit() (*Rlimit, error) {
t, exists := ulimitNameMapping[u.Name]
if !exists {
return nil, fmt.Errorf("invalid ulimit name %s", u.Name)
}
return &Rlimit{Type: t, Soft: uint64(u.Soft), Hard: uint64(u.Hard)}, nil
}
func (u *Ulimit) String() string {
return fmt.Sprintf("%s=%d:%d", u.Name, u.Soft, u.Hard)
}

@ -0,0 +1,27 @@
Copyright (c) 2013, Patrick Mezard
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

@ -0,0 +1,772 @@
// Package difflib is a partial port of Python difflib module.
//
// It provides tools to compare sequences of strings and generate textual diffs.
//
// The following class and functions have been ported:
//
// - SequenceMatcher
//
// - unified_diff
//
// - context_diff
//
// Getting unified diffs was the main goal of the port. Keep in mind this code
// is mostly suitable to output text differences in a human friendly way, there
// are no guarantees generated diffs are consumable by patch(1).
package difflib
import (
"bufio"
"bytes"
"fmt"
"io"
"strings"
)
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func calculateRatio(matches, length int) float64 {
if length > 0 {
return 2.0 * float64(matches) / float64(length)
}
return 1.0
}
type Match struct {
A int
B int
Size int
}
type OpCode struct {
Tag byte
I1 int
I2 int
J1 int
J2 int
}
// SequenceMatcher compares sequence of strings. The basic
// algorithm predates, and is a little fancier than, an algorithm
// published in the late 1980's by Ratcliff and Obershelp under the
// hyperbolic name "gestalt pattern matching". The basic idea is to find
// the longest contiguous matching subsequence that contains no "junk"
// elements (R-O doesn't address junk). The same idea is then applied
// recursively to the pieces of the sequences to the left and to the right
// of the matching subsequence. This does not yield minimal edit
// sequences, but does tend to yield matches that "look right" to people.
//
// SequenceMatcher tries to compute a "human-friendly diff" between two
// sequences. Unlike e.g. UNIX(tm) diff, the fundamental notion is the
// longest *contiguous* & junk-free matching subsequence. That's what
// catches peoples' eyes. The Windows(tm) windiff has another interesting
// notion, pairing up elements that appear uniquely in each sequence.
// That, and the method here, appear to yield more intuitive difference
// reports than does diff. This method appears to be the least vulnerable
// to synching up on blocks of "junk lines", though (like blank lines in
// ordinary text files, or maybe "<P>" lines in HTML files). That may be
// because this is the only method of the 3 that has a *concept* of
// "junk" <wink>.
//
// Timing: Basic R-O is cubic time worst case and quadratic time expected
// case. SequenceMatcher is quadratic time for the worst case and has
// expected-case behavior dependent in a complicated way on how many
// elements the sequences have in common; best case time is linear.
type SequenceMatcher struct {
a []string
b []string
b2j map[string][]int
IsJunk func(string) bool
autoJunk bool
bJunk map[string]struct{}
matchingBlocks []Match
fullBCount map[string]int
bPopular map[string]struct{}
opCodes []OpCode
}
func NewMatcher(a, b []string) *SequenceMatcher {
m := SequenceMatcher{autoJunk: true}
m.SetSeqs(a, b)
return &m
}
func NewMatcherWithJunk(a, b []string, autoJunk bool,
isJunk func(string) bool) *SequenceMatcher {
m := SequenceMatcher{IsJunk: isJunk, autoJunk: autoJunk}
m.SetSeqs(a, b)
return &m
}
// Set two sequences to be compared.
func (m *SequenceMatcher) SetSeqs(a, b []string) {
m.SetSeq1(a)
m.SetSeq2(b)
}
// Set the first sequence to be compared. The second sequence to be compared is
// not changed.
//
// SequenceMatcher computes and caches detailed information about the second
// sequence, so if you want to compare one sequence S against many sequences,
// use .SetSeq2(s) once and call .SetSeq1(x) repeatedly for each of the other
// sequences.
//
// See also SetSeqs() and SetSeq2().
func (m *SequenceMatcher) SetSeq1(a []string) {
if &a == &m.a {
return
}
m.a = a
m.matchingBlocks = nil
m.opCodes = nil
}
// Set the second sequence to be compared. The first sequence to be compared is
// not changed.
func (m *SequenceMatcher) SetSeq2(b []string) {
if &b == &m.b {
return
}
m.b = b
m.matchingBlocks = nil
m.opCodes = nil
m.fullBCount = nil
m.chainB()
}
func (m *SequenceMatcher) chainB() {
// Populate line -> index mapping
b2j := map[string][]int{}
for i, s := range m.b {
indices := b2j[s]
indices = append(indices, i)
b2j[s] = indices
}
// Purge junk elements
m.bJunk = map[string]struct{}{}
if m.IsJunk != nil {
junk := m.bJunk
for s, _ := range b2j {
if m.IsJunk(s) {
junk[s] = struct{}{}
}
}
for s, _ := range junk {
delete(b2j, s)
}
}
// Purge remaining popular elements
popular := map[string]struct{}{}
n := len(m.b)
if m.autoJunk && n >= 200 {
ntest := n/100 + 1
for s, indices := range b2j {
if len(indices) > ntest {
popular[s] = struct{}{}
}
}
for s, _ := range popular {
delete(b2j, s)
}
}
m.bPopular = popular
m.b2j = b2j
}
func (m *SequenceMatcher) isBJunk(s string) bool {
_, ok := m.bJunk[s]
return ok
}
// Find longest matching block in a[alo:ahi] and b[blo:bhi].
//
// If IsJunk is not defined:
//
// Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where
// alo <= i <= i+k <= ahi
// blo <= j <= j+k <= bhi
// and for all (i',j',k') meeting those conditions,
// k >= k'
// i <= i'
// and if i == i', j <= j'
//
// In other words, of all maximal matching blocks, return one that
// starts earliest in a, and of all those maximal matching blocks that
// start earliest in a, return the one that starts earliest in b.
//
// If IsJunk is defined, first the longest matching block is
// determined as above, but with the additional restriction that no
// junk element appears in the block. Then that block is extended as
// far as possible by matching (only) junk elements on both sides. So
// the resulting block never matches on junk except as identical junk
// happens to be adjacent to an "interesting" match.
//
// If no blocks match, return (alo, blo, 0).
func (m *SequenceMatcher) findLongestMatch(alo, ahi, blo, bhi int) Match {
// CAUTION: stripping common prefix or suffix would be incorrect.
// E.g.,
// ab
// acab
// Longest matching block is "ab", but if common prefix is
// stripped, it's "a" (tied with "b"). UNIX(tm) diff does so
// strip, so ends up claiming that ab is changed to acab by
// inserting "ca" in the middle. That's minimal but unintuitive:
// "it's obvious" that someone inserted "ac" at the front.
// Windiff ends up at the same place as diff, but by pairing up
// the unique 'b's and then matching the first two 'a's.
besti, bestj, bestsize := alo, blo, 0
// find longest junk-free match
// during an iteration of the loop, j2len[j] = length of longest
// junk-free match ending with a[i-1] and b[j]
j2len := map[int]int{}
for i := alo; i != ahi; i++ {
// look at all instances of a[i] in b; note that because
// b2j has no junk keys, the loop is skipped if a[i] is junk
newj2len := map[int]int{}
for _, j := range m.b2j[m.a[i]] {
// a[i] matches b[j]
if j < blo {
continue
}
if j >= bhi {
break
}
k := j2len[j-1] + 1
newj2len[j] = k
if k > bestsize {
besti, bestj, bestsize = i-k+1, j-k+1, k
}
}
j2len = newj2len
}
// Extend the best by non-junk elements on each end. In particular,
// "popular" non-junk elements aren't in b2j, which greatly speeds
// the inner loop above, but also means "the best" match so far
// doesn't contain any junk *or* popular non-junk elements.
for besti > alo && bestj > blo && !m.isBJunk(m.b[bestj-1]) &&
m.a[besti-1] == m.b[bestj-1] {
besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
}
for besti+bestsize < ahi && bestj+bestsize < bhi &&
!m.isBJunk(m.b[bestj+bestsize]) &&
m.a[besti+bestsize] == m.b[bestj+bestsize] {
bestsize += 1
}
// Now that we have a wholly interesting match (albeit possibly
// empty!), we may as well suck up the matching junk on each
// side of it too. Can't think of a good reason not to, and it
// saves post-processing the (possibly considerable) expense of
// figuring out what to do with it. In the case of an empty
// interesting match, this is clearly the right thing to do,
// because no other kind of match is possible in the regions.
for besti > alo && bestj > blo && m.isBJunk(m.b[bestj-1]) &&
m.a[besti-1] == m.b[bestj-1] {
besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
}
for besti+bestsize < ahi && bestj+bestsize < bhi &&
m.isBJunk(m.b[bestj+bestsize]) &&
m.a[besti+bestsize] == m.b[bestj+bestsize] {
bestsize += 1
}
return Match{A: besti, B: bestj, Size: bestsize}
}
// Return list of triples describing matching subsequences.
//
// Each triple is of the form (i, j, n), and means that
// a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in
// i and in j. It's also guaranteed that if (i, j, n) and (i', j', n') are
// adjacent triples in the list, and the second is not the last triple in the
// list, then i+n != i' or j+n != j'. IOW, adjacent triples never describe
// adjacent equal blocks.
//
// The last triple is a dummy, (len(a), len(b), 0), and is the only
// triple with n==0.
func (m *SequenceMatcher) GetMatchingBlocks() []Match {
if m.matchingBlocks != nil {
return m.matchingBlocks
}
var matchBlocks func(alo, ahi, blo, bhi int, matched []Match) []Match
matchBlocks = func(alo, ahi, blo, bhi int, matched []Match) []Match {
match := m.findLongestMatch(alo, ahi, blo, bhi)
i, j, k := match.A, match.B, match.Size
if match.Size > 0 {
if alo < i && blo < j {
matched = matchBlocks(alo, i, blo, j, matched)
}
matched = append(matched, match)
if i+k < ahi && j+k < bhi {
matched = matchBlocks(i+k, ahi, j+k, bhi, matched)
}
}
return matched
}
matched := matchBlocks(0, len(m.a), 0, len(m.b), nil)
// It's possible that we have adjacent equal blocks in the
// matching_blocks list now.
nonAdjacent := []Match{}
i1, j1, k1 := 0, 0, 0
for _, b := range matched {
// Is this block adjacent to i1, j1, k1?
i2, j2, k2 := b.A, b.B, b.Size
if i1+k1 == i2 && j1+k1 == j2 {
// Yes, so collapse them -- this just increases the length of
// the first block by the length of the second, and the first
// block so lengthened remains the block to compare against.
k1 += k2
} else {
// Not adjacent. Remember the first block (k1==0 means it's
// the dummy we started with), and make the second block the
// new block to compare against.
if k1 > 0 {
nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
}
i1, j1, k1 = i2, j2, k2
}
}
if k1 > 0 {
nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
}
nonAdjacent = append(nonAdjacent, Match{len(m.a), len(m.b), 0})
m.matchingBlocks = nonAdjacent
return m.matchingBlocks
}
// Return list of 5-tuples describing how to turn a into b.
//
// Each tuple is of the form (tag, i1, i2, j1, j2). The first tuple
// has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the
// tuple preceding it, and likewise for j1 == the previous j2.
//
// The tags are characters, with these meanings:
//
// 'r' (replace): a[i1:i2] should be replaced by b[j1:j2]
//
// 'd' (delete): a[i1:i2] should be deleted, j1==j2 in this case.
//
// 'i' (insert): b[j1:j2] should be inserted at a[i1:i1], i1==i2 in this case.
//
// 'e' (equal): a[i1:i2] == b[j1:j2]
func (m *SequenceMatcher) GetOpCodes() []OpCode {
if m.opCodes != nil {
return m.opCodes
}
i, j := 0, 0
matching := m.GetMatchingBlocks()
opCodes := make([]OpCode, 0, len(matching))
for _, m := range matching {
// invariant: we've pumped out correct diffs to change
// a[:i] into b[:j], and the next matching block is
// a[ai:ai+size] == b[bj:bj+size]. So we need to pump
// out a diff to change a[i:ai] into b[j:bj], pump out
// the matching block, and move (i,j) beyond the match
ai, bj, size := m.A, m.B, m.Size
tag := byte(0)
if i < ai && j < bj {
tag = 'r'
} else if i < ai {
tag = 'd'
} else if j < bj {
tag = 'i'
}
if tag > 0 {
opCodes = append(opCodes, OpCode{tag, i, ai, j, bj})
}
i, j = ai+size, bj+size
// the list of matching blocks is terminated by a
// sentinel with size 0
if size > 0 {
opCodes = append(opCodes, OpCode{'e', ai, i, bj, j})
}
}
m.opCodes = opCodes
return m.opCodes
}
// Isolate change clusters by eliminating ranges with no changes.
//
// Return a generator of groups with up to n lines of context.
// Each group is in the same format as returned by GetOpCodes().
func (m *SequenceMatcher) GetGroupedOpCodes(n int) [][]OpCode {
if n < 0 {
n = 3
}
codes := m.GetOpCodes()
if len(codes) == 0 {
codes = []OpCode{OpCode{'e', 0, 1, 0, 1}}
}
// Fixup leading and trailing groups if they show no changes.
if codes[0].Tag == 'e' {
c := codes[0]
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
codes[0] = OpCode{c.Tag, max(i1, i2-n), i2, max(j1, j2-n), j2}
}
if codes[len(codes)-1].Tag == 'e' {
c := codes[len(codes)-1]
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
codes[len(codes)-1] = OpCode{c.Tag, i1, min(i2, i1+n), j1, min(j2, j1+n)}
}
nn := n + n
groups := [][]OpCode{}
group := []OpCode{}
for _, c := range codes {
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
// End the current group and start a new one whenever
// there is a large range with no changes.
if c.Tag == 'e' && i2-i1 > nn {
group = append(group, OpCode{c.Tag, i1, min(i2, i1+n),
j1, min(j2, j1+n)})
groups = append(groups, group)
group = []OpCode{}
i1, j1 = max(i1, i2-n), max(j1, j2-n)
}
group = append(group, OpCode{c.Tag, i1, i2, j1, j2})
}
if len(group) > 0 && !(len(group) == 1 && group[0].Tag == 'e') {
groups = append(groups, group)
}
return groups
}
// Return a measure of the sequences' similarity (float in [0,1]).
//
// Where T is the total number of elements in both sequences, and
// M is the number of matches, this is 2.0*M / T.
// Note that this is 1 if the sequences are identical, and 0 if
// they have nothing in common.
//
// .Ratio() is expensive to compute if you haven't already computed
// .GetMatchingBlocks() or .GetOpCodes(), in which case you may
// want to try .QuickRatio() or .RealQuickRation() first to get an
// upper bound.
func (m *SequenceMatcher) Ratio() float64 {
matches := 0
for _, m := range m.GetMatchingBlocks() {
matches += m.Size
}
return calculateRatio(matches, len(m.a)+len(m.b))
}
// Return an upper bound on ratio() relatively quickly.
//
// This isn't defined beyond that it is an upper bound on .Ratio(), and
// is faster to compute.
func (m *SequenceMatcher) QuickRatio() float64 {
// viewing a and b as multisets, set matches to the cardinality
// of their intersection; this counts the number of matches
// without regard to order, so is clearly an upper bound
if m.fullBCount == nil {
m.fullBCount = map[string]int{}
for _, s := range m.b {
m.fullBCount[s] = m.fullBCount[s] + 1
}
}
// avail[x] is the number of times x appears in 'b' less the
// number of times we've seen it in 'a' so far ... kinda
avail := map[string]int{}
matches := 0
for _, s := range m.a {
n, ok := avail[s]
if !ok {
n = m.fullBCount[s]
}
avail[s] = n - 1
if n > 0 {
matches += 1
}
}
return calculateRatio(matches, len(m.a)+len(m.b))
}
// Return an upper bound on ratio() very quickly.
//
// This isn't defined beyond that it is an upper bound on .Ratio(), and
// is faster to compute than either .Ratio() or .QuickRatio().
func (m *SequenceMatcher) RealQuickRatio() float64 {
la, lb := len(m.a), len(m.b)
return calculateRatio(min(la, lb), la+lb)
}
// Convert range to the "ed" format
func formatRangeUnified(start, stop int) string {
// Per the diff spec at http://www.unix.org/single_unix_specification/
beginning := start + 1 // lines start numbering with one
length := stop - start
if length == 1 {
return fmt.Sprintf("%d", beginning)
}
if length == 0 {
beginning -= 1 // empty ranges begin at line just before the range
}
return fmt.Sprintf("%d,%d", beginning, length)
}
// Unified diff parameters
type UnifiedDiff struct {
A []string // First sequence lines
FromFile string // First file name
FromDate string // First file time
B []string // Second sequence lines
ToFile string // Second file name
ToDate string // Second file time
Eol string // Headers end of line, defaults to LF
Context int // Number of context lines
}
// Compare two sequences of lines; generate the delta as a unified diff.
//
// Unified diffs are a compact way of showing line changes and a few
// lines of context. The number of context lines is set by 'n' which
// defaults to three.
//
// By default, the diff control lines (those with ---, +++, or @@) are
// created with a trailing newline. This is helpful so that inputs
// created from file.readlines() result in diffs that are suitable for
// file.writelines() since both the inputs and outputs have trailing
// newlines.
//
// For inputs that do not have trailing newlines, set the lineterm
// argument to "" so that the output will be uniformly newline free.
//
// The unidiff format normally has a header for filenames and modification
// times. Any or all of these may be specified using strings for
// 'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'.
// The modification times are normally expressed in the ISO 8601 format.
func WriteUnifiedDiff(writer io.Writer, diff UnifiedDiff) error {
buf := bufio.NewWriter(writer)
defer buf.Flush()
wf := func(format string, args ...interface{}) error {
_, err := buf.WriteString(fmt.Sprintf(format, args...))
return err
}
ws := func(s string) error {
_, err := buf.WriteString(s)
return err
}
if len(diff.Eol) == 0 {
diff.Eol = "\n"
}
started := false
m := NewMatcher(diff.A, diff.B)
for _, g := range m.GetGroupedOpCodes(diff.Context) {
if !started {
started = true
fromDate := ""
if len(diff.FromDate) > 0 {
fromDate = "\t" + diff.FromDate
}
toDate := ""
if len(diff.ToDate) > 0 {
toDate = "\t" + diff.ToDate
}
if diff.FromFile != "" || diff.ToFile != "" {
err := wf("--- %s%s%s", diff.FromFile, fromDate, diff.Eol)
if err != nil {
return err
}
err = wf("+++ %s%s%s", diff.ToFile, toDate, diff.Eol)
if err != nil {
return err
}
}
}
first, last := g[0], g[len(g)-1]
range1 := formatRangeUnified(first.I1, last.I2)
range2 := formatRangeUnified(first.J1, last.J2)
if err := wf("@@ -%s +%s @@%s", range1, range2, diff.Eol); err != nil {
return err
}
for _, c := range g {
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
if c.Tag == 'e' {
for _, line := range diff.A[i1:i2] {
if err := ws(" " + line); err != nil {
return err
}
}
continue
}
if c.Tag == 'r' || c.Tag == 'd' {
for _, line := range diff.A[i1:i2] {
if err := ws("-" + line); err != nil {
return err
}
}
}
if c.Tag == 'r' || c.Tag == 'i' {
for _, line := range diff.B[j1:j2] {
if err := ws("+" + line); err != nil {
return err
}
}
}
}
}
return nil
}
// Like WriteUnifiedDiff but returns the diff a string.
func GetUnifiedDiffString(diff UnifiedDiff) (string, error) {
w := &bytes.Buffer{}
err := WriteUnifiedDiff(w, diff)
return string(w.Bytes()), err
}
// Convert range to the "ed" format.
func formatRangeContext(start, stop int) string {
// Per the diff spec at http://www.unix.org/single_unix_specification/
beginning := start + 1 // lines start numbering with one
length := stop - start
if length == 0 {
beginning -= 1 // empty ranges begin at line just before the range
}
if length <= 1 {
return fmt.Sprintf("%d", beginning)
}
return fmt.Sprintf("%d,%d", beginning, beginning+length-1)
}
type ContextDiff UnifiedDiff
// Compare two sequences of lines; generate the delta as a context diff.
//
// Context diffs are a compact way of showing line changes and a few
// lines of context. The number of context lines is set by diff.Context
// which defaults to three.
//
// By default, the diff control lines (those with *** or ---) are
// created with a trailing newline.
//
// For inputs that do not have trailing newlines, set the diff.Eol
// argument to "" so that the output will be uniformly newline free.
//
// The context diff format normally has a header for filenames and
// modification times. Any or all of these may be specified using
// strings for diff.FromFile, diff.ToFile, diff.FromDate, diff.ToDate.
// The modification times are normally expressed in the ISO 8601 format.
// If not specified, the strings default to blanks.
func WriteContextDiff(writer io.Writer, diff ContextDiff) error {
buf := bufio.NewWriter(writer)
defer buf.Flush()
var diffErr error
wf := func(format string, args ...interface{}) {
_, err := buf.WriteString(fmt.Sprintf(format, args...))
if diffErr == nil && err != nil {
diffErr = err
}
}
ws := func(s string) {
_, err := buf.WriteString(s)
if diffErr == nil && err != nil {
diffErr = err
}
}
if len(diff.Eol) == 0 {
diff.Eol = "\n"
}
prefix := map[byte]string{
'i': "+ ",
'd': "- ",
'r': "! ",
'e': " ",
}
started := false
m := NewMatcher(diff.A, diff.B)
for _, g := range m.GetGroupedOpCodes(diff.Context) {
if !started {
started = true
fromDate := ""
if len(diff.FromDate) > 0 {
fromDate = "\t" + diff.FromDate
}
toDate := ""
if len(diff.ToDate) > 0 {
toDate = "\t" + diff.ToDate
}
if diff.FromFile != "" || diff.ToFile != "" {
wf("*** %s%s%s", diff.FromFile, fromDate, diff.Eol)
wf("--- %s%s%s", diff.ToFile, toDate, diff.Eol)
}
}
first, last := g[0], g[len(g)-1]
ws("***************" + diff.Eol)
range1 := formatRangeContext(first.I1, last.I2)
wf("*** %s ****%s", range1, diff.Eol)
for _, c := range g {
if c.Tag == 'r' || c.Tag == 'd' {
for _, cc := range g {
if cc.Tag == 'i' {
continue
}
for _, line := range diff.A[cc.I1:cc.I2] {
ws(prefix[cc.Tag] + line)
}
}
break
}
}
range2 := formatRangeContext(first.J1, last.J2)
wf("--- %s ----%s", range2, diff.Eol)
for _, c := range g {
if c.Tag == 'r' || c.Tag == 'i' {
for _, cc := range g {
if cc.Tag == 'd' {
continue
}
for _, line := range diff.B[cc.J1:cc.J2] {
ws(prefix[cc.Tag] + line)
}
}
break
}
}
}
return diffErr
}
// Like WriteContextDiff but returns the diff a string.
func GetContextDiffString(diff ContextDiff) (string, error) {
w := &bytes.Buffer{}
err := WriteContextDiff(w, diff)
return string(w.Bytes()), err
}
// Split a string on "\n" while preserving them. The output can be used
// as input for UnifiedDiff and ContextDiff structures.
func SplitLines(s string) []string {
lines := strings.SplitAfter(s, "\n")
lines[len(lines)-1] += "\n"
return lines
}

@ -0,0 +1,426 @@
package difflib
import (
"bytes"
"fmt"
"math"
"reflect"
"strings"
"testing"
)
func assertAlmostEqual(t *testing.T, a, b float64, places int) {
if math.Abs(a-b) > math.Pow10(-places) {
t.Errorf("%.7f != %.7f", a, b)
}
}
func assertEqual(t *testing.T, a, b interface{}) {
if !reflect.DeepEqual(a, b) {
t.Errorf("%v != %v", a, b)
}
}
func splitChars(s string) []string {
chars := make([]string, 0, len(s))
// Assume ASCII inputs
for i := 0; i != len(s); i++ {
chars = append(chars, string(s[i]))
}
return chars
}
func TestSequenceMatcherRatio(t *testing.T) {
s := NewMatcher(splitChars("abcd"), splitChars("bcde"))
assertEqual(t, s.Ratio(), 0.75)
assertEqual(t, s.QuickRatio(), 0.75)
assertEqual(t, s.RealQuickRatio(), 1.0)
}
func TestGetOptCodes(t *testing.T) {
a := "qabxcd"
b := "abycdf"
s := NewMatcher(splitChars(a), splitChars(b))
w := &bytes.Buffer{}
for _, op := range s.GetOpCodes() {
fmt.Fprintf(w, "%s a[%d:%d], (%s) b[%d:%d] (%s)\n", string(op.Tag),
op.I1, op.I2, a[op.I1:op.I2], op.J1, op.J2, b[op.J1:op.J2])
}
result := string(w.Bytes())
expected := `d a[0:1], (q) b[0:0] ()
e a[1:3], (ab) b[0:2] (ab)
r a[3:4], (x) b[2:3] (y)
e a[4:6], (cd) b[3:5] (cd)
i a[6:6], () b[5:6] (f)
`
if expected != result {
t.Errorf("unexpected op codes: \n%s", result)
}
}
func TestGroupedOpCodes(t *testing.T) {
a := []string{}
for i := 0; i != 39; i++ {
a = append(a, fmt.Sprintf("%02d", i))
}
b := []string{}
b = append(b, a[:8]...)
b = append(b, " i")
b = append(b, a[8:19]...)
b = append(b, " x")
b = append(b, a[20:22]...)
b = append(b, a[27:34]...)
b = append(b, " y")
b = append(b, a[35:]...)
s := NewMatcher(a, b)
w := &bytes.Buffer{}
for _, g := range s.GetGroupedOpCodes(-1) {
fmt.Fprintf(w, "group\n")
for _, op := range g {
fmt.Fprintf(w, " %s, %d, %d, %d, %d\n", string(op.Tag),
op.I1, op.I2, op.J1, op.J2)
}
}
result := string(w.Bytes())
expected := `group
e, 5, 8, 5, 8
i, 8, 8, 8, 9
e, 8, 11, 9, 12
group
e, 16, 19, 17, 20
r, 19, 20, 20, 21
e, 20, 22, 21, 23
d, 22, 27, 23, 23
e, 27, 30, 23, 26
group
e, 31, 34, 27, 30
r, 34, 35, 30, 31
e, 35, 38, 31, 34
`
if expected != result {
t.Errorf("unexpected op codes: \n%s", result)
}
}
func ExampleGetUnifiedDiffCode() {
a := `one
two
three
four
fmt.Printf("%s,%T",a,b)`
b := `zero
one
three
four`
diff := UnifiedDiff{
A: SplitLines(a),
B: SplitLines(b),
FromFile: "Original",
FromDate: "2005-01-26 23:30:50",
ToFile: "Current",
ToDate: "2010-04-02 10:20:52",
Context: 3,
}
result, _ := GetUnifiedDiffString(diff)
fmt.Println(strings.Replace(result, "\t", " ", -1))
// Output:
// --- Original 2005-01-26 23:30:50
// +++ Current 2010-04-02 10:20:52
// @@ -1,5 +1,4 @@
// +zero
// one
// -two
// three
// four
// -fmt.Printf("%s,%T",a,b)
}
func ExampleGetContextDiffCode() {
a := `one
two
three
four
fmt.Printf("%s,%T",a,b)`
b := `zero
one
tree
four`
diff := ContextDiff{
A: SplitLines(a),
B: SplitLines(b),
FromFile: "Original",
ToFile: "Current",
Context: 3,
Eol: "\n",
}
result, _ := GetContextDiffString(diff)
fmt.Print(strings.Replace(result, "\t", " ", -1))
// Output:
// *** Original
// --- Current
// ***************
// *** 1,5 ****
// one
// ! two
// ! three
// four
// - fmt.Printf("%s,%T",a,b)
// --- 1,4 ----
// + zero
// one
// ! tree
// four
}
func ExampleGetContextDiffString() {
a := `one
two
three
four`
b := `zero
one
tree
four`
diff := ContextDiff{
A: SplitLines(a),
B: SplitLines(b),
FromFile: "Original",
ToFile: "Current",
Context: 3,
Eol: "\n",
}
result, _ := GetContextDiffString(diff)
fmt.Printf(strings.Replace(result, "\t", " ", -1))
// Output:
// *** Original
// --- Current
// ***************
// *** 1,4 ****
// one
// ! two
// ! three
// four
// --- 1,4 ----
// + zero
// one
// ! tree
// four
}
func rep(s string, count int) string {
return strings.Repeat(s, count)
}
func TestWithAsciiOneInsert(t *testing.T) {
sm := NewMatcher(splitChars(rep("b", 100)),
splitChars("a"+rep("b", 100)))
assertAlmostEqual(t, sm.Ratio(), 0.995, 3)
assertEqual(t, sm.GetOpCodes(),
[]OpCode{{'i', 0, 0, 0, 1}, {'e', 0, 100, 1, 101}})
assertEqual(t, len(sm.bPopular), 0)
sm = NewMatcher(splitChars(rep("b", 100)),
splitChars(rep("b", 50)+"a"+rep("b", 50)))
assertAlmostEqual(t, sm.Ratio(), 0.995, 3)
assertEqual(t, sm.GetOpCodes(),
[]OpCode{{'e', 0, 50, 0, 50}, {'i', 50, 50, 50, 51}, {'e', 50, 100, 51, 101}})
assertEqual(t, len(sm.bPopular), 0)
}
func TestWithAsciiOnDelete(t *testing.T) {
sm := NewMatcher(splitChars(rep("a", 40)+"c"+rep("b", 40)),
splitChars(rep("a", 40)+rep("b", 40)))
assertAlmostEqual(t, sm.Ratio(), 0.994, 3)
assertEqual(t, sm.GetOpCodes(),
[]OpCode{{'e', 0, 40, 0, 40}, {'d', 40, 41, 40, 40}, {'e', 41, 81, 40, 80}})
}
func TestWithAsciiBJunk(t *testing.T) {
isJunk := func(s string) bool {
return s == " "
}
sm := NewMatcherWithJunk(splitChars(rep("a", 40)+rep("b", 40)),
splitChars(rep("a", 44)+rep("b", 40)), true, isJunk)
assertEqual(t, sm.bJunk, map[string]struct{}{})
sm = NewMatcherWithJunk(splitChars(rep("a", 40)+rep("b", 40)),
splitChars(rep("a", 44)+rep("b", 40)+rep(" ", 20)), false, isJunk)
assertEqual(t, sm.bJunk, map[string]struct{}{" ": struct{}{}})
isJunk = func(s string) bool {
return s == " " || s == "b"
}
sm = NewMatcherWithJunk(splitChars(rep("a", 40)+rep("b", 40)),
splitChars(rep("a", 44)+rep("b", 40)+rep(" ", 20)), false, isJunk)
assertEqual(t, sm.bJunk, map[string]struct{}{" ": struct{}{}, "b": struct{}{}})
}
func TestSFBugsRatioForNullSeqn(t *testing.T) {
sm := NewMatcher(nil, nil)
assertEqual(t, sm.Ratio(), 1.0)
assertEqual(t, sm.QuickRatio(), 1.0)
assertEqual(t, sm.RealQuickRatio(), 1.0)
}
func TestSFBugsComparingEmptyLists(t *testing.T) {
groups := NewMatcher(nil, nil).GetGroupedOpCodes(-1)
assertEqual(t, len(groups), 0)
diff := UnifiedDiff{
FromFile: "Original",
ToFile: "Current",
Context: 3,
}
result, err := GetUnifiedDiffString(diff)
assertEqual(t, err, nil)
assertEqual(t, result, "")
}
func TestOutputFormatRangeFormatUnified(t *testing.T) {
// Per the diff spec at http://www.unix.org/single_unix_specification/
//
// Each <range> field shall be of the form:
// %1d", <beginning line number> if the range contains exactly one line,
// and:
// "%1d,%1d", <beginning line number>, <number of lines> otherwise.
// If a range is empty, its beginning line number shall be the number of
// the line just before the range, or 0 if the empty range starts the file.
fm := formatRangeUnified
assertEqual(t, fm(3, 3), "3,0")
assertEqual(t, fm(3, 4), "4")
assertEqual(t, fm(3, 5), "4,2")
assertEqual(t, fm(3, 6), "4,3")
assertEqual(t, fm(0, 0), "0,0")
}
func TestOutputFormatRangeFormatContext(t *testing.T) {
// Per the diff spec at http://www.unix.org/single_unix_specification/
//
// The range of lines in file1 shall be written in the following format
// if the range contains two or more lines:
// "*** %d,%d ****\n", <beginning line number>, <ending line number>
// and the following format otherwise:
// "*** %d ****\n", <ending line number>
// The ending line number of an empty range shall be the number of the preceding line,
// or 0 if the range is at the start of the file.
//
// Next, the range of lines in file2 shall be written in the following format
// if the range contains two or more lines:
// "--- %d,%d ----\n", <beginning line number>, <ending line number>
// and the following format otherwise:
// "--- %d ----\n", <ending line number>
fm := formatRangeContext
assertEqual(t, fm(3, 3), "3")
assertEqual(t, fm(3, 4), "4")
assertEqual(t, fm(3, 5), "4,5")
assertEqual(t, fm(3, 6), "4,6")
assertEqual(t, fm(0, 0), "0")
}
func TestOutputFormatTabDelimiter(t *testing.T) {
diff := UnifiedDiff{
A: splitChars("one"),
B: splitChars("two"),
FromFile: "Original",
FromDate: "2005-01-26 23:30:50",
ToFile: "Current",
ToDate: "2010-04-12 10:20:52",
Eol: "\n",
}
ud, err := GetUnifiedDiffString(diff)
assertEqual(t, err, nil)
assertEqual(t, SplitLines(ud)[:2], []string{
"--- Original\t2005-01-26 23:30:50\n",
"+++ Current\t2010-04-12 10:20:52\n",
})
cd, err := GetContextDiffString(ContextDiff(diff))
assertEqual(t, err, nil)
assertEqual(t, SplitLines(cd)[:2], []string{
"*** Original\t2005-01-26 23:30:50\n",
"--- Current\t2010-04-12 10:20:52\n",
})
}
func TestOutputFormatNoTrailingTabOnEmptyFiledate(t *testing.T) {
diff := UnifiedDiff{
A: splitChars("one"),
B: splitChars("two"),
FromFile: "Original",
ToFile: "Current",
Eol: "\n",
}
ud, err := GetUnifiedDiffString(diff)
assertEqual(t, err, nil)
assertEqual(t, SplitLines(ud)[:2], []string{"--- Original\n", "+++ Current\n"})
cd, err := GetContextDiffString(ContextDiff(diff))
assertEqual(t, err, nil)
assertEqual(t, SplitLines(cd)[:2], []string{"*** Original\n", "--- Current\n"})
}
func TestOmitFilenames(t *testing.T) {
diff := UnifiedDiff{
A: SplitLines("o\nn\ne\n"),
B: SplitLines("t\nw\no\n"),
Eol: "\n",
}
ud, err := GetUnifiedDiffString(diff)
assertEqual(t, err, nil)
assertEqual(t, SplitLines(ud), []string{
"@@ -0,0 +1,2 @@\n",
"+t\n",
"+w\n",
"@@ -2,2 +3,0 @@\n",
"-n\n",
"-e\n",
"\n",
})
cd, err := GetContextDiffString(ContextDiff(diff))
assertEqual(t, err, nil)
assertEqual(t, SplitLines(cd), []string{
"***************\n",
"*** 0 ****\n",
"--- 1,2 ----\n",
"+ t\n",
"+ w\n",
"***************\n",
"*** 2,3 ****\n",
"- n\n",
"- e\n",
"--- 3 ----\n",
"\n",
})
}
func TestSplitLines(t *testing.T) {
allTests := []struct {
input string
want []string
}{
{"foo", []string{"foo\n"}},
{"foo\nbar", []string{"foo\n", "bar\n"}},
{"foo\nbar\n", []string{"foo\n", "bar\n", "\n"}},
}
for _, test := range allTests {
assertEqual(t, SplitLines(test.input), test.want)
}
}
func benchmarkSplitLines(b *testing.B, count int) {
str := strings.Repeat("foo\n", count)
b.ResetTimer()
n := 0
for i := 0; i < b.N; i++ {
n += len(SplitLines(str))
}
}
func BenchmarkSplitLines100(b *testing.B) {
benchmarkSplitLines(b, 100)
}
func BenchmarkSplitLines10000(b *testing.B) {
benchmarkSplitLines(b, 10000)
}

@ -15,6 +15,7 @@ import (
"github.com/samalba/dockerclient"
"log"
"time"
"os"
)
// Callback used to listen to Docker's events
@ -42,13 +43,27 @@ func main() {
log.Println(info)
}
// Build a docker image
// some.tar contains the build context (Dockerfile any any files it needs to add/copy)
dockerBuildContext, err := os.Open("some.tar")
defer dockerBuildContext.Close()
buildImageConfig := &dockerclient.BuildImage{
Context: dockerBuildContext,
RepoName: "your_image_name",
SuppressOutput: false,
}
reader, err := docker.BuildImage(buildImageConfig)
if err != nil {
log.Fatal(err)
}
// Create a container
containerConfig := &dockerclient.ContainerConfig{
Image: "ubuntu:14.04",
Cmd: []string{"bash"},
AttachStdin: true,
Tty: true}
containerId, err := docker.CreateContainer(containerConfig, "foobar")
containerId, err := docker.CreateContainer(containerConfig, "foobar", nil)
if err != nil {
log.Fatal(err)
}

@ -8,14 +8,32 @@ import (
// AuthConfig hold parameters for authenticating with the docker registry
type AuthConfig struct {
Username string `json:"username,omitempty"`
Password string `json:"password,omitempty"`
Email string `json:"email,omitempty"`
Username string `json:"username,omitempty"`
Password string `json:"password,omitempty"`
Email string `json:"email,omitempty"`
RegistryToken string `json:"registrytoken,omitempty"`
}
// encode the auth configuration struct into base64 for the X-Registry-Auth header
func (c *AuthConfig) encode() string {
func (c *AuthConfig) encode() (string, error) {
var buf bytes.Buffer
json.NewEncoder(&buf).Encode(c)
return base64.URLEncoding.EncodeToString(buf.Bytes())
if err := json.NewEncoder(&buf).Encode(c); err != nil {
return "", err
}
return base64.URLEncoding.EncodeToString(buf.Bytes()), nil
}
// ConfigFile holds parameters for authenticating during a BuildImage request
type ConfigFile struct {
Configs map[string]AuthConfig `json:"configs,omitempty"`
rootPath string
}
// encode the configuration struct into base64 for the X-Registry-Config header
func (c *ConfigFile) encode() (string, error) {
var buf bytes.Buffer
if err := json.NewEncoder(&buf).Encode(c); err != nil {
return "", err
}
return base64.URLEncoding.EncodeToString(buf.Bytes()), nil
}

@ -1,15 +0,0 @@
package dockerclient
import (
"testing"
)
func TestAuthEncode(t *testing.T) {
a := AuthConfig{Username: "foo", Password: "password", Email: "bar@baz.com"}
expected := "eyJ1c2VybmFtZSI6ImZvbyIsInBhc3N3b3JkIjoicGFzc3dvcmQiLCJlbWFpbCI6ImJhckBiYXouY29tIn0K"
got := a.encode()
if expected != got {
t.Errorf("testAuthEncode failed. Expected [%s] got [%s]", expected, got)
}
}

@ -16,12 +16,23 @@ import (
"time"
)
var _ Client = (*DockerClient)(nil)
const (
// APIVersion is currently hardcoded to v1.15
// TODO: bump the API version or allow users to choose which API version to
// use the client with. The current value does not make sense for many
// methods, such as ContainerStats, StartMonitorStats, and StopAllMonitorStats
// (v1.17) and
// ListVolumes, {Remove,Create}Volume, ListNetworks,
// {Inspect,Create,Connect,Disconnect,Remove}Network (v1.21)
APIVersion = "v1.15"
)
var (
ErrNotFound = errors.New("Not found")
ErrImageNotFound = errors.New("Image not found")
ErrNotFound = errors.New("Not found")
ErrConnectionRefused = errors.New("Cannot connect to the docker engine endpoint")
defaultTimeout = 30 * time.Second
)
@ -45,10 +56,10 @@ func (e Error) Error() string {
}
func NewDockerClient(daemonUrl string, tlsConfig *tls.Config) (*DockerClient, error) {
return NewDockerClientTimeout(daemonUrl, tlsConfig, time.Duration(defaultTimeout))
return NewDockerClientTimeout(daemonUrl, tlsConfig, time.Duration(defaultTimeout), nil)
}
func NewDockerClientTimeout(daemonUrl string, tlsConfig *tls.Config, timeout time.Duration) (*DockerClient, error) {
func NewDockerClientTimeout(daemonUrl string, tlsConfig *tls.Config, timeout time.Duration, setUserTimeout tcpFunc) (*DockerClient, error) {
u, err := url.Parse(daemonUrl)
if err != nil {
return nil, err
@ -60,7 +71,7 @@ func NewDockerClientTimeout(daemonUrl string, tlsConfig *tls.Config, timeout tim
u.Scheme = "https"
}
}
httpClient := newHTTPClient(u, tlsConfig, timeout)
httpClient := newHTTPClient(u, tlsConfig, timeout, setUserTimeout)
return &DockerClient{u, httpClient, tlsConfig, 0, nil}, nil
}
@ -99,9 +110,24 @@ func (client *DockerClient) doStreamRequest(method string, path string, in io.Re
if !strings.Contains(err.Error(), "connection refused") && client.TLSConfig == nil {
return nil, fmt.Errorf("%v. Are you trying to connect to a TLS-enabled daemon without TLS?", err)
}
if strings.Contains(err.Error(), "connection refused") {
return nil, ErrConnectionRefused
}
return nil, err
}
if resp.StatusCode == 404 {
defer resp.Body.Close()
data, err := ioutil.ReadAll(resp.Body)
if err != nil {
return nil, ErrNotFound
}
if len(data) > 0 {
// check if is image not found error
if strings.Index(string(data), "No such image") != -1 {
return nil, ErrImageNotFound
}
return nil, errors.New(string(data))
}
return nil, ErrNotFound
}
if resp.StatusCode >= 400 {
@ -171,7 +197,7 @@ func (client *DockerClient) InspectContainer(id string) (*ContainerInfo, error)
return info, nil
}
func (client *DockerClient) CreateContainer(config *ContainerConfig, name string) (string, error) {
func (client *DockerClient) CreateContainer(config *ContainerConfig, name string, auth *AuthConfig) (string, error) {
data, err := json.Marshal(config)
if err != nil {
return "", err
@ -182,14 +208,22 @@ func (client *DockerClient) CreateContainer(config *ContainerConfig, name string
v.Set("name", name)
uri = fmt.Sprintf("%s?%s", uri, v.Encode())
}
data, err = client.doRequest("POST", uri, data, nil)
headers := map[string]string{}
if auth != nil {
encoded_auth, err := auth.encode()
if err != nil {
return "", err
}
headers["X-Registry-Auth"] = encoded_auth
}
data, err = client.doRequest("POST", uri, data, headers)
if err != nil {
return "", err
}
result := &RespContainersCreate{}
err = json.Unmarshal(data, result)
if err != nil {
return "", err
return "", fmt.Errorf(string(data))
}
return result.Id, nil
}
@ -231,25 +265,64 @@ func (client *DockerClient) ContainerChanges(id string) ([]*ContainerChanges, er
return changes, nil
}
func (client *DockerClient) ContainerStats(id string, stopChan <-chan struct{}) (<-chan StatsOrError, error) {
uri := fmt.Sprintf("/%s/containers/%s/stats", APIVersion, id)
resp, err := client.HTTPClient.Get(client.URL.String() + uri)
if err != nil {
return nil, err
}
decode := func(decoder *json.Decoder) decodingResult {
var containerStats Stats
if err := decoder.Decode(&containerStats); err != nil {
return decodingResult{err: err}
} else {
return decodingResult{result: containerStats}
}
}
decodingResultChan := client.readJSONStream(resp.Body, decode, stopChan)
statsOrErrorChan := make(chan StatsOrError)
go func() {
for decodingResult := range decodingResultChan {
stats, _ := decodingResult.result.(Stats)
statsOrErrorChan <- StatsOrError{
Stats: stats,
Error: decodingResult.err,
}
}
close(statsOrErrorChan)
}()
return statsOrErrorChan, nil
}
func (client *DockerClient) readJSONStream(stream io.ReadCloser, decode func(*json.Decoder) decodingResult, stopChan <-chan struct{}) <-chan decodingResult {
resultChan := make(chan decodingResult)
go func() {
decoder := json.NewDecoder(stream)
stopped := make(chan struct{})
decodeChan := make(chan decodingResult)
go func() {
<-stopChan
stream.Close()
stopped <- struct{}{}
decoder := json.NewDecoder(stream)
for {
decodeResult := decode(decoder)
decodeChan <- decodeResult
if decodeResult.err != nil {
close(decodeChan)
return
}
}
}()
defer close(resultChan)
for {
decodeResult := decode(decoder)
select {
case <-stopped:
case <-stopChan:
stream.Close()
for range decodeChan {
}
return
default:
case decodeResult := <-decodeChan:
resultChan <- decodeResult
if decodeResult.err != nil {
stream.Close()
@ -257,11 +330,85 @@ func (client *DockerClient) readJSONStream(stream io.ReadCloser, decode func(*js
}
}
}
}()
return resultChan
}
func (client *DockerClient) ExecCreate(config *ExecConfig) (string, error) {
data, err := json.Marshal(config)
if err != nil {
return "", err
}
uri := fmt.Sprintf("/%s/containers/%s/exec", APIVersion, config.Container)
resp, err := client.doRequest("POST", uri, data, nil)
if err != nil {
return "", err
}
var createExecResp struct {
Id string
}
if err = json.Unmarshal(resp, &createExecResp); err != nil {
return "", err
}
return createExecResp.Id, nil
}
func (client *DockerClient) ExecStart(id string, config *ExecConfig) error {
data, err := json.Marshal(config)
if err != nil {
return err
}
uri := fmt.Sprintf("/%s/exec/%s/start", APIVersion, id)
if _, err := client.doRequest("POST", uri, data, nil); err != nil {
return err
}
return nil
}
func (client *DockerClient) ExecResize(id string, width, height int) error {
v := url.Values{}
w := strconv.Itoa(width)
h := strconv.Itoa(height)
v.Set("w", w)
v.Set("h", h)
uri := fmt.Sprintf("/%s/exec/%s/resize?%s", APIVersion, id, v.Encode())
if _, err := client.doRequest("POST", client.URL.String()+uri, nil, nil); err != nil {
return err
}
return nil
}
func (client *DockerClient) AttachContainer(id string, options *AttachOptions) (io.ReadCloser, error) {
v := url.Values{}
if options != nil {
if options.Logs {
v.Set("logs", "1")
}
if options.Stream {
v.Set("stream", "1")
}
if options.Stdin {
v.Set("stdin", "1")
}
if options.Stdout {
v.Set("stdout", "1")
}
if options.Stderr {
v.Set("stderr", "1")
}
}
uri := fmt.Sprintf("/%s/containers/%s/attach?%s", APIVersion, id, v.Encode())
return client.doStreamRequest("POST", uri, nil, nil)
}
func (client *DockerClient) StartContainer(id string, config *HostConfig) error {
data, err := json.Marshal(config)
if err != nil {
@ -302,6 +449,26 @@ func (client *DockerClient) KillContainer(id, signal string) error {
return nil
}
func (client *DockerClient) Wait(id string) <-chan WaitResult {
ch := make(chan WaitResult)
uri := fmt.Sprintf("/%s/containers/%s/wait", APIVersion, id)
go func() {
data, err := client.doRequest("POST", uri, nil, nil)
if err != nil {
ch <- WaitResult{ExitCode: -1, Error: err}
return
}
var result struct {
StatusCode int `json:"StatusCode"`
}
err = json.Unmarshal(data, &result)
ch <- WaitResult{ExitCode: result.StatusCode, Error: err}
}()
return ch
}
func (client *DockerClient) MonitorEvents(options *MonitorEventsOptions, stopChan <-chan struct{}) (<-chan EventOrError, error) {
v := url.Values{}
if options != nil {
@ -366,13 +533,17 @@ func (client *DockerClient) StartMonitorEvents(cb Callback, ec chan error, args
go func() {
eventErrChan, err := client.MonitorEvents(nil, client.eventStopChan)
if err != nil {
ec <- err
if ec != nil {
ec <- err
}
return
}
for e := range eventErrChan {
if e.Error != nil {
ec <- err
if ec != nil {
ec <- e.Error
}
return
}
cb(&e.Event, ec, args...)
@ -381,6 +552,9 @@ func (client *DockerClient) StartMonitorEvents(cb Callback, ec chan error, args
}
func (client *DockerClient) StopAllMonitorEvents() {
if client.eventStopChan == nil {
return
}
close(client.eventStopChan)
}
@ -441,13 +615,48 @@ func (client *DockerClient) Version() (*Version, error) {
return version, nil
}
func (client *DockerClient) PushImage(name string, tag string, auth *AuthConfig) error {
v := url.Values{}
if tag != "" {
v.Set("tag", tag)
}
uri := fmt.Sprintf("/%s/images/%s/push?%s", APIVersion, url.QueryEscape(name), v.Encode())
req, err := http.NewRequest("POST", client.URL.String()+uri, nil)
if auth != nil {
if encodedAuth, err := auth.encode(); err != nil {
return err
} else {
req.Header.Add("X-Registry-Auth", encodedAuth)
}
}
resp, err := client.HTTPClient.Do(req)
if err != nil {
return err
}
defer resp.Body.Close()
var finalObj map[string]interface{}
for decoder := json.NewDecoder(resp.Body); err == nil; err = decoder.Decode(&finalObj) {
}
if err != io.EOF {
return err
}
if err, ok := finalObj["error"]; ok {
return fmt.Errorf("%v", err)
}
return nil
}
func (client *DockerClient) PullImage(name string, auth *AuthConfig) error {
v := url.Values{}
v.Set("fromImage", name)
uri := fmt.Sprintf("/%s/images/create?%s", APIVersion, v.Encode())
req, err := http.NewRequest("POST", client.URL.String()+uri, nil)
if auth != nil {
req.Header.Add("X-Registry-Auth", auth.encode())
encoded_auth, err := auth.encode()
if err != nil {
return err
}
req.Header.Add("X-Registry-Auth", encoded_auth)
}
resp, err := client.HTTPClient.Do(req)
if err != nil {
@ -493,17 +702,9 @@ func (client *DockerClient) InspectImage(id string) (*ImageInfo, error) {
}
func (client *DockerClient) LoadImage(reader io.Reader) error {
data, err := ioutil.ReadAll(reader)
if err != nil {
return err
}
uri := fmt.Sprintf("/%s/images/load", APIVersion)
_, err = client.doRequest("POST", uri, data, nil)
if err != nil {
return err
}
return nil
_, err := client.doStreamRequest("POST", uri, reader, nil)
return err
}
func (client *DockerClient) RemoveContainer(id string, force, volumes bool) error {
@ -521,8 +722,12 @@ func (client *DockerClient) RemoveContainer(id string, force, volumes bool) erro
return err
}
func (client *DockerClient) ListImages() ([]*Image, error) {
uri := fmt.Sprintf("/%s/images/json", APIVersion)
func (client *DockerClient) ListImages(all bool) ([]*Image, error) {
argAll := 0
if all {
argAll = 1
}
uri := fmt.Sprintf("/%s/images/json?all=%d", APIVersion, argAll)
data, err := client.doRequest("GET", uri, nil, nil)
if err != nil {
return nil, err
@ -534,8 +739,14 @@ func (client *DockerClient) ListImages() ([]*Image, error) {
return images, nil
}
func (client *DockerClient) RemoveImage(name string) ([]*ImageDelete, error) {
uri := fmt.Sprintf("/%s/images/%s", APIVersion, name)
func (client *DockerClient) RemoveImage(name string, force bool) ([]*ImageDelete, error) {
argForce := 0
if force {
argForce = 1
}
args := fmt.Sprintf("force=%d", argForce)
uri := fmt.Sprintf("/%s/images/%s?%s", APIVersion, name, args)
data, err := client.doRequest("DELETE", uri, nil, nil)
if err != nil {
return nil, err
@ -547,6 +758,31 @@ func (client *DockerClient) RemoveImage(name string) ([]*ImageDelete, error) {
return imageDelete, nil
}
func (client *DockerClient) SearchImages(query, registry string, auth *AuthConfig) ([]ImageSearch, error) {
term := query
if registry != "" {
term = registry + "/" + term
}
uri := fmt.Sprintf("/%s/images/search?term=%s", APIVersion, term)
headers := map[string]string{}
if auth != nil {
if encodedAuth, err := auth.encode(); err != nil {
return nil, err
} else {
headers["X-Registry-Auth"] = encodedAuth
}
}
data, err := client.doRequest("GET", uri, nil, headers)
if err != nil {
return nil, err
}
var imageSearches []ImageSearch
if err := json.Unmarshal(data, &imageSearches); err != nil {
return nil, err
}
return imageSearches, nil
}
func (client *DockerClient) PauseContainer(id string) error {
uri := fmt.Sprintf("/%s/containers/%s/pause", APIVersion, id)
_, err := client.doRequest("POST", uri, nil, nil)
@ -564,30 +800,6 @@ func (client *DockerClient) UnpauseContainer(id string) error {
return nil
}
func (client *DockerClient) Exec(config *ExecConfig) (string, error) {
data, err := json.Marshal(config)
if err != nil {
return "", err
}
uri := fmt.Sprintf("/containers/%s/exec", config.Container)
resp, err := client.doRequest("POST", uri, data, nil)
if err != nil {
return "", err
}
var createExecResp struct {
Id string
}
if err = json.Unmarshal(resp, &createExecResp); err != nil {
return "", err
}
uri = fmt.Sprintf("/exec/%s/start", createExecResp.Id)
resp, err = client.doRequest("POST", uri, data, nil)
if err != nil {
return "", err
}
return createExecResp.Id, nil
}
func (client *DockerClient) RenameContainer(oldName string, newName string) error {
uri := fmt.Sprintf("/containers/%s/rename?name=%s", oldName, newName)
_, err := client.doRequest("POST", uri, nil, nil)
@ -615,3 +827,175 @@ func (client *DockerClient) ImportImage(source string, repository string, tag st
}
return client.doStreamRequest("POST", "/images/create?"+v.Encode(), in, nil)
}
func (client *DockerClient) BuildImage(image *BuildImage) (io.ReadCloser, error) {
v := url.Values{}
if image.DockerfileName != "" {
v.Set("dockerfile", image.DockerfileName)
}
if image.RepoName != "" {
v.Set("t", image.RepoName)
}
if image.RemoteURL != "" {
v.Set("remote", image.RemoteURL)
}
if image.NoCache {
v.Set("nocache", "1")
}
if image.Pull {
v.Set("pull", "1")
}
if image.Remove {
v.Set("rm", "1")
} else {
v.Set("rm", "0")
}
if image.ForceRemove {
v.Set("forcerm", "1")
}
if image.SuppressOutput {
v.Set("q", "1")
}
v.Set("memory", strconv.FormatInt(image.Memory, 10))
v.Set("memswap", strconv.FormatInt(image.MemorySwap, 10))
v.Set("cpushares", strconv.FormatInt(image.CpuShares, 10))
v.Set("cpuperiod", strconv.FormatInt(image.CpuPeriod, 10))
v.Set("cpuquota", strconv.FormatInt(image.CpuQuota, 10))
v.Set("cpusetcpus", image.CpuSetCpus)
v.Set("cpusetmems", image.CpuSetMems)
v.Set("cgroupparent", image.CgroupParent)
if image.BuildArgs != nil {
buildArgsJSON, err := json.Marshal(image.BuildArgs)
if err != nil {
return nil, err
}
v.Set("buildargs", string(buildArgsJSON))
}
headers := make(map[string]string)
if image.Config != nil {
encoded_config, err := image.Config.encode()
if err != nil {
return nil, err
}
headers["X-Registry-Config"] = encoded_config
}
if image.Context != nil {
headers["Content-Type"] = "application/tar"
}
uri := fmt.Sprintf("/%s/build?%s", APIVersion, v.Encode())
return client.doStreamRequest("POST", uri, image.Context, headers)
}
func (client *DockerClient) ListVolumes() ([]*Volume, error) {
uri := fmt.Sprintf("/%s/volumes", APIVersion)
data, err := client.doRequest("GET", uri, nil, nil)
if err != nil {
return nil, err
}
var volumesList VolumesListResponse
if err := json.Unmarshal(data, &volumesList); err != nil {
return nil, err
}
return volumesList.Volumes, nil
}
func (client *DockerClient) RemoveVolume(name string) error {
uri := fmt.Sprintf("/%s/volumes/%s", APIVersion, name)
_, err := client.doRequest("DELETE", uri, nil, nil)
return err
}
func (client *DockerClient) CreateVolume(request *VolumeCreateRequest) (*Volume, error) {
data, err := json.Marshal(request)
if err != nil {
return nil, err
}
uri := fmt.Sprintf("/%s/volumes/create", APIVersion)
data, err = client.doRequest("POST", uri, data, nil)
if err != nil {
return nil, err
}
volume := &Volume{}
err = json.Unmarshal(data, volume)
return volume, err
}
func (client *DockerClient) ListNetworks(filters string) ([]*NetworkResource, error) {
uri := fmt.Sprintf("/%s/networks", APIVersion)
if filters != "" {
uri += "&filters=" + filters
}
data, err := client.doRequest("GET", uri, nil, nil)
if err != nil {
return nil, err
}
ret := []*NetworkResource{}
err = json.Unmarshal(data, &ret)
if err != nil {
return nil, err
}
return ret, nil
}
func (client *DockerClient) InspectNetwork(id string) (*NetworkResource, error) {
uri := fmt.Sprintf("/%s/networks/%s", APIVersion, id)
data, err := client.doRequest("GET", uri, nil, nil)
if err != nil {
return nil, err
}
ret := &NetworkResource{}
err = json.Unmarshal(data, ret)
if err != nil {
return nil, err
}
return ret, nil
}
func (client *DockerClient) CreateNetwork(config *NetworkCreate) (*NetworkCreateResponse, error) {
data, err := json.Marshal(config)
if err != nil {
return nil, err
}
uri := fmt.Sprintf("/%s/networks/create", APIVersion)
data, err = client.doRequest("POST", uri, data, nil)
if err != nil {
return nil, err
}
ret := &NetworkCreateResponse{}
err = json.Unmarshal(data, ret)
return ret, nil
}
func (client *DockerClient) ConnectNetwork(id, container string) error {
data, err := json.Marshal(NetworkConnect{Container: container})
if err != nil {
return err
}
uri := fmt.Sprintf("/%s/networks/%s/connect", APIVersion, id)
_, err = client.doRequest("POST", uri, data, nil)
return err
}
func (client *DockerClient) DisconnectNetwork(id, container string, force bool) error {
data, err := json.Marshal(NetworkDisconnect{Container: container, Force: force})
if err != nil {
return err
}
uri := fmt.Sprintf("/%s/networks/%s/disconnect", APIVersion, id)
_, err = client.doRequest("POST", uri, data, nil)
return err
}
func (client *DockerClient) RemoveNetwork(id string) error {
uri := fmt.Sprintf("/%s/networks/%s", APIVersion, id)
_, err := client.doRequest("DELETE", uri, nil, nil)
return err
}

@ -1,219 +0,0 @@
package dockerclient
import (
"bytes"
"encoding/json"
"fmt"
"io"
"reflect"
"strings"
"testing"
"github.com/docker/docker/pkg/stdcopy"
)
func assertEqual(t *testing.T, a interface{}, b interface{}, message string) {
if a == b {
return
}
if len(message) == 0 {
message = fmt.Sprintf("%v != %v", a, b)
}
t.Fatal(message)
}
func testDockerClient(t *testing.T) *DockerClient {
client, err := NewDockerClient(testHTTPServer.URL, nil)
if err != nil {
t.Fatal("Cannot init the docker client")
}
return client
}
func TestInfo(t *testing.T) {
client := testDockerClient(t)
info, err := client.Info()
if err != nil {
t.Fatal("Cannot get server info")
}
assertEqual(t, info.Images, int64(1), "")
assertEqual(t, info.Containers, int64(2), "")
}
func TestKillContainer(t *testing.T) {
client := testDockerClient(t)
if err := client.KillContainer("23132acf2ac", "5"); err != nil {
t.Fatal("cannot kill container: %s", err)
}
}
func TestPullImage(t *testing.T) {
client := testDockerClient(t)
err := client.PullImage("busybox", nil)
if err != nil {
t.Fatal("unable to pull busybox")
}
err = client.PullImage("haproxy", nil)
if err != nil {
t.Fatal("unable to pull haproxy")
}
err = client.PullImage("wrongimg", nil)
if err == nil {
t.Fatal("should return error when it fails to pull wrongimg")
}
}
func TestListContainers(t *testing.T) {
client := testDockerClient(t)
containers, err := client.ListContainers(true, false, "")
if err != nil {
t.Fatal("cannot get containers: %s", err)
}
assertEqual(t, len(containers), 1, "")
cnt := containers[0]
assertEqual(t, cnt.SizeRw, int64(0), "")
}
func TestContainerChanges(t *testing.T) {
client := testDockerClient(t)
changes, err := client.ContainerChanges("foobar")
if err != nil {
t.Fatal("cannot get container changes: %s", err)
}
assertEqual(t, len(changes), 3, "unexpected number of changes")
c := changes[0]
assertEqual(t, c.Path, "/dev", "unexpected")
assertEqual(t, c.Kind, 0, "unexpected")
}
func TestListContainersWithSize(t *testing.T) {
client := testDockerClient(t)
containers, err := client.ListContainers(true, true, "")
if err != nil {
t.Fatal("cannot get containers: %s", err)
}
assertEqual(t, len(containers), 1, "")
cnt := containers[0]
assertEqual(t, cnt.SizeRw, int64(123), "")
}
func TestListContainersWithFilters(t *testing.T) {
client := testDockerClient(t)
containers, err := client.ListContainers(true, true, "{'id':['332375cfbc23edb921a21026314c3497674ba8bdcb2c85e0e65ebf2017f688ce']}")
if err != nil {
t.Fatal("cannot get containers: %s", err)
}
assertEqual(t, len(containers), 1, "")
containers, err = client.ListContainers(true, true, "{'id':['332375cfbc23edb921a21026314c3497674ba8bdcb2c85e0e65ebf2017f688cf']}")
if err != nil {
t.Fatal("cannot get containers: %s", err)
}
assertEqual(t, len(containers), 0, "")
}
func TestContainerLogs(t *testing.T) {
client := testDockerClient(t)
containerId := "foobar"
logOptions := &LogOptions{
Follow: true,
Stdout: true,
Stderr: true,
Timestamps: true,
Tail: 10,
}
logsReader, err := client.ContainerLogs(containerId, logOptions)
if err != nil {
t.Fatal("cannot read logs from server")
}
stdoutBuffer := new(bytes.Buffer)
stderrBuffer := new(bytes.Buffer)
if _, err = stdcopy.StdCopy(stdoutBuffer, stderrBuffer, logsReader); err != nil {
t.Fatal("cannot read logs from logs reader")
}
stdoutLogs := strings.TrimSpace(stdoutBuffer.String())
stderrLogs := strings.TrimSpace(stderrBuffer.String())
stdoutLogLines := strings.Split(stdoutLogs, "\n")
stderrLogLines := strings.Split(stderrLogs, "\n")
if len(stdoutLogLines) != 5 {
t.Fatalf("wrong number of stdout logs: len=%d", len(stdoutLogLines))
}
if len(stderrLogLines) != 5 {
t.Fatalf("wrong number of stderr logs: len=%d", len(stdoutLogLines))
}
for i, line := range stdoutLogLines {
expectedSuffix := fmt.Sprintf("Z line %d", 41+2*i)
if !strings.HasSuffix(line, expectedSuffix) {
t.Fatalf("expected stdout log line \"%s\" to end with \"%s\"", line, expectedSuffix)
}
}
for i, line := range stderrLogLines {
expectedSuffix := fmt.Sprintf("Z line %d", 40+2*i)
if !strings.HasSuffix(line, expectedSuffix) {
t.Fatalf("expected stderr log line \"%s\" to end with \"%s\"", line, expectedSuffix)
}
}
}
func TestMonitorEvents(t *testing.T) {
client := testDockerClient(t)
decoder := json.NewDecoder(bytes.NewBufferString(eventsResp))
var expectedEvents []Event
for {
var event Event
if err := decoder.Decode(&event); err != nil {
if err == io.EOF {
break
} else {
t.Fatalf("cannot parse expected resp: %s", err.Error())
}
} else {
expectedEvents = append(expectedEvents, event)
}
}
// test passing stop chan
stopChan := make(chan struct{})
eventInfoChan, err := client.MonitorEvents(nil, stopChan)
if err != nil {
t.Fatalf("cannot get events from server: %s", err.Error())
}
eventInfo := <-eventInfoChan
if eventInfo.Error != nil || eventInfo.Event != expectedEvents[0] {
t.Fatalf("got:\n%#v\nexpected:\n%#v", eventInfo, expectedEvents[0])
}
close(stopChan)
for i := 0; i < 3; i++ {
_, ok := <-eventInfoChan
if i == 2 && ok {
t.Fatalf("read more than 2 events successfully after closing stopChan")
}
}
// test when you don't pass stop chan
eventInfoChan, err = client.MonitorEvents(nil, nil)
if err != nil {
t.Fatalf("cannot get events from server: %s", err.Error())
}
for i, expectedEvent := range expectedEvents {
t.Logf("on iter %d\n", i)
eventInfo := <-eventInfoChan
if eventInfo.Error != nil || eventInfo.Event != expectedEvent {
t.Fatalf("index %d, got:\n%#v\nexpected:\n%#v", i, eventInfo, expectedEvent)
}
t.Logf("done with iter %d\n", i)
}
}
func TestDockerClientInterface(t *testing.T) {
iface := reflect.TypeOf((*Client)(nil)).Elem()
test := testDockerClient(t)
if !reflect.TypeOf(test).Implements(iface) {
t.Fatalf("DockerClient does not implement the Client interface")
}
}

@ -1,235 +0,0 @@
package dockerclient
import (
"encoding/json"
"fmt"
"io"
"log"
"net/http"
"net/http/httptest"
"strconv"
"time"
"github.com/docker/docker/pkg/ioutils"
"github.com/docker/docker/pkg/jsonlog"
"github.com/docker/docker/pkg/stdcopy"
"github.com/docker/docker/pkg/timeutils"
"github.com/gorilla/mux"
)
var (
testHTTPServer *httptest.Server
)
func init() {
r := mux.NewRouter()
baseURL := "/" + APIVersion
r.HandleFunc(baseURL+"/info", handlerGetInfo).Methods("GET")
r.HandleFunc(baseURL+"/containers/json", handlerGetContainers).Methods("GET")
r.HandleFunc(baseURL+"/containers/{id}/logs", handleContainerLogs).Methods("GET")
r.HandleFunc(baseURL+"/containers/{id}/changes", handleContainerChanges).Methods("GET")
r.HandleFunc(baseURL+"/containers/{id}/kill", handleContainerKill).Methods("POST")
r.HandleFunc(baseURL+"/images/create", handleImagePull).Methods("POST")
r.HandleFunc(baseURL+"/events", handleEvents).Methods("GET")
testHTTPServer = httptest.NewServer(handlerAccessLog(r))
}
func handlerAccessLog(handler http.Handler) http.Handler {
logHandler := func(w http.ResponseWriter, r *http.Request) {
log.Printf("%s \"%s %s\"", r.RemoteAddr, r.Method, r.URL)
handler.ServeHTTP(w, r)
}
return http.HandlerFunc(logHandler)
}
func handleContainerKill(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "{%q:%q", "Id", "421373210afd132")
}
func handleImagePull(w http.ResponseWriter, r *http.Request) {
imageName := r.URL.Query()["fromImage"][0]
responses := []map[string]interface{}{{
"status": fmt.Sprintf("Pulling repository mydockerregistry/%s", imageName),
}}
switch imageName {
case "busybox":
responses = append(responses, map[string]interface{}{
"status": "Status: Image is up to date for mydockerregistry/busybox",
})
case "haproxy":
fmt.Fprintf(w, haproxyPullOutput)
return
default:
errorMsg := fmt.Sprintf("Error: image %s not found", imageName)
responses = append(responses, map[string]interface{}{
"errorDetail": map[string]interface{}{
"message": errorMsg,
},
"error": errorMsg,
})
}
for _, response := range responses {
json.NewEncoder(w).Encode(response)
}
}
func handleContainerLogs(w http.ResponseWriter, r *http.Request) {
var outStream, errStream io.Writer
outStream = ioutils.NewWriteFlusher(w)
// not sure how to test follow
if err := r.ParseForm(); err != nil {
http.Error(w, err.Error(), 500)
}
stdout, stderr := getBoolValue(r.Form.Get("stdout")), getBoolValue(r.Form.Get("stderr"))
if stderr {
errStream = stdcopy.NewStdWriter(outStream, stdcopy.Stderr)
}
if stdout {
outStream = stdcopy.NewStdWriter(outStream, stdcopy.Stdout)
}
var i int
if tail, err := strconv.Atoi(r.Form.Get("tail")); err == nil && tail > 0 {
i = 50 - tail
if i < 0 {
i = 0
}
}
for ; i < 50; i++ {
line := fmt.Sprintf("line %d", i)
if getBoolValue(r.Form.Get("timestamps")) {
l := &jsonlog.JSONLog{Log: line, Created: time.Now()}
line = fmt.Sprintf("%s %s", l.Created.Format(timeutils.RFC3339NanoFixed), line)
}
if i%2 == 0 && stderr {
fmt.Fprintln(errStream, line)
} else if i%2 == 1 && stdout {
fmt.Fprintln(outStream, line)
}
}
}
func handleContainerChanges(w http.ResponseWriter, r *http.Request) {
writeHeaders(w, 200, "changes")
body := `[
{
"Path": "/dev",
"Kind": 0
},
{
"Path": "/dev/kmsg",
"Kind": 1
},
{
"Path": "/test",
"Kind": 1
}
]`
w.Write([]byte(body))
}
func getBoolValue(boolString string) bool {
switch boolString {
case "1":
return true
case "True":
return true
case "true":
return true
default:
return false
}
}
func writeHeaders(w http.ResponseWriter, code int, jobName string) {
h := w.Header()
h.Add("Content-Type", "application/json")
if jobName != "" {
h.Add("Job-Name", jobName)
}
w.WriteHeader(code)
}
func handlerGetInfo(w http.ResponseWriter, r *http.Request) {
writeHeaders(w, 200, "info")
body := `{
"Containers": 2,
"Debug": 1,
"Driver": "aufs",
"DriverStatus": [["Root Dir", "/mnt/sda1/var/lib/docker/aufs"],
["Dirs", "0"]],
"ExecutionDriver": "native-0.2",
"IPv4Forwarding": 1,
"Images": 1,
"IndexServerAddress": "https://index.docker.io/v1/",
"InitPath": "/usr/local/bin/docker",
"InitSha1": "",
"KernelVersion": "3.16.4-tinycore64",
"MemoryLimit": 1,
"NEventsListener": 0,
"NFd": 10,
"NGoroutines": 11,
"OperatingSystem": "Boot2Docker 1.3.1 (TCL 5.4); master : a083df4 - Thu Jan 01 00:00:00 UTC 1970",
"SwapLimit": 1}`
w.Write([]byte(body))
}
func handlerGetContainers(w http.ResponseWriter, r *http.Request) {
writeHeaders(w, 200, "containers")
body := `[
{
"Status": "Up 39 seconds",
"Ports": [
{
"Type": "tcp",
"PublicPort": 49163,
"PrivatePort": 8080,
"IP": "0.0.0.0"
}
],
"Names": [
"/trusting_heisenberg"
],
"Image": "foo:latest",
"Id": "332375cfbc23edb921a21026314c3497674ba8bdcb2c85e0e65ebf2017f688ce",
"Created": 1415720105,
"Command": "/bin/go-run"
}
]`
if v, ok := r.URL.Query()["size"]; ok {
if v[0] == "1" {
body = `[
{
"Status": "Up 39 seconds",
"Ports": [
{
"Type": "tcp",
"PublicPort": 49163,
"PrivatePort": 8080,
"IP": "0.0.0.0"
}
],
"Names": [
"/trusting_heisenberg"
],
"Image": "foo:latest",
"Id": "332375cfbc23edb921a21026314c3497674ba8bdcb2c85e0e65ebf2017f688ce",
"Created": 1415720105,
"SizeRootFs": 12345,
"SizeRW": 123,
"Command": "/bin/go-run"
}
]`
}
}
if v, ok := r.URL.Query()["filters"]; ok {
if v[0] != "{'id':['332375cfbc23edb921a21026314c3497674ba8bdcb2c85e0e65ebf2017f688ce']}" {
body = "[]"
}
}
w.Write([]byte(body))
}
func handleEvents(w http.ResponseWriter, r *http.Request) {
w.Write([]byte(eventsResp))
}

@ -10,4 +10,6 @@ var haproxyPullOutput = `{"status":"The image you are pulling has been verified"
{"status":"Already exists","progressDetail":{},"id":"511136ea3c5a"}{"status":"Already exists","progressDetail":{},"id":"1aeada447715"}{"status":"Already exists","progressDetail":{},"id":"479215127fa7"}{"status":"Already exists","progressDetail":{},"id":"66301eb54a7d"}{"status":"Already exists","progressDetail":{},"id":"e3990b07573f"}{"status":"Already exists","progressDetail":{},"id":"ecb4b23ca7ce"}{"status":"Already exists","progressDetail":{},"id":"f453e940c177"}{"status":"Already exists","progressDetail":{},"id":"fc5ea1bc05ab"}{"status":"Already exists","progressDetail":{},"id":"380557f8f7b3"}{"status":"Status: Image is up to date for haproxy"}
`
var statsResp = `{"read":"2015-02-02T17:06:08.187833376-05:00","network":{"rx_bytes":99988,"rx_packets":928,"rx_errors":0,"rx_dropped":0,"tx_bytes":1786548,"tx_packets":877,"tx_errors":0,"tx_dropped":0},"cpu_stats":{"cpu_usage":{"total_usage":170018598,"percpu_usage":[170018598],"usage_in_kernelmode":30000000,"usage_in_usermode":70000000},"system_cpu_usage":9020930000000,"throttling_data":{"periods":0,"throttled_periods":0,"throttled_time":0}},"memory_stats":{"usage":18022400,"max_usage":20541440,"stats":{"active_anon":6213632,"active_file":176128,"cache":11808768,"hierarchical_memory_limit":9223372036854775807,"hierarchical_memsw_limit":9223372036854775807,"inactive_anon":0,"inactive_file":11632640,"mapped_file":5165056,"pgfault":2535,"pgmajfault":13,"pgpgin":4293,"pgpgout":1937,"rss":6213632,"rss_huge":2097152,"swap":0,"total_active_anon":6213632,"total_active_file":176128,"total_cache":11808768,"total_inactive_anon":0,"total_inactive_file":11632640,"total_mapped_file":5165056,"total_pgfault":2535,"total_pgmajfault":13,"total_pgpgin":4293,"total_pgpgout":1937,"total_rss":6213632,"total_rss_huge":2097152,"total_swap":0,"total_unevictable":0,"unevictable":0},"failcnt":0,"limit":1041051648},"blkio_stats":{"io_service_bytes_recursive":[{"major":7,"minor":0,"op":"Read","value":28672},{"major":7,"minor":0,"op":"Write","value":0},{"major":7,"minor":0,"op":"Sync","value":0},{"major":7,"minor":0,"op":"Async","value":28672},{"major":7,"minor":0,"op":"Total","value":28672},{"major":253,"minor":0,"op":"Read","value":28672},{"major":253,"minor":0,"op":"Write","value":0},{"major":253,"minor":0,"op":"Sync","value":0},{"major":253,"minor":0,"op":"Async","value":28672},{"major":253,"minor":0,"op":"Total","value":28672},{"major":253,"minor":7,"op":"Read","value":11718656},{"major":253,"minor":7,"op":"Write","value":0},{"major":253,"minor":7,"op":"Sync","value":0},{"major":253,"minor":7,"op":"Async","value":11718656},{"major":253,"minor":7,"op":"Total","value":11718656},{"major":202,"minor":0,"op":"Read","value":0},{"major":202,"minor":0,"op":"Write","value":0},{"major":202,"minor":0,"op":"Sync","value":0},{"major":202,"minor":0,"op":"Async","value":0},{"major":202,"minor":0,"op":"Total","value":0}],"io_serviced_recursive":[{"major":7,"minor":0,"op":"Read","value":7},{"major":7,"minor":0,"op":"Write","value":0},{"major":7,"minor":0,"op":"Sync","value":0},{"major":7,"minor":0,"op":"Async","value":7},{"major":7,"minor":0,"op":"Total","value":7},{"major":253,"minor":0,"op":"Read","value":7},{"major":253,"minor":0,"op":"Write","value":0},{"major":253,"minor":0,"op":"Sync","value":0},{"major":253,"minor":0,"op":"Async","value":7},{"major":253,"minor":0,"op":"Total","value":7},{"major":253,"minor":7,"op":"Read","value":312},{"major":253,"minor":7,"op":"Write","value":0},{"major":253,"minor":7,"op":"Sync","value":0},{"major":253,"minor":7,"op":"Async","value":312},{"major":253,"minor":7,"op":"Total","value":312},{"major":202,"minor":0,"op":"Read","value":0},{"major":202,"minor":0,"op":"Write","value":0},{"major":202,"minor":0,"op":"Sync","value":0},{"major":202,"minor":0,"op":"Async","value":0},{"major":202,"minor":0,"op":"Total","value":0}],"io_queue_recursive":[],"io_service_time_recursive":[],"io_wait_time_recursive":[],"io_merged_recursive":[],"io_time_recursive":[],"sectors_recursive":[]}}`
var eventsResp = `{"status":"pull","id":"nginx:latest","time":1428620433}{"status":"create","id":"9b818c3b8291708fdcecd7c4086b75c222cb503be10a93d9c11040886032a48b","from":"nginx:latest","time":1428620433}{"status":"start","id":"9b818c3b8291708fdcecd7c4086b75c222cb503be10a93d9c11040886032a48b","from":"nginx:latest","time":1428620433}{"status":"die","id":"9b818c3b8291708fdcecd7c4086b75c222cb503be10a93d9c11040886032a48b","from":"nginx:latest","time":1428620442}{"status":"create","id":"352d0b412aae5a5d2b14ae9d88be59dc276602d9edb9dcc33e138e475b3e4720","from":"52.11.96.81/foobar/ubuntu:latest","time":1428620444}{"status":"start","id":"352d0b412aae5a5d2b14ae9d88be59dc276602d9edb9dcc33e138e475b3e4720","from":"52.11.96.81/foobar/ubuntu:latest","time":1428620444}{"status":"die","id":"352d0b412aae5a5d2b14ae9d88be59dc276602d9edb9dcc33e138e475b3e4720","from":"52.11.96.81/foobar/ubuntu:latest","time":1428620444}{"status":"pull","id":"debian:latest","time":1428620453}{"status":"create","id":"668887b5729946546b3072655dc6da08f0e3210111b68b704eb842adfce53f6c","from":"debian:latest","time":1428620453}{"status":"start","id":"668887b5729946546b3072655dc6da08f0e3210111b68b704eb842adfce53f6c","from":"debian:latest","time":1428620453}{"status":"die","id":"668887b5729946546b3072655dc6da08f0e3210111b68b704eb842adfce53f6c","from":"debian:latest","time":1428620453}{"status":"create","id":"eb4a19ec21ab29bbbffbf3ee2e2df9d99cb749780e1eff06a591cee5ba505180","from":"nginx:latest","time":1428620458}{"status":"start","id":"eb4a19ec21ab29bbbffbf3ee2e2df9d99cb749780e1eff06a591cee5ba505180","from":"nginx:latest","time":1428620458}{"status":"pause","id":"eb4a19ec21ab29bbbffbf3ee2e2df9d99cb749780e1eff06a591cee5ba505180","from":"nginx:latest","time":1428620462}{"status":"unpause","id":"eb4a19ec21ab29bbbffbf3ee2e2df9d99cb749780e1eff06a591cee5ba505180","from":"nginx:latest","time":1428620466}{"status":"die","id":"eb4a19ec21ab29bbbffbf3ee2e2df9d99cb749780e1eff06a591cee5ba505180","from":"nginx:latest","time":1428620469}`

@ -1,39 +0,0 @@
package main
import (
"github.com/samalba/dockerclient"
"log"
"os"
"os/signal"
"syscall"
)
func eventCallback(e *dockerclient.Event, ec chan error, args ...interface{}) {
log.Println(e)
}
var (
client *dockerclient.DockerClient
)
func waitForInterrupt() {
sigChan := make(chan os.Signal, 1)
signal.Notify(sigChan, os.Interrupt, syscall.SIGTERM, syscall.SIGQUIT)
for _ = range sigChan {
client.StopAllMonitorEvents()
os.Exit(0)
}
}
func main() {
docker, err := dockerclient.NewDockerClient(os.Getenv("DOCKER_HOST"), nil)
if err != nil {
log.Fatal(err)
}
client = docker
client.StartMonitorEvents(eventCallback, nil)
waitForInterrupt()
}

@ -1,43 +0,0 @@
package main
import (
"github.com/samalba/dockerclient"
"log"
"os"
"os/signal"
"syscall"
)
func statCallback(id string, stat *dockerclient.Stats, ec chan error, args ...interface{}) {
log.Println(stat)
}
func waitForInterrupt() {
sigChan := make(chan os.Signal, 1)
signal.Notify(sigChan, os.Interrupt, syscall.SIGTERM, syscall.SIGQUIT)
for _ = range sigChan {
os.Exit(0)
}
}
func main() {
docker, err := dockerclient.NewDockerClient(os.Getenv("DOCKER_HOST"), nil)
if err != nil {
log.Fatal(err)
}
containerConfig := &dockerclient.ContainerConfig{Image: "busybox", Cmd: []string{"sh"}}
containerId, err := docker.CreateContainer(containerConfig, "")
if err != nil {
log.Fatal(err)
}
// Start the container
err = docker.StartContainer(containerId, nil)
if err != nil {
log.Fatal(err)
}
docker.StartMonitorStats(containerId, statCallback, nil)
waitForInterrupt()
}

@ -13,14 +13,24 @@ type Client interface {
ListContainers(all, size bool, filters string) ([]Container, error)
InspectContainer(id string) (*ContainerInfo, error)
InspectImage(id string) (*ImageInfo, error)
CreateContainer(config *ContainerConfig, name string) (string, error)
CreateContainer(config *ContainerConfig, name string, authConfig *AuthConfig) (string, error)
ContainerLogs(id string, options *LogOptions) (io.ReadCloser, error)
ContainerChanges(id string) ([]*ContainerChanges, error)
Exec(config *ExecConfig) (string, error)
// ContainerStats takes a container ID and an optional stop channel and
// returns a StatsOrError channel. If an error is ever sent, then no
// more stats will be sent on that channel. If a stop channel is
// provided, events will stop being monitored after the stop channel is
// closed.
ContainerStats(id string, stopChan <-chan struct{}) (<-chan StatsOrError, error)
ExecCreate(config *ExecConfig) (string, error)
ExecStart(id string, config *ExecConfig) error
ExecResize(id string, width, height int) error
StartContainer(id string, config *HostConfig) error
AttachContainer(id string, options *AttachOptions) (io.ReadCloser, error)
StopContainer(id string, timeout int) error
RestartContainer(id string, timeout int) error
KillContainer(id, signal string) error
Wait(id string) <-chan WaitResult
// MonitorEvents takes options and an optional stop channel, and returns
// an EventOrError channel. If an error is ever sent, then no more
// events will be sent. If a stop channel is provided, events will stop
@ -33,12 +43,24 @@ type Client interface {
TagImage(nameOrID string, repo string, tag string, force bool) error
Version() (*Version, error)
PullImage(name string, auth *AuthConfig) error
PushImage(name string, tag string, auth *AuthConfig) error
LoadImage(reader io.Reader) error
RemoveContainer(id string, force, volumes bool) error
ListImages() ([]*Image, error)
RemoveImage(name string) ([]*ImageDelete, error)
ListImages(all bool) ([]*Image, error)
RemoveImage(name string, force bool) ([]*ImageDelete, error)
SearchImages(query, registry string, auth *AuthConfig) ([]ImageSearch, error)
PauseContainer(name string) error
UnpauseContainer(name string) error
RenameContainer(oldName string, newName string) error
ImportImage(source string, repository string, tag string, tar io.Reader) (io.ReadCloser, error)
BuildImage(image *BuildImage) (io.ReadCloser, error)
ListVolumes() ([]*Volume, error)
RemoveVolume(name string) error
CreateVolume(request *VolumeCreateRequest) (*Volume, error)
ListNetworks(filters string) ([]*NetworkResource, error)
InspectNetwork(id string) (*NetworkResource, error)
CreateNetwork(config *NetworkCreate) (*NetworkCreateResponse, error)
ConnectNetwork(id, container string) error
DisconnectNetwork(id, container string, force bool) error
RemoveNetwork(id string) error
}

@ -35,8 +35,8 @@ func (client *MockClient) InspectImage(id string) (*dockerclient.ImageInfo, erro
return args.Get(0).(*dockerclient.ImageInfo), args.Error(1)
}
func (client *MockClient) CreateContainer(config *dockerclient.ContainerConfig, name string) (string, error) {
args := client.Mock.Called(config, name)
func (client *MockClient) CreateContainer(config *dockerclient.ContainerConfig, name string, authConfig *dockerclient.AuthConfig) (string, error) {
args := client.Mock.Called(config, name, authConfig)
return args.String(0), args.Error(1)
}
@ -50,6 +50,16 @@ func (client *MockClient) ContainerChanges(id string) ([]*dockerclient.Container
return args.Get(0).([]*dockerclient.ContainerChanges), args.Error(1)
}
func (client *MockClient) ContainerStats(id string, stopChan <-chan struct{}) (<-chan dockerclient.StatsOrError, error) {
args := client.Mock.Called(id, stopChan)
return args.Get(0).(<-chan dockerclient.StatsOrError), args.Error(1)
}
func (client *MockClient) AttachContainer(id string, options *dockerclient.AttachOptions) (io.ReadCloser, error) {
args := client.Mock.Called(id, options)
return args.Get(0).(io.ReadCloser), args.Error(1)
}
func (client *MockClient) StartContainer(id string, config *dockerclient.HostConfig) error {
args := client.Mock.Called(id, config)
return args.Error(0)
@ -70,6 +80,11 @@ func (client *MockClient) KillContainer(id, signal string) error {
return args.Error(0)
}
func (client *MockClient) Wait(id string) <-chan dockerclient.WaitResult {
args := client.Mock.Called(id)
return args.Get(0).(<-chan dockerclient.WaitResult)
}
func (client *MockClient) MonitorEvents(options *dockerclient.MonitorEventsOptions, stopChan <-chan struct{}) (<-chan dockerclient.EventOrError, error) {
args := client.Mock.Called(options, stopChan)
return args.Get(0).(<-chan dockerclient.EventOrError), args.Error(1)
@ -106,6 +121,11 @@ func (client *MockClient) PullImage(name string, auth *dockerclient.AuthConfig)
return args.Error(0)
}
func (client *MockClient) PushImage(name string, tag string, auth *dockerclient.AuthConfig) error {
args := client.Mock.Called(name, tag, auth)
return args.Error(0)
}
func (client *MockClient) LoadImage(reader io.Reader) error {
args := client.Mock.Called(reader)
return args.Error(0)
@ -116,16 +136,21 @@ func (client *MockClient) RemoveContainer(id string, force, volumes bool) error
return args.Error(0)
}
func (client *MockClient) ListImages() ([]*dockerclient.Image, error) {
args := client.Mock.Called()
func (client *MockClient) ListImages(all bool) ([]*dockerclient.Image, error) {
args := client.Mock.Called(all)
return args.Get(0).([]*dockerclient.Image), args.Error(1)
}
func (client *MockClient) RemoveImage(name string) ([]*dockerclient.ImageDelete, error) {
args := client.Mock.Called(name)
func (client *MockClient) RemoveImage(name string, force bool) ([]*dockerclient.ImageDelete, error) {
args := client.Mock.Called(name, force)
return args.Get(0).([]*dockerclient.ImageDelete), args.Error(1)
}
func (client *MockClient) SearchImages(query, registry string, authConfig *dockerclient.AuthConfig) ([]dockerclient.ImageSearch, error) {
args := client.Mock.Called(query, registry, authConfig)
return args.Get(0).([]dockerclient.ImageSearch), args.Error(1)
}
func (client *MockClient) PauseContainer(name string) error {
args := client.Mock.Called(name)
return args.Error(0)
@ -136,11 +161,21 @@ func (client *MockClient) UnpauseContainer(name string) error {
return args.Error(0)
}
func (client *MockClient) Exec(config *dockerclient.ExecConfig) (string, error) {
func (client *MockClient) ExecCreate(config *dockerclient.ExecConfig) (string, error) {
args := client.Mock.Called(config)
return args.String(0), args.Error(1)
}
func (client *MockClient) ExecStart(id string, config *dockerclient.ExecConfig) error {
args := client.Mock.Called(id, config)
return args.Error(0)
}
func (client *MockClient) ExecResize(id string, width, height int) error {
args := client.Mock.Called(id, width, height)
return args.Error(0)
}
func (client *MockClient) RenameContainer(oldName string, newName string) error {
args := client.Mock.Called(oldName, newName)
return args.Error(0)
@ -150,3 +185,53 @@ func (client *MockClient) ImportImage(source string, repository string, tag stri
args := client.Mock.Called(source, repository, tag, tar)
return args.Get(0).(io.ReadCloser), args.Error(1)
}
func (client *MockClient) BuildImage(image *dockerclient.BuildImage) (io.ReadCloser, error) {
args := client.Mock.Called(image)
return args.Get(0).(io.ReadCloser), args.Error(1)
}
func (client *MockClient) ListVolumes() ([]*dockerclient.Volume, error) {
args := client.Mock.Called()
return args.Get(0).([]*dockerclient.Volume), args.Error(1)
}
func (client *MockClient) RemoveVolume(name string) error {
args := client.Mock.Called(name)
return args.Error(0)
}
func (client *MockClient) CreateVolume(request *dockerclient.VolumeCreateRequest) (*dockerclient.Volume, error) {
args := client.Mock.Called(request)
return args.Get(0).(*dockerclient.Volume), args.Error(1)
}
func (client *MockClient) ListNetworks(filters string) ([]*dockerclient.NetworkResource, error) {
args := client.Mock.Called(filters)
return args.Get(0).([]*dockerclient.NetworkResource), args.Error(1)
}
func (client *MockClient) InspectNetwork(id string) (*dockerclient.NetworkResource, error) {
args := client.Mock.Called(id)
return args.Get(0).(*dockerclient.NetworkResource), args.Error(1)
}
func (client *MockClient) CreateNetwork(config *dockerclient.NetworkCreate) (*dockerclient.NetworkCreateResponse, error) {
args := client.Mock.Called(config)
return args.Get(0).(*dockerclient.NetworkCreateResponse), args.Error(1)
}
func (client *MockClient) ConnectNetwork(id, container string) error {
args := client.Mock.Called(id, container)
return args.Error(0)
}
func (client *MockClient) DisconnectNetwork(id, container string, force bool) error {
args := client.Mock.Called(id, container, force)
return args.Error(0)
}
func (client *MockClient) RemoveNetwork(id string) error {
args := client.Mock.Called(id)
return args.Error(0)
}

@ -0,0 +1,38 @@
package dockerclient
import (
"crypto/tls"
"crypto/x509"
"errors"
"io/ioutil"
"path/filepath"
)
// TLSConfigFromCertPath returns a configuration based on PEM files in the directory
//
// path is usually what is set by the environment variable `DOCKER_CERT_PATH`,
// or `$HOME/.docker`.
func TLSConfigFromCertPath(path string) (*tls.Config, error) {
cert, err := ioutil.ReadFile(filepath.Join(path, "cert.pem"))
if err != nil {
return nil, err
}
key, err := ioutil.ReadFile(filepath.Join(path, "key.pem"))
if err != nil {
return nil, err
}
ca, err := ioutil.ReadFile(filepath.Join(path, "ca.pem"))
if err != nil {
return nil, err
}
tlsCert, err := tls.X509KeyPair(cert, key)
if err != nil {
return nil, err
}
tlsConfig := &tls.Config{Certificates: []tls.Certificate{tlsCert}}
tlsConfig.RootCAs = x509.NewCertPool()
if !tlsConfig.RootCAs.AppendCertsFromPEM(ca) {
return nil, errors.New("Could not add RootCA pem")
}
return tlsConfig, nil
}

@ -2,9 +2,10 @@ package dockerclient
import (
"fmt"
"io"
"time"
"github.com/docker/docker/pkg/units"
"github.com/docker/go-units"
)
type ContainerConfig struct {
@ -22,13 +23,16 @@ type ContainerConfig struct {
Cmd []string
Image string
Volumes map[string]struct{}
VolumeDriver string
WorkingDir string
Entrypoint []string
NetworkDisabled bool
MacAddress string
OnBuild []string
Labels map[string]string
StopSignal string
// FIXME: VolumeDriver have been removed since docker 1.9
VolumeDriver string
// FIXME: The following fields have been removed since API v1.18
Memory int64
@ -39,42 +43,70 @@ type ContainerConfig struct {
// This is used only by the create command
HostConfig HostConfig
// Network configuration support
NetworkingConfig NetworkingConfig
}
type HostConfig struct {
Binds []string
ContainerIDFile string
LxcConf []map[string]string
Memory int64
MemorySwap int64
CpuShares int64
CpuPeriod int64
CpusetCpus string
CpusetMems string
CpuQuota int64
BlkioWeight int64
OomKillDisable bool
Privileged bool
PortBindings map[string][]PortBinding
Links []string
PublishAllPorts bool
Dns []string
DnsSearch []string
ExtraHosts []string
VolumesFrom []string
Devices []DeviceMapping
NetworkMode string
IpcMode string
PidMode string
UTSMode string
CapAdd []string
CapDrop []string
RestartPolicy RestartPolicy
SecurityOpt []string
ReadonlyRootfs bool
Ulimits []Ulimit
LogConfig LogConfig
CgroupParent string
Binds []string
ContainerIDFile string
LxcConf []map[string]string
Memory int64
MemoryReservation int64
MemorySwap int64
KernelMemory int64
CpuShares int64
CpuPeriod int64
CpusetCpus string
CpusetMems string
CpuQuota int64
BlkioWeight int64
OomKillDisable bool
MemorySwappiness int64
Privileged bool
PortBindings map[string][]PortBinding
Links []string
PublishAllPorts bool
Dns []string
DNSOptions []string
DnsSearch []string
ExtraHosts []string
VolumesFrom []string
Devices []DeviceMapping
NetworkMode string
IpcMode string
PidMode string
UTSMode string
CapAdd []string
CapDrop []string
GroupAdd []string
RestartPolicy RestartPolicy
SecurityOpt []string
ReadonlyRootfs bool
Ulimits []Ulimit
LogConfig LogConfig
CgroupParent string
ConsoleSize [2]int
VolumeDriver string
OomScoreAdj int
Tmpfs map[string]string
ShmSize int64
BlkioWeightDevice []WeightDevice
BlkioDeviceReadBps []ThrottleDevice
BlkioDeviceWriteBps []ThrottleDevice
BlkioDeviceReadIOps []ThrottleDevice
BlkioDeviceWriteIOps []ThrottleDevice
}
type WeightDevice struct {
Path string
Weight uint16
}
type ThrottleDevice struct {
Path string
Rate uint64
}
type DeviceMapping struct {
@ -101,6 +133,14 @@ type LogOptions struct {
Tail int64
}
type AttachOptions struct {
Logs bool
Stream bool
Stdin bool
Stdout bool
Stderr bool
}
type MonitorEventsFilters struct {
Event string `json:",omitempty"`
Image string `json:",omitempty"`
@ -198,6 +238,14 @@ type ImageInfo struct {
VirtualSize int64
}
type ImageSearch struct {
Description string `json:"description,omitempty" yaml:"description,omitempty"`
IsOfficial bool `json:"is_official,omitempty" yaml:"is_official,omitempty"`
IsAutomated bool `json:"is_automated,omitempty" yaml:"is_automated,omitempty"`
Name string `json:"name,omitempty" yaml:"name,omitempty"`
StarCount int `json:"star_count,omitempty" yaml:"star_count,omitempty"`
}
type ContainerInfo struct {
Id string
Created string
@ -214,6 +262,7 @@ type ContainerInfo struct {
Gateway string
Bridge string
Ports map[string][]PortBinding
Networks map[string]*EndpointSettings
}
SysInitPath string
ResolvConfPath string
@ -233,24 +282,62 @@ type Port struct {
Type string
}
// EndpointSettings stores the network endpoint details
type EndpointSettings struct {
// Configurations
IPAMConfig *EndpointIPAMConfig
Links []string
Aliases []string
// Operational data
NetworkID string
EndpointID string
Gateway string
IPAddress string
IPPrefixLen int
IPv6Gateway string
GlobalIPv6Address string
GlobalIPv6PrefixLen int
MacAddress string
}
// NetworkingConfig represents the container's networking configuration for each of its interfaces
// Carries the networink configs specified in the `docker run` and `docker network connect` commands
type NetworkingConfig struct {
EndpointsConfig map[string]*EndpointSettings // Endpoint configs for each conencting network
}
type Container struct {
Id string
Names []string
Image string
Command string
Created int64
Status string
Ports []Port
SizeRw int64
SizeRootFs int64
Labels map[string]string
Id string
Names []string
Image string
Command string
Created int64
Status string
Ports []Port
SizeRw int64
SizeRootFs int64
Labels map[string]string
NetworkSettings struct {
Networks map[string]EndpointSettings
}
}
type Actor struct {
ID string
Attributes map[string]string
}
type Event struct {
Id string
Status string
From string
Time int64
Status string `json:"status,omitempty"`
ID string `json:"id,omitempty"`
From string `json:"from,omitempty"`
Type string
Action string
Actor Actor
Time int64 `json:"time,omitempty"`
TimeNano int64 `json:"timeNano,omitempty"`
}
type Version struct {
@ -271,7 +358,9 @@ type RespContainersCreate struct {
type Image struct {
Created int64
Id string
Labels map[string]string
ParentId string
RepoDigests []string
RepoTags []string
Size int64
VirtualSize int64
@ -318,11 +407,21 @@ type ImageDelete struct {
Untagged string
}
type StatsOrError struct {
Stats
Error error
}
type EventOrError struct {
Event
Error error
}
type WaitResult struct {
ExitCode int
Error error
}
type decodingResult struct {
result interface{}
err error
@ -338,6 +437,7 @@ type ThrottlingData struct {
ThrottledTime uint64 `json:"throttled_time"`
}
// All CPU stats are aggregated since container inception.
type CpuUsage struct {
// Total CPU time consumed.
// Units: nanoseconds.
@ -415,3 +515,110 @@ type LogConfig struct {
Type string `json:"type"`
Config map[string]string `json:"config"`
}
type BuildImage struct {
Config *ConfigFile
DockerfileName string
Context io.Reader
RemoteURL string
RepoName string
SuppressOutput bool
NoCache bool
Remove bool
ForceRemove bool
Pull bool
Memory int64
MemorySwap int64
CpuShares int64
CpuPeriod int64
CpuQuota int64
CpuSetCpus string
CpuSetMems string
CgroupParent string
BuildArgs map[string]string
}
type Volume struct {
Name string // Name is the name of the volume
Driver string // Driver is the Driver name used to create the volume
Mountpoint string // Mountpoint is the location on disk of the volume
}
type VolumesListResponse struct {
Volumes []*Volume // Volumes is the list of volumes being returned
}
type VolumeCreateRequest struct {
Name string // Name is the requested name of the volume
Driver string // Driver is the name of the driver that should be used to create the volume
DriverOpts map[string]string // DriverOpts holds the driver specific options to use for when creating the volume.
}
// IPAM represents IP Address Management
type IPAM struct {
Driver string
Options map[string]string //Per network IPAM driver options
Config []IPAMConfig
}
// IPAMConfig represents IPAM configurations
type IPAMConfig struct {
Subnet string `json:",omitempty"`
IPRange string `json:",omitempty"`
Gateway string `json:",omitempty"`
AuxAddress map[string]string `json:"AuxiliaryAddresses,omitempty"`
}
// EndpointIPAMConfig represents IPAM configurations for the endpoint
type EndpointIPAMConfig struct {
IPv4Address string `json:",omitempty"`
IPv6Address string `json:",omitempty"`
}
// NetworkResource is the body of the "get network" http response message
type NetworkResource struct {
Name string
ID string `json:"Id"`
Scope string
Driver string
IPAM IPAM
//Internal bool
Containers map[string]EndpointResource
Options map[string]string
}
// EndpointResource contains network resources allocated and used for a container in a network
type EndpointResource struct {
Name string
EndpointID string
MacAddress string
IPv4Address string
IPv6Address string
}
// NetworkCreate is the expected body of the "create network" http request message
type NetworkCreate struct {
Name string
CheckDuplicate bool
Driver string
IPAM IPAM
Internal bool
Options map[string]string
}
// NetworkCreateResponse is the response message sent by the server for network create call
type NetworkCreateResponse struct {
ID string `json:"Id"`
Warning string
}
// NetworkConnect represents the data to be used to connect a container to the network
type NetworkConnect struct {
Container string
}
// NetworkDisconnect represents the data to be used to disconnect a container from the network
type NetworkDisconnect struct {
Container string
Force bool
}

@ -8,7 +8,9 @@ import (
"time"
)
func newHTTPClient(u *url.URL, tlsConfig *tls.Config, timeout time.Duration) *http.Client {
type tcpFunc func(*net.TCPConn, time.Duration) error
func newHTTPClient(u *url.URL, tlsConfig *tls.Config, timeout time.Duration, setUserTimeout tcpFunc) *http.Client {
httpTransport := &http.Transport{
TLSClientConfig: tlsConfig,
}
@ -16,7 +18,13 @@ func newHTTPClient(u *url.URL, tlsConfig *tls.Config, timeout time.Duration) *ht
switch u.Scheme {
default:
httpTransport.Dial = func(proto, addr string) (net.Conn, error) {
return net.DialTimeout(proto, addr, timeout)
conn, err := net.DialTimeout(proto, addr, timeout)
if tcpConn, ok := conn.(*net.TCPConn); ok && setUserTimeout != nil {
// Sender can break TCP connection if the remote side doesn't
// acknowledge packets within timeout
setUserTimeout(tcpConn, timeout)
}
return conn, err
}
case "unix":
socketPath := u.Path

@ -1,14 +0,0 @@
case []{1}:
a := object.([]{1})
if isSet {
a[index] = value.({1})
} else {
if index >= len(a) {
if panics {
panic(fmt.Sprintf("objx: Index %d is out of range because the []{1} only contains %d items.", index, len(a)))
}
return nil
} else {
return a[index]
}
}

@ -1,86 +0,0 @@
<html>
<head>
<title>
Codegen
</title>
<style>
body {
width: 800px;
margin: auto;
}
textarea {
width: 100%;
min-height: 100px;
font-family: Courier;
}
</style>
</head>
<body>
<h2>
Template
</h2>
<p>
Use <code>{x}</code> as a placeholder for each argument.
</p>
<textarea id="template"></textarea>
<h2>
Arguments (comma separated)
</h2>
<p>
One block per line
</p>
<textarea id="args"></textarea>
<h2>
Output
</h2>
<input id="go" type="button" value="Generate code" />
<textarea id="output"></textarea>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js"></script>
<script>
$(function(){
$("#go").click(function(){
var output = ""
var template = $("#template").val()
var args = $("#args").val()
// collect the args
var argLines = args.split("\n")
for (var line in argLines) {
var argLine = argLines[line];
var thisTemp = template
// get individual args
var args = argLine.split(",")
for (var argI in args) {
var argText = args[argI];
var argPlaceholder = "{" + argI + "}";
while (thisTemp.indexOf(argPlaceholder) > -1) {
thisTemp = thisTemp.replace(argPlaceholder, argText);
}
}
output += thisTemp
}
$("#output").val(output);
});
});
</script>
</body>
</html>

@ -1,286 +0,0 @@
/*
{4} ({1} and []{1})
--------------------------------------------------
*/
// {4} gets the value as a {1}, returns the optionalDefault
// value or a system default object if the value is the wrong type.
func (v *Value) {4}(optionalDefault ...{1}) {1} {
if s, ok := v.data.({1}); ok {
return s
}
if len(optionalDefault) == 1 {
return optionalDefault[0]
}
return {3}
}
// Must{4} gets the value as a {1}.
//
// Panics if the object is not a {1}.
func (v *Value) Must{4}() {1} {
return v.data.({1})
}
// {4}Slice gets the value as a []{1}, returns the optionalDefault
// value or nil if the value is not a []{1}.
func (v *Value) {4}Slice(optionalDefault ...[]{1}) []{1} {
if s, ok := v.data.([]{1}); ok {
return s
}
if len(optionalDefault) == 1 {
return optionalDefault[0]
}
return nil
}
// Must{4}Slice gets the value as a []{1}.
//
// Panics if the object is not a []{1}.
func (v *Value) Must{4}Slice() []{1} {
return v.data.([]{1})
}
// Is{4} gets whether the object contained is a {1} or not.
func (v *Value) Is{4}() bool {
_, ok := v.data.({1})
return ok
}
// Is{4}Slice gets whether the object contained is a []{1} or not.
func (v *Value) Is{4}Slice() bool {
_, ok := v.data.([]{1})
return ok
}
// Each{4} calls the specified callback for each object
// in the []{1}.
//
// Panics if the object is the wrong type.
func (v *Value) Each{4}(callback func(int, {1}) bool) *Value {
for index, val := range v.Must{4}Slice() {
carryon := callback(index, val)
if carryon == false {
break
}
}
return v
}
// Where{4} uses the specified decider function to select items
// from the []{1}. The object contained in the result will contain
// only the selected items.
func (v *Value) Where{4}(decider func(int, {1}) bool) *Value {
var selected []{1}
v.Each{4}(func(index int, val {1}) bool {
shouldSelect := decider(index, val)
if shouldSelect == false {
selected = append(selected, val)
}
return true
})
return &Value{data:selected}
}
// Group{4} uses the specified grouper function to group the items
// keyed by the return of the grouper. The object contained in the
// result will contain a map[string][]{1}.
func (v *Value) Group{4}(grouper func(int, {1}) string) *Value {
groups := make(map[string][]{1})
v.Each{4}(func(index int, val {1}) bool {
group := grouper(index, val)
if _, ok := groups[group]; !ok {
groups[group] = make([]{1}, 0)
}
groups[group] = append(groups[group], val)
return true
})
return &Value{data:groups}
}
// Replace{4} uses the specified function to replace each {1}s
// by iterating each item. The data in the returned result will be a
// []{1} containing the replaced items.
func (v *Value) Replace{4}(replacer func(int, {1}) {1}) *Value {
arr := v.Must{4}Slice()
replaced := make([]{1}, len(arr))
v.Each{4}(func(index int, val {1}) bool {
replaced[index] = replacer(index, val)
return true
})
return &Value{data:replaced}
}
// Collect{4} uses the specified collector function to collect a value
// for each of the {1}s in the slice. The data returned will be a
// []interface{}.
func (v *Value) Collect{4}(collector func(int, {1}) interface{}) *Value {
arr := v.Must{4}Slice()
collected := make([]interface{}, len(arr))
v.Each{4}(func(index int, val {1}) bool {
collected[index] = collector(index, val)
return true
})
return &Value{data:collected}
}
// ************************************************************
// TESTS
// ************************************************************
func Test{4}(t *testing.T) {
val := {1}( {2} )
m := map[string]interface{}{"value": val, "nothing": nil}
assert.Equal(t, val, New(m).Get("value").{4}())
assert.Equal(t, val, New(m).Get("value").Must{4}())
assert.Equal(t, {1}({3}), New(m).Get("nothing").{4}())
assert.Equal(t, val, New(m).Get("nothing").{4}({2}))
assert.Panics(t, func() {
New(m).Get("age").Must{4}()
})
}
func Test{4}Slice(t *testing.T) {
val := {1}( {2} )
m := map[string]interface{}{"value": []{1}{ val }, "nothing": nil}
assert.Equal(t, val, New(m).Get("value").{4}Slice()[0])
assert.Equal(t, val, New(m).Get("value").Must{4}Slice()[0])
assert.Equal(t, []{1}(nil), New(m).Get("nothing").{4}Slice())
assert.Equal(t, val, New(m).Get("nothing").{4}Slice( []{1}{ {1}({2}) } )[0])
assert.Panics(t, func() {
New(m).Get("nothing").Must{4}Slice()
})
}
func TestIs{4}(t *testing.T) {
var v *Value
v = &Value{data: {1}({2})}
assert.True(t, v.Is{4}())
v = &Value{data: []{1}{ {1}({2}) }}
assert.True(t, v.Is{4}Slice())
}
func TestEach{4}(t *testing.T) {
v := &Value{data: []{1}{ {1}({2}), {1}({2}), {1}({2}), {1}({2}), {1}({2}) }}
count := 0
replacedVals := make([]{1}, 0)
assert.Equal(t, v, v.Each{4}(func(i int, val {1}) bool {
count++
replacedVals = append(replacedVals, val)
// abort early
if i == 2 {
return false
}
return true
}))
assert.Equal(t, count, 3)
assert.Equal(t, replacedVals[0], v.Must{4}Slice()[0])
assert.Equal(t, replacedVals[1], v.Must{4}Slice()[1])
assert.Equal(t, replacedVals[2], v.Must{4}Slice()[2])
}
func TestWhere{4}(t *testing.T) {
v := &Value{data: []{1}{ {1}({2}), {1}({2}), {1}({2}), {1}({2}), {1}({2}), {1}({2}) }}
selected := v.Where{4}(func(i int, val {1}) bool {
return i%2==0
}).Must{4}Slice()
assert.Equal(t, 3, len(selected))
}
func TestGroup{4}(t *testing.T) {
v := &Value{data: []{1}{ {1}({2}), {1}({2}), {1}({2}), {1}({2}), {1}({2}), {1}({2}) }}
grouped := v.Group{4}(func(i int, val {1}) string {
return fmt.Sprintf("%v", i%2==0)
}).data.(map[string][]{1})
assert.Equal(t, 2, len(grouped))
assert.Equal(t, 3, len(grouped["true"]))
assert.Equal(t, 3, len(grouped["false"]))
}
func TestReplace{4}(t *testing.T) {
v := &Value{data: []{1}{ {1}({2}), {1}({2}), {1}({2}), {1}({2}), {1}({2}), {1}({2}) }}
rawArr := v.Must{4}Slice()
replaced := v.Replace{4}(func(index int, val {1}) {1} {
if index < len(rawArr)-1 {
return rawArr[index+1]
}
return rawArr[0]
})
replacedArr := replaced.Must{4}Slice()
if assert.Equal(t, 6, len(replacedArr)) {
assert.Equal(t, replacedArr[0], rawArr[1])
assert.Equal(t, replacedArr[1], rawArr[2])
assert.Equal(t, replacedArr[2], rawArr[3])
assert.Equal(t, replacedArr[3], rawArr[4])
assert.Equal(t, replacedArr[4], rawArr[5])
assert.Equal(t, replacedArr[5], rawArr[0])
}
}
func TestCollect{4}(t *testing.T) {
v := &Value{data: []{1}{ {1}({2}), {1}({2}), {1}({2}), {1}({2}), {1}({2}), {1}({2}) }}
collected := v.Collect{4}(func(index int, val {1}) interface{} {
return index
})
collectedArr := collected.MustInterSlice()
if assert.Equal(t, 6, len(collectedArr)) {
assert.Equal(t, collectedArr[0], 0)
assert.Equal(t, collectedArr[1], 1)
assert.Equal(t, collectedArr[2], 2)
assert.Equal(t, collectedArr[3], 3)
assert.Equal(t, collectedArr[4], 4)
assert.Equal(t, collectedArr[5], 5)
}
}

@ -1,20 +0,0 @@
Interface,interface{},"something",nil,Inter
Map,map[string]interface{},map[string]interface{}{"name":"Tyler"},nil,MSI
ObjxMap,(Map),New(1),New(nil),ObjxMap
Bool,bool,true,false,Bool
String,string,"hello","",Str
Int,int,1,0,Int
Int8,int8,1,0,Int8
Int16,int16,1,0,Int16
Int32,int32,1,0,Int32
Int64,int64,1,0,Int64
Uint,uint,1,0,Uint
Uint8,uint8,1,0,Uint8
Uint16,uint16,1,0,Uint16
Uint32,uint32,1,0,Uint32
Uint64,uint64,1,0,Uint64
Uintptr,uintptr,1,0,Uintptr
Float32,float32,1,0,Float32
Float64,float64,1,0,Float64
Complex64,complex64,1,0,Complex64
Complex128,complex128,1,0,Complex128

@ -1,5 +1,10 @@
package objx
import (
"fmt"
"strconv"
)
// Value provides methods for extracting interface{} data in various
// types.
type Value struct {
@ -11,3 +16,41 @@ type Value struct {
func (v *Value) Data() interface{} {
return v.data
}
// String returns the value always as a string
func (v *Value) String() string {
switch {
case v.IsStr():
return v.Str()
case v.IsBool():
return strconv.FormatBool(v.Bool())
case v.IsFloat32():
return strconv.FormatFloat(float64(v.Float32()), 'f', -1, 32)
case v.IsFloat64():
return strconv.FormatFloat(v.Float64(), 'f', -1, 64)
case v.IsInt():
return strconv.FormatInt(int64(v.Int()), 10)
case v.IsInt():
return strconv.FormatInt(int64(v.Int()), 10)
case v.IsInt8():
return strconv.FormatInt(int64(v.Int8()), 10)
case v.IsInt16():
return strconv.FormatInt(int64(v.Int16()), 10)
case v.IsInt32():
return strconv.FormatInt(int64(v.Int32()), 10)
case v.IsInt64():
return strconv.FormatInt(v.Int64(), 10)
case v.IsUint():
return strconv.FormatUint(uint64(v.Uint()), 10)
case v.IsUint8():
return strconv.FormatUint(uint64(v.Uint8()), 10)
case v.IsUint16():
return strconv.FormatUint(uint64(v.Uint16()), 10)
case v.IsUint32():
return strconv.FormatUint(uint64(v.Uint32()), 10)
case v.IsUint64():
return strconv.FormatUint(v.Uint64(), 10)
}
return fmt.Sprintf("%#v", v.Data())
}

@ -1 +1,66 @@
package objx
import (
"github.com/stretchr/testify/assert"
"testing"
)
func TestStringTypeString(t *testing.T) {
m := New(map[string]interface{}{"string": "foo"})
assert.Equal(t, "foo", m.Get("string").String())
}
func TestStringTypeBool(t *testing.T) {
m := New(map[string]interface{}{"bool": true})
assert.Equal(t, "true", m.Get("bool").String())
}
func TestStringTypeInt(t *testing.T) {
m := New(map[string]interface{}{
"int": int(1),
"int8": int8(8),
"int16": int16(16),
"int32": int32(32),
"int64": int64(64),
})
assert.Equal(t, "1", m.Get("int").String())
assert.Equal(t, "8", m.Get("int8").String())
assert.Equal(t, "16", m.Get("int16").String())
assert.Equal(t, "32", m.Get("int32").String())
assert.Equal(t, "64", m.Get("int64").String())
}
func TestStringTypeUint(t *testing.T) {
m := New(map[string]interface{}{
"uint": uint(1),
"uint8": uint8(8),
"uint16": uint16(16),
"uint32": uint32(32),
"uint64": uint64(64),
})
assert.Equal(t, "1", m.Get("uint").String())
assert.Equal(t, "8", m.Get("uint8").String())
assert.Equal(t, "16", m.Get("uint16").String())
assert.Equal(t, "32", m.Get("uint32").String())
assert.Equal(t, "64", m.Get("uint64").String())
}
func TestStringTypeFloat(t *testing.T) {
m := New(map[string]interface{}{
"float32": float32(32.32),
"float64": float64(64.64),
})
assert.Equal(t, "32.32", m.Get("float32").String())
assert.Equal(t, "64.64", m.Get("float64").String())
}
func TestStringTypeOther(t *testing.T) {
m := New(map[string]interface{}{
"other": []string{"foo", "bar"},
})
assert.Equal(t, "[]string{\"foo\", \"bar\"}", m.Get("other").String())
}

@ -0,0 +1,22 @@
Copyright (c) 2012 - 2013 Mat Ryer and Tyler Bunnell
Please consider promoting this project if you find it useful.
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

@ -0,0 +1,22 @@
Copyright (c) 2012 - 2013 Mat Ryer and Tyler Bunnell
Please consider promoting this project if you find it useful.
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

@ -0,0 +1,387 @@
/*
* CODE GENERATED AUTOMATICALLY WITH github.com/stretchr/testify/_codegen
* THIS FILE MUST NOT BE EDITED BY HAND
*/
package assert
import (
http "net/http"
url "net/url"
time "time"
)
// Condition uses a Comparison to assert a complex condition.
func (a *Assertions) Condition(comp Comparison, msgAndArgs ...interface{}) bool {
return Condition(a.t, comp, msgAndArgs...)
}
// Contains asserts that the specified string, list(array, slice...) or map contains the
// specified substring or element.
//
// a.Contains("Hello World", "World", "But 'Hello World' does contain 'World'")
// a.Contains(["Hello", "World"], "World", "But ["Hello", "World"] does contain 'World'")
// a.Contains({"Hello": "World"}, "Hello", "But {'Hello': 'World'} does contain 'Hello'")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Contains(s interface{}, contains interface{}, msgAndArgs ...interface{}) bool {
return Contains(a.t, s, contains, msgAndArgs...)
}
// Empty asserts that the specified object is empty. I.e. nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// a.Empty(obj)
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Empty(object interface{}, msgAndArgs ...interface{}) bool {
return Empty(a.t, object, msgAndArgs...)
}
// Equal asserts that two objects are equal.
//
// a.Equal(123, 123, "123 and 123 should be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Equal(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool {
return Equal(a.t, expected, actual, msgAndArgs...)
}
// EqualError asserts that a function returned an error (i.e. not `nil`)
// and that it is equal to the provided error.
//
// actualObj, err := SomeFunction()
// if assert.Error(t, err, "An error was expected") {
// assert.Equal(t, err, expectedError)
// }
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) EqualError(theError error, errString string, msgAndArgs ...interface{}) bool {
return EqualError(a.t, theError, errString, msgAndArgs...)
}
// EqualValues asserts that two objects are equal or convertable to the same types
// and equal.
//
// a.EqualValues(uint32(123), int32(123), "123 and 123 should be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) EqualValues(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool {
return EqualValues(a.t, expected, actual, msgAndArgs...)
}
// Error asserts that a function returned an error (i.e. not `nil`).
//
// actualObj, err := SomeFunction()
// if a.Error(err, "An error was expected") {
// assert.Equal(t, err, expectedError)
// }
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Error(err error, msgAndArgs ...interface{}) bool {
return Error(a.t, err, msgAndArgs...)
}
// Exactly asserts that two objects are equal is value and type.
//
// a.Exactly(int32(123), int64(123), "123 and 123 should NOT be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Exactly(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool {
return Exactly(a.t, expected, actual, msgAndArgs...)
}
// Fail reports a failure through
func (a *Assertions) Fail(failureMessage string, msgAndArgs ...interface{}) bool {
return Fail(a.t, failureMessage, msgAndArgs...)
}
// FailNow fails test
func (a *Assertions) FailNow(failureMessage string, msgAndArgs ...interface{}) bool {
return FailNow(a.t, failureMessage, msgAndArgs...)
}
// False asserts that the specified value is false.
//
// a.False(myBool, "myBool should be false")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) False(value bool, msgAndArgs ...interface{}) bool {
return False(a.t, value, msgAndArgs...)
}
// HTTPBodyContains asserts that a specified handler returns a
// body that contains a string.
//
// a.HTTPBodyContains(myHandler, "www.google.com", nil, "I'm Feeling Lucky")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPBodyContains(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}) bool {
return HTTPBodyContains(a.t, handler, method, url, values, str)
}
// HTTPBodyNotContains asserts that a specified handler returns a
// body that does not contain a string.
//
// a.HTTPBodyNotContains(myHandler, "www.google.com", nil, "I'm Feeling Lucky")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPBodyNotContains(handler http.HandlerFunc, method string, url string, values url.Values, str interface{}) bool {
return HTTPBodyNotContains(a.t, handler, method, url, values, str)
}
// HTTPError asserts that a specified handler returns an error status code.
//
// a.HTTPError(myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPError(handler http.HandlerFunc, method string, url string, values url.Values) bool {
return HTTPError(a.t, handler, method, url, values)
}
// HTTPRedirect asserts that a specified handler returns a redirect status code.
//
// a.HTTPRedirect(myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPRedirect(handler http.HandlerFunc, method string, url string, values url.Values) bool {
return HTTPRedirect(a.t, handler, method, url, values)
}
// HTTPSuccess asserts that a specified handler returns a success status code.
//
// a.HTTPSuccess(myHandler, "POST", "http://www.google.com", nil)
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPSuccess(handler http.HandlerFunc, method string, url string, values url.Values) bool {
return HTTPSuccess(a.t, handler, method, url, values)
}
// Implements asserts that an object is implemented by the specified interface.
//
// a.Implements((*MyInterface)(nil), new(MyObject), "MyObject")
func (a *Assertions) Implements(interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) bool {
return Implements(a.t, interfaceObject, object, msgAndArgs...)
}
// InDelta asserts that the two numerals are within delta of each other.
//
// a.InDelta(math.Pi, (22 / 7.0), 0.01)
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) InDelta(expected interface{}, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
return InDelta(a.t, expected, actual, delta, msgAndArgs...)
}
// InDeltaSlice is the same as InDelta, except it compares two slices.
func (a *Assertions) InDeltaSlice(expected interface{}, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
return InDeltaSlice(a.t, expected, actual, delta, msgAndArgs...)
}
// InEpsilon asserts that expected and actual have a relative error less than epsilon
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) InEpsilon(expected interface{}, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
return InEpsilon(a.t, expected, actual, epsilon, msgAndArgs...)
}
// InEpsilonSlice is the same as InEpsilon, except it compares two slices.
func (a *Assertions) InEpsilonSlice(expected interface{}, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
return InEpsilonSlice(a.t, expected, actual, delta, msgAndArgs...)
}
// IsType asserts that the specified objects are of the same type.
func (a *Assertions) IsType(expectedType interface{}, object interface{}, msgAndArgs ...interface{}) bool {
return IsType(a.t, expectedType, object, msgAndArgs...)
}
// JSONEq asserts that two JSON strings are equivalent.
//
// a.JSONEq(`{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`)
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) JSONEq(expected string, actual string, msgAndArgs ...interface{}) bool {
return JSONEq(a.t, expected, actual, msgAndArgs...)
}
// Len asserts that the specified object has specific length.
// Len also fails if the object has a type that len() not accept.
//
// a.Len(mySlice, 3, "The size of slice is not 3")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Len(object interface{}, length int, msgAndArgs ...interface{}) bool {
return Len(a.t, object, length, msgAndArgs...)
}
// Nil asserts that the specified object is nil.
//
// a.Nil(err, "err should be nothing")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Nil(object interface{}, msgAndArgs ...interface{}) bool {
return Nil(a.t, object, msgAndArgs...)
}
// NoError asserts that a function returned no error (i.e. `nil`).
//
// actualObj, err := SomeFunction()
// if a.NoError(err) {
// assert.Equal(t, actualObj, expectedObj)
// }
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NoError(err error, msgAndArgs ...interface{}) bool {
return NoError(a.t, err, msgAndArgs...)
}
// NotContains asserts that the specified string, list(array, slice...) or map does NOT contain the
// specified substring or element.
//
// a.NotContains("Hello World", "Earth", "But 'Hello World' does NOT contain 'Earth'")
// a.NotContains(["Hello", "World"], "Earth", "But ['Hello', 'World'] does NOT contain 'Earth'")
// a.NotContains({"Hello": "World"}, "Earth", "But {'Hello': 'World'} does NOT contain 'Earth'")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NotContains(s interface{}, contains interface{}, msgAndArgs ...interface{}) bool {
return NotContains(a.t, s, contains, msgAndArgs...)
}
// NotEmpty asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// if a.NotEmpty(obj) {
// assert.Equal(t, "two", obj[1])
// }
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NotEmpty(object interface{}, msgAndArgs ...interface{}) bool {
return NotEmpty(a.t, object, msgAndArgs...)
}
// NotEqual asserts that the specified values are NOT equal.
//
// a.NotEqual(obj1, obj2, "two objects shouldn't be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NotEqual(expected interface{}, actual interface{}, msgAndArgs ...interface{}) bool {
return NotEqual(a.t, expected, actual, msgAndArgs...)
}
// NotNil asserts that the specified object is not nil.
//
// a.NotNil(err, "err should be something")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NotNil(object interface{}, msgAndArgs ...interface{}) bool {
return NotNil(a.t, object, msgAndArgs...)
}
// NotPanics asserts that the code inside the specified PanicTestFunc does NOT panic.
//
// a.NotPanics(func(){
// RemainCalm()
// }, "Calling RemainCalm() should NOT panic")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NotPanics(f PanicTestFunc, msgAndArgs ...interface{}) bool {
return NotPanics(a.t, f, msgAndArgs...)
}
// NotRegexp asserts that a specified regexp does not match a string.
//
// a.NotRegexp(regexp.MustCompile("starts"), "it's starting")
// a.NotRegexp("^start", "it's not starting")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NotRegexp(rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
return NotRegexp(a.t, rx, str, msgAndArgs...)
}
// NotZero asserts that i is not the zero value for its type and returns the truth.
func (a *Assertions) NotZero(i interface{}, msgAndArgs ...interface{}) bool {
return NotZero(a.t, i, msgAndArgs...)
}
// Panics asserts that the code inside the specified PanicTestFunc panics.
//
// a.Panics(func(){
// GoCrazy()
// }, "Calling GoCrazy() should panic")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Panics(f PanicTestFunc, msgAndArgs ...interface{}) bool {
return Panics(a.t, f, msgAndArgs...)
}
// Regexp asserts that a specified regexp matches a string.
//
// a.Regexp(regexp.MustCompile("start"), "it's starting")
// a.Regexp("start...$", "it's not starting")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Regexp(rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
return Regexp(a.t, rx, str, msgAndArgs...)
}
// True asserts that the specified value is true.
//
// a.True(myBool, "myBool should be true")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) True(value bool, msgAndArgs ...interface{}) bool {
return True(a.t, value, msgAndArgs...)
}
// WithinDuration asserts that the two times are within duration delta of each other.
//
// a.WithinDuration(time.Now(), time.Now(), 10*time.Second, "The difference should not be more than 10s")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) WithinDuration(expected time.Time, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) bool {
return WithinDuration(a.t, expected, actual, delta, msgAndArgs...)
}
// Zero asserts that i is the zero value for its type and returns the truth.
func (a *Assertions) Zero(i interface{}, msgAndArgs ...interface{}) bool {
return Zero(a.t, i, msgAndArgs...)
}

@ -0,0 +1,4 @@
{{.CommentWithoutT "a"}}
func (a *Assertions) {{.DocInfo.Name}}({{.Params}}) bool {
return {{.DocInfo.Name}}(a.t, {{.ForwardedParams}})
}

@ -3,6 +3,7 @@ package assert
import (
"bufio"
"bytes"
"encoding/json"
"fmt"
"math"
"reflect"
@ -12,6 +13,9 @@ import (
"time"
"unicode"
"unicode/utf8"
"github.com/davecgh/go-spew/spew"
"github.com/pmezard/go-difflib/difflib"
)
// TestingT is an interface wrapper around *testing.T
@ -35,11 +39,7 @@ func ObjectsAreEqual(expected, actual interface{}) bool {
return expected == actual
}
if reflect.DeepEqual(expected, actual) {
return true
}
return false
return reflect.DeepEqual(expected, actual)
}
@ -51,12 +51,13 @@ func ObjectsAreEqualValues(expected, actual interface{}) bool {
}
actualType := reflect.TypeOf(actual)
if actualType == nil {
return false
}
expectedValue := reflect.ValueOf(expected)
if expectedValue.Type().ConvertibleTo(actualType) {
if expectedValue.IsValid() && expectedValue.Type().ConvertibleTo(actualType) {
// Attempt comparison after type conversion
if reflect.DeepEqual(actual, expectedValue.Convert(actualType).Interface()) {
return true
}
return reflect.DeepEqual(expectedValue.Convert(actualType).Interface(), actual)
}
return false
@ -180,6 +181,28 @@ func indentMessageLines(message string, tabs int) string {
return outBuf.String()
}
type failNower interface {
FailNow()
}
// FailNow fails test
func FailNow(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {
Fail(t, failureMessage, msgAndArgs...)
// We cannot extend TestingT with FailNow() and
// maintain backwards compatibility, so we fallback
// to panicking when FailNow is not available in
// TestingT.
// See issue #263
if t, ok := t.(failNower); ok {
t.FailNow()
} else {
panic("test failed and t is missing `FailNow()`")
}
return false
}
// Fail reports a failure through
func Fail(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {
@ -213,7 +236,7 @@ func Implements(t TestingT, interfaceObject interface{}, object interface{}, msg
interfaceType := reflect.TypeOf(interfaceObject).Elem()
if !reflect.TypeOf(object).Implements(interfaceType) {
return Fail(t, fmt.Sprintf("Object must implement %v", interfaceType), msgAndArgs...)
return Fail(t, fmt.Sprintf("%T must implement %v", object, interfaceType), msgAndArgs...)
}
return true
@ -238,8 +261,9 @@ func IsType(t TestingT, expectedType interface{}, object interface{}, msgAndArgs
func Equal(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
if !ObjectsAreEqual(expected, actual) {
diff := diff(expected, actual)
return Fail(t, fmt.Sprintf("Not equal: %#v (expected)\n"+
" != %#v (actual)", expected, actual), msgAndArgs...)
" != %#v (actual)%s", expected, actual, diff), msgAndArgs...)
}
return true
@ -274,7 +298,7 @@ func Exactly(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}
bType := reflect.TypeOf(actual)
if aType != bType {
return Fail(t, "Types expected to match exactly", "%v != %v", aType, bType)
return Fail(t, fmt.Sprintf("Types expected to match exactly\n\r\t%v != %v", aType, bType), msgAndArgs...)
}
return Equal(t, expected, actual, msgAndArgs...)
@ -287,24 +311,10 @@ func Exactly(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}
//
// Returns whether the assertion was successful (true) or not (false).
func NotNil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
success := true
if object == nil {
success = false
} else {
value := reflect.ValueOf(object)
kind := value.Kind()
if kind >= reflect.Chan && kind <= reflect.Slice && value.IsNil() {
success = false
}
}
if !success {
Fail(t, "Expected value not to be nil.", msgAndArgs...)
if !isNil(object) {
return true
}
return success
return Fail(t, "Expected value not to be nil.", msgAndArgs...)
}
// isNil checks if a specified object is nil or not, without Failing.
@ -334,7 +344,7 @@ func Nil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
return Fail(t, fmt.Sprintf("Expected nil, but got: %#v", object), msgAndArgs...)
}
var zeros = []interface{}{
var numericZeros = []interface{}{
int(0),
int8(0),
int16(0),
@ -360,7 +370,7 @@ func isEmpty(object interface{}) bool {
return true
}
for _, v := range zeros {
for _, v := range numericZeros {
if object == v {
return true
}
@ -375,8 +385,16 @@ func isEmpty(object interface{}) bool {
{
return (objValue.Len() == 0)
}
case reflect.Struct:
switch object.(type) {
case time.Time:
return object.(time.Time).IsZero()
}
case reflect.Ptr:
{
if objValue.IsNil() {
return true
}
switch object.(type) {
case *time.Time:
return object.(*time.Time).IsZero()
@ -391,7 +409,7 @@ func isEmpty(object interface{}) bool {
// Empty asserts that the specified object is empty. I.e. nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// assert.Empty(t, obj)
// assert.Empty(t, obj)
//
// Returns whether the assertion was successful (true) or not (false).
func Empty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
@ -408,9 +426,9 @@ func Empty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
// NotEmpty asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// if assert.NotEmpty(t, obj) {
// assert.Equal(t, "two", obj[1])
// }
// if assert.NotEmpty(t, obj) {
// assert.Equal(t, "two", obj[1])
// }
//
// Returns whether the assertion was successful (true) or not (false).
func NotEmpty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
@ -469,7 +487,7 @@ func True(t TestingT, value bool, msgAndArgs ...interface{}) bool {
}
// False asserts that the specified value is true.
// False asserts that the specified value is false.
//
// assert.False(t, myBool, "myBool should be false")
//
@ -492,7 +510,7 @@ func False(t TestingT, value bool, msgAndArgs ...interface{}) bool {
func NotEqual(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
if ObjectsAreEqual(expected, actual) {
return Fail(t, "Should not be equal", msgAndArgs...)
return Fail(t, fmt.Sprintf("Should not be: %#v\n", actual), msgAndArgs...)
}
return true
@ -518,6 +536,16 @@ func includeElement(list interface{}, element interface{}) (ok, found bool) {
return true, strings.Contains(listValue.String(), elementValue.String())
}
if reflect.TypeOf(list).Kind() == reflect.Map {
mapKeys := listValue.MapKeys()
for i := 0; i < len(mapKeys); i++ {
if ObjectsAreEqual(mapKeys[i].Interface(), element) {
return true, true
}
}
return true, false
}
for i := 0; i < listValue.Len(); i++ {
if ObjectsAreEqual(listValue.Index(i).Interface(), element) {
return true, true
@ -527,11 +555,12 @@ func includeElement(list interface{}, element interface{}) (ok, found bool) {
}
// Contains asserts that the specified string or list(array, slice...) contains the
// Contains asserts that the specified string, list(array, slice...) or map contains the
// specified substring or element.
//
// assert.Contains(t, "Hello World", "World", "But 'Hello World' does contain 'World'")
// assert.Contains(t, ["Hello", "World"], "World", "But ["Hello", "World"] does contain 'World'")
// assert.Contains(t, {"Hello": "World"}, "Hello", "But {'Hello': 'World'} does contain 'Hello'")
//
// Returns whether the assertion was successful (true) or not (false).
func Contains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
@ -548,11 +577,12 @@ func Contains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bo
}
// NotContains asserts that the specified string or list(array, slice...) does NOT contain the
// NotContains asserts that the specified string, list(array, slice...) or map does NOT contain the
// specified substring or element.
//
// assert.NotContains(t, "Hello World", "Earth", "But 'Hello World' does NOT contain 'Earth'")
// assert.NotContains(t, ["Hello", "World"], "Earth", "But ['Hello', 'World'] does NOT contain 'Earth'")
// assert.NotContains(t, {"Hello": "World"}, "Earth", "But {'Hello': 'World'} does NOT contain 'Earth'")
//
// Returns whether the assertion was successful (true) or not (false).
func NotContains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
@ -736,42 +766,40 @@ func InDeltaSlice(t TestingT, expected, actual interface{}, delta float64, msgAn
return true
}
// min(|expected|, |actual|) * epsilon
func calcEpsilonDelta(expected, actual interface{}, epsilon float64) float64 {
func calcRelativeError(expected, actual interface{}) (float64, error) {
af, aok := toFloat(expected)
bf, bok := toFloat(actual)
if !aok || !bok {
// invalid input
return 0
}
if af < 0 {
af = -af
if !aok {
return 0, fmt.Errorf("expected value %q cannot be converted to float", expected)
}
if bf < 0 {
bf = -bf
if af == 0 {
return 0, fmt.Errorf("expected value must have a value other than zero to calculate the relative error")
}
var delta float64
if af < bf {
delta = af * epsilon
} else {
delta = bf * epsilon
bf, bok := toFloat(actual)
if !bok {
return 0, fmt.Errorf("expected value %q cannot be converted to float", actual)
}
return delta
return math.Abs(af-bf) / math.Abs(af), nil
}
// InEpsilon asserts that expected and actual have a relative error less than epsilon
//
// Returns whether the assertion was successful (true) or not (false).
func InEpsilon(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
delta := calcEpsilonDelta(expected, actual, epsilon)
actualEpsilon, err := calcRelativeError(expected, actual)
if err != nil {
return Fail(t, err.Error(), msgAndArgs...)
}
if actualEpsilon > epsilon {
return Fail(t, fmt.Sprintf("Relative error is too high: %#v (expected)\n"+
" < %#v (actual)", actualEpsilon, epsilon), msgAndArgs...)
}
return InDelta(t, expected, actual, delta, msgAndArgs...)
return true
}
// InEpsilonSlice is the same as InEpsilon, except it compares two slices.
func InEpsilonSlice(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
// InEpsilonSlice is the same as InEpsilon, except it compares each value from two slices.
func InEpsilonSlice(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
if expected == nil || actual == nil ||
reflect.TypeOf(actual).Kind() != reflect.Slice ||
reflect.TypeOf(expected).Kind() != reflect.Slice {
@ -782,7 +810,7 @@ func InEpsilonSlice(t TestingT, expected, actual interface{}, delta float64, msg
expectedSlice := reflect.ValueOf(expected)
for i := 0; i < actualSlice.Len(); i++ {
result := InEpsilon(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), delta)
result := InEpsilon(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), epsilon)
if !result {
return result
}
@ -808,7 +836,7 @@ func NoError(t TestingT, err error, msgAndArgs ...interface{}) bool {
return true
}
return Fail(t, fmt.Sprintf("No error is expected but got %v", err), msgAndArgs...)
return Fail(t, fmt.Sprintf("Received unexpected error %q", err), msgAndArgs...)
}
// Error asserts that a function returned an error (i.e. not `nil`).
@ -842,7 +870,7 @@ func EqualError(t TestingT, theError error, errString string, msgAndArgs ...inte
return false
}
s := "An error with value \"%s\" is expected but got \"%s\". %s"
return Equal(t, theError.Error(), errString,
return Equal(t, errString, theError.Error(),
s, errString, theError.Error(), message)
}
@ -893,3 +921,84 @@ func NotRegexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interf
return !match
}
// Zero asserts that i is the zero value for its type and returns the truth.
func Zero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
if i != nil && !reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
return Fail(t, fmt.Sprintf("Should be zero, but was %v", i), msgAndArgs...)
}
return true
}
// NotZero asserts that i is not the zero value for its type and returns the truth.
func NotZero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
if i == nil || reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
return Fail(t, fmt.Sprintf("Should not be zero, but was %v", i), msgAndArgs...)
}
return true
}
// JSONEq asserts that two JSON strings are equivalent.
//
// assert.JSONEq(t, `{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`)
//
// Returns whether the assertion was successful (true) or not (false).
func JSONEq(t TestingT, expected string, actual string, msgAndArgs ...interface{}) bool {
var expectedJSONAsInterface, actualJSONAsInterface interface{}
if err := json.Unmarshal([]byte(expected), &expectedJSONAsInterface); err != nil {
return Fail(t, fmt.Sprintf("Expected value ('%s') is not valid json.\nJSON parsing error: '%s'", expected, err.Error()), msgAndArgs...)
}
if err := json.Unmarshal([]byte(actual), &actualJSONAsInterface); err != nil {
return Fail(t, fmt.Sprintf("Input ('%s') needs to be valid json.\nJSON parsing error: '%s'", actual, err.Error()), msgAndArgs...)
}
return Equal(t, expectedJSONAsInterface, actualJSONAsInterface, msgAndArgs...)
}
func typeAndKind(v interface{}) (reflect.Type, reflect.Kind) {
t := reflect.TypeOf(v)
k := t.Kind()
if k == reflect.Ptr {
t = t.Elem()
k = t.Kind()
}
return t, k
}
// diff returns a diff of both values as long as both are of the same type and
// are a struct, map, slice or array. Otherwise it returns an empty string.
func diff(expected interface{}, actual interface{}) string {
if expected == nil || actual == nil {
return ""
}
et, ek := typeAndKind(expected)
at, _ := typeAndKind(actual)
if et != at {
return ""
}
if ek != reflect.Struct && ek != reflect.Map && ek != reflect.Slice && ek != reflect.Array {
return ""
}
spew.Config.SortKeys = true
e := spew.Sdump(expected)
a := spew.Sdump(actual)
diff, _ := difflib.GetUnifiedDiffString(difflib.UnifiedDiff{
A: difflib.SplitLines(e),
B: difflib.SplitLines(a),
FromFile: "Expected",
FromDate: "",
ToFile: "Actual",
ToDate: "",
Context: 1,
})
return "\n\nDiff:\n" + diff
}

@ -4,11 +4,80 @@ import (
"errors"
"io"
"math"
"os"
"reflect"
"regexp"
"testing"
"time"
)
var (
i interface{}
zeros = []interface{}{
false,
byte(0),
complex64(0),
complex128(0),
float32(0),
float64(0),
int(0),
int8(0),
int16(0),
int32(0),
int64(0),
rune(0),
uint(0),
uint8(0),
uint16(0),
uint32(0),
uint64(0),
uintptr(0),
"",
[0]interface{}{},
[]interface{}(nil),
struct{ x int }{},
(*interface{})(nil),
(func())(nil),
nil,
interface{}(nil),
map[interface{}]interface{}(nil),
(chan interface{})(nil),
(<-chan interface{})(nil),
(chan<- interface{})(nil),
}
nonZeros = []interface{}{
true,
byte(1),
complex64(1),
complex128(1),
float32(1),
float64(1),
int(1),
int8(1),
int16(1),
int32(1),
int64(1),
rune(1),
uint(1),
uint8(1),
uint16(1),
uint32(1),
uint64(1),
uintptr(1),
"s",
[1]interface{}{1},
[]interface{}{},
struct{ x int }{1},
(*interface{})(&i),
(func())(func() {}),
interface{}(1),
map[interface{}]interface{}{},
(chan interface{})(make(chan interface{})),
(<-chan interface{})(make(chan interface{})),
(chan<- interface{})(make(chan interface{})),
}
)
// AssertionTesterInterface defines an interface to be used for testing assertion methods
type AssertionTesterInterface interface {
TestMethod()
@ -63,6 +132,12 @@ func TestObjectsAreEqual(t *testing.T) {
if !ObjectsAreEqualValues(uint32(10), int32(10)) {
t.Error("ObjectsAreEqualValues should return true")
}
if ObjectsAreEqualValues(0, nil) {
t.Fail()
}
if ObjectsAreEqualValues(nil, 0) {
t.Fail()
}
}
@ -130,6 +205,9 @@ func TestNotNil(t *testing.T) {
if NotNil(mockT, nil) {
t.Error("NotNil should return false: object is nil")
}
if NotNil(mockT, (*struct{})(nil)) {
t.Error("NotNil should return false: object is (*struct{})(nil)")
}
}
@ -140,6 +218,9 @@ func TestNil(t *testing.T) {
if !Nil(mockT, nil) {
t.Error("Nil should return true: object is nil")
}
if !Nil(mockT, (*struct{})(nil)) {
t.Error("Nil should return true: object is (*struct{})(nil)")
}
if Nil(mockT, new(AssertionTesterConformingObject)) {
t.Error("Nil should return false: object is not nil")
}
@ -256,6 +337,7 @@ func TestContains(t *testing.T) {
{"g", "h"},
{"j", "k"},
}
simpleMap := map[interface{}]interface{}{"Foo": "Bar"}
if !Contains(mockT, "Hello World", "Hello") {
t.Error("Contains should return true: \"Hello World\" contains \"Hello\"")
@ -276,12 +358,22 @@ func TestContains(t *testing.T) {
if Contains(mockT, complexList, &A{"g", "e"}) {
t.Error("Contains should return false: complexList contains {\"g\", \"e\"}")
}
if Contains(mockT, complexList, &A{"g", "e"}) {
t.Error("Contains should return false: complexList contains {\"g\", \"e\"}")
}
if !Contains(mockT, simpleMap, "Foo") {
t.Error("Contains should return true: \"{\"Foo\": \"Bar\"}\" contains \"Foo\"")
}
if Contains(mockT, simpleMap, "Bar") {
t.Error("Contains should return false: \"{\"Foo\": \"Bar\"}\" does not contains \"Bar\"")
}
}
func TestNotContains(t *testing.T) {
mockT := new(testing.T)
list := []string{"Foo", "Bar"}
simpleMap := map[interface{}]interface{}{"Foo": "Bar"}
if !NotContains(mockT, "Hello World", "Hello!") {
t.Error("NotContains should return true: \"Hello World\" does not contain \"Hello!\"")
@ -296,13 +388,19 @@ func TestNotContains(t *testing.T) {
if NotContains(mockT, list, "Foo") {
t.Error("NotContains should return false: \"[\"Foo\", \"Bar\"]\" contains \"Foo\"")
}
if NotContains(mockT, simpleMap, "Foo") {
t.Error("Contains should return true: \"{\"Foo\": \"Bar\"}\" contains \"Foo\"")
}
if !NotContains(mockT, simpleMap, "Bar") {
t.Error("Contains should return false: \"{\"Foo\": \"Bar\"}\" does not contains \"Bar\"")
}
}
func Test_includeElement(t *testing.T) {
list1 := []string{"Foo", "Bar"}
list2 := []int{1, 2}
simpleMap := map[interface{}]interface{}{"Foo": "Bar"}
ok, found := includeElement("Hello World", "World")
True(t, ok)
@ -336,10 +434,17 @@ func Test_includeElement(t *testing.T) {
True(t, ok)
False(t, found)
ok, found = includeElement(simpleMap, "Foo")
True(t, ok)
True(t, found)
ok, found = includeElement(simpleMap, "Bar")
True(t, ok)
False(t, found)
ok, found = includeElement(1433, "1")
False(t, ok)
False(t, found)
}
func TestCondition(t *testing.T) {
@ -466,6 +571,7 @@ func Test_isEmpty(t *testing.T) {
True(t, isEmpty(false))
True(t, isEmpty(map[string]string{}))
True(t, isEmpty(new(time.Time)))
True(t, isEmpty(time.Time{}))
True(t, isEmpty(make(chan struct{})))
False(t, isEmpty("something"))
False(t, isEmpty(errors.New("something")))
@ -482,6 +588,10 @@ func TestEmpty(t *testing.T) {
mockT := new(testing.T)
chWithValue := make(chan struct{}, 1)
chWithValue <- struct{}{}
var tiP *time.Time
var tiNP time.Time
var s *string
var f *os.File
True(t, Empty(mockT, ""), "Empty string is empty")
True(t, Empty(mockT, nil), "Nil is empty")
@ -489,6 +599,10 @@ func TestEmpty(t *testing.T) {
True(t, Empty(mockT, 0), "Zero int value is empty")
True(t, Empty(mockT, false), "False value is empty")
True(t, Empty(mockT, make(chan struct{})), "Channel without values is empty")
True(t, Empty(mockT, s), "Nil string pointer is empty")
True(t, Empty(mockT, f), "Nil os.File pointer is empty")
True(t, Empty(mockT, tiP), "Nil time.Time pointer is empty")
True(t, Empty(mockT, tiNP), "time.Time is empty")
False(t, Empty(mockT, "something"), "Non Empty string is not empty")
False(t, Empty(mockT, errors.New("something")), "Non nil object is not empty")
@ -716,10 +830,11 @@ func TestInEpsilon(t *testing.T) {
{-2.2, -2.1, 0.1},
{uint64(100), uint8(101), 0.01},
{0.1, -0.1, 2},
{0.1, 0, 2},
}
for _, tc := range cases {
True(t, InEpsilon(mockT, tc.a, tc.b, tc.epsilon, "Expected %V and %V to have a relative difference of %v", tc.a, tc.b, tc.epsilon))
True(t, InEpsilon(t, tc.a, tc.b, tc.epsilon, "Expected %V and %V to have a relative difference of %v", tc.a, tc.b, tc.epsilon), "test: %q", tc)
}
cases = []struct {
@ -733,6 +848,7 @@ func TestInEpsilon(t *testing.T) {
{2.1, -2.2, 1},
{2.1, "bla-bla", 0},
{0.1, -0.1, 1.99},
{0, 0.1, 2}, // expected must be different to zero
}
for _, tc := range cases {
@ -811,3 +927,196 @@ func TestCallerInfoWithAutogeneratedFunctions(t *testing.T) {
testAutogeneratedFunction()
})
}
func TestZero(t *testing.T) {
mockT := new(testing.T)
for _, test := range zeros {
True(t, Zero(mockT, test, "%#v is not the %v zero value", test, reflect.TypeOf(test)))
}
for _, test := range nonZeros {
False(t, Zero(mockT, test, "%#v is not the %v zero value", test, reflect.TypeOf(test)))
}
}
func TestNotZero(t *testing.T) {
mockT := new(testing.T)
for _, test := range zeros {
False(t, NotZero(mockT, test, "%#v is not the %v zero value", test, reflect.TypeOf(test)))
}
for _, test := range nonZeros {
True(t, NotZero(mockT, test, "%#v is not the %v zero value", test, reflect.TypeOf(test)))
}
}
func TestJSONEq_EqualSONString(t *testing.T) {
mockT := new(testing.T)
True(t, JSONEq(mockT, `{"hello": "world", "foo": "bar"}`, `{"hello": "world", "foo": "bar"}`))
}
func TestJSONEq_EquivalentButNotEqual(t *testing.T) {
mockT := new(testing.T)
True(t, JSONEq(mockT, `{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`))
}
func TestJSONEq_HashOfArraysAndHashes(t *testing.T) {
mockT := new(testing.T)
True(t, JSONEq(mockT, "{\r\n\t\"numeric\": 1.5,\r\n\t\"array\": [{\"foo\": \"bar\"}, 1, \"string\", [\"nested\", \"array\", 5.5]],\r\n\t\"hash\": {\"nested\": \"hash\", \"nested_slice\": [\"this\", \"is\", \"nested\"]},\r\n\t\"string\": \"foo\"\r\n}",
"{\r\n\t\"numeric\": 1.5,\r\n\t\"hash\": {\"nested\": \"hash\", \"nested_slice\": [\"this\", \"is\", \"nested\"]},\r\n\t\"string\": \"foo\",\r\n\t\"array\": [{\"foo\": \"bar\"}, 1, \"string\", [\"nested\", \"array\", 5.5]]\r\n}"))
}
func TestJSONEq_Array(t *testing.T) {
mockT := new(testing.T)
True(t, JSONEq(mockT, `["foo", {"hello": "world", "nested": "hash"}]`, `["foo", {"nested": "hash", "hello": "world"}]`))
}
func TestJSONEq_HashAndArrayNotEquivalent(t *testing.T) {
mockT := new(testing.T)
False(t, JSONEq(mockT, `["foo", {"hello": "world", "nested": "hash"}]`, `{"foo": "bar", {"nested": "hash", "hello": "world"}}`))
}
func TestJSONEq_HashesNotEquivalent(t *testing.T) {
mockT := new(testing.T)
False(t, JSONEq(mockT, `{"foo": "bar"}`, `{"foo": "bar", "hello": "world"}`))
}
func TestJSONEq_ActualIsNotJSON(t *testing.T) {
mockT := new(testing.T)
False(t, JSONEq(mockT, `{"foo": "bar"}`, "Not JSON"))
}
func TestJSONEq_ExpectedIsNotJSON(t *testing.T) {
mockT := new(testing.T)
False(t, JSONEq(mockT, "Not JSON", `{"foo": "bar", "hello": "world"}`))
}
func TestJSONEq_ExpectedAndActualNotJSON(t *testing.T) {
mockT := new(testing.T)
False(t, JSONEq(mockT, "Not JSON", "Not JSON"))
}
func TestJSONEq_ArraysOfDifferentOrder(t *testing.T) {
mockT := new(testing.T)
False(t, JSONEq(mockT, `["foo", {"hello": "world", "nested": "hash"}]`, `[{ "hello": "world", "nested": "hash"}, "foo"]`))
}
func TestDiff(t *testing.T) {
expected := `
Diff:
--- Expected
+++ Actual
@@ -1,3 +1,3 @@
(struct { foo string }) {
- foo: (string) (len=5) "hello"
+ foo: (string) (len=3) "bar"
}
`
actual := diff(
struct{ foo string }{"hello"},
struct{ foo string }{"bar"},
)
Equal(t, expected, actual)
expected = `
Diff:
--- Expected
+++ Actual
@@ -2,5 +2,5 @@
(int) 1,
- (int) 2,
(int) 3,
- (int) 4
+ (int) 5,
+ (int) 7
}
`
actual = diff(
[]int{1, 2, 3, 4},
[]int{1, 3, 5, 7},
)
Equal(t, expected, actual)
expected = `
Diff:
--- Expected
+++ Actual
@@ -2,4 +2,4 @@
(int) 1,
- (int) 2,
- (int) 3
+ (int) 3,
+ (int) 5
}
`
actual = diff(
[]int{1, 2, 3, 4}[0:3],
[]int{1, 3, 5, 7}[0:3],
)
Equal(t, expected, actual)
expected = `
Diff:
--- Expected
+++ Actual
@@ -1,6 +1,6 @@
(map[string]int) (len=4) {
- (string) (len=4) "four": (int) 4,
+ (string) (len=4) "five": (int) 5,
(string) (len=3) "one": (int) 1,
- (string) (len=5) "three": (int) 3,
- (string) (len=3) "two": (int) 2
+ (string) (len=5) "seven": (int) 7,
+ (string) (len=5) "three": (int) 3
}
`
actual = diff(
map[string]int{"one": 1, "two": 2, "three": 3, "four": 4},
map[string]int{"one": 1, "three": 3, "five": 5, "seven": 7},
)
Equal(t, expected, actual)
}
func TestDiffEmptyCases(t *testing.T) {
Equal(t, "", diff(nil, nil))
Equal(t, "", diff(struct{ foo string }{}, nil))
Equal(t, "", diff(nil, struct{ foo string }{}))
Equal(t, "", diff(1, 2))
Equal(t, "", diff(1, 2))
Equal(t, "", diff([]int{1}, []bool{true}))
}
type mockTestingT struct {
}
func (m *mockTestingT) Errorf(format string, args ...interface{}) {}
func TestFailNowWithPlainTestingT(t *testing.T) {
mockT := &mockTestingT{}
Panics(t, func() {
FailNow(mockT, "failed")
}, "should panic since mockT is missing FailNow()")
}
type mockFailNowTestingT struct {
}
func (m *mockFailNowTestingT) Errorf(format string, args ...interface{}) {}
func (m *mockFailNowTestingT) FailNow() {}
func TestFailNowWithFullTestingT(t *testing.T) {
mockT := &mockFailNowTestingT{}
NotPanics(t, func() {
FailNow(mockT, "failed")
}, "should call mockT.FailNow() rather than panicking")
}

@ -17,7 +17,7 @@
//
// }
//
// if you assert many times, use the below:
// if you assert many times, use the format below:
//
// import (
// "testing"
@ -42,113 +42,4 @@
//
// Every assertion function also takes an optional string message as the final argument,
// allowing custom error messages to be appended to the message the assertion method outputs.
//
// Here is an overview of the assert functions:
//
// assert.Equal(t, expected, actual [, message [, format-args]])
//
// assert.EqualValues(t, expected, actual [, message [, format-args]])
//
// assert.NotEqual(t, notExpected, actual [, message [, format-args]])
//
// assert.True(t, actualBool [, message [, format-args]])
//
// assert.False(t, actualBool [, message [, format-args]])
//
// assert.Nil(t, actualObject [, message [, format-args]])
//
// assert.NotNil(t, actualObject [, message [, format-args]])
//
// assert.Empty(t, actualObject [, message [, format-args]])
//
// assert.NotEmpty(t, actualObject [, message [, format-args]])
//
// assert.Len(t, actualObject, expectedLength, [, message [, format-args]])
//
// assert.Error(t, errorObject [, message [, format-args]])
//
// assert.NoError(t, errorObject [, message [, format-args]])
//
// assert.EqualError(t, theError, errString [, message [, format-args]])
//
// assert.Implements(t, (*MyInterface)(nil), new(MyObject) [,message [, format-args]])
//
// assert.IsType(t, expectedObject, actualObject [, message [, format-args]])
//
// assert.Contains(t, stringOrSlice, substringOrElement [, message [, format-args]])
//
// assert.NotContains(t, stringOrSlice, substringOrElement [, message [, format-args]])
//
// assert.Panics(t, func(){
//
// // call code that should panic
//
// } [, message [, format-args]])
//
// assert.NotPanics(t, func(){
//
// // call code that should not panic
//
// } [, message [, format-args]])
//
// assert.WithinDuration(t, timeA, timeB, deltaTime, [, message [, format-args]])
//
// assert.InDelta(t, numA, numB, delta, [, message [, format-args]])
//
// assert.InEpsilon(t, numA, numB, epsilon, [, message [, format-args]])
//
// assert package contains Assertions object. it has assertion methods.
//
// Here is an overview of the assert functions:
// assert.Equal(expected, actual [, message [, format-args]])
//
// assert.EqualValues(expected, actual [, message [, format-args]])
//
// assert.NotEqual(notExpected, actual [, message [, format-args]])
//
// assert.True(actualBool [, message [, format-args]])
//
// assert.False(actualBool [, message [, format-args]])
//
// assert.Nil(actualObject [, message [, format-args]])
//
// assert.NotNil(actualObject [, message [, format-args]])
//
// assert.Empty(actualObject [, message [, format-args]])
//
// assert.NotEmpty(actualObject [, message [, format-args]])
//
// assert.Len(actualObject, expectedLength, [, message [, format-args]])
//
// assert.Error(errorObject [, message [, format-args]])
//
// assert.NoError(errorObject [, message [, format-args]])
//
// assert.EqualError(theError, errString [, message [, format-args]])
//
// assert.Implements((*MyInterface)(nil), new(MyObject) [,message [, format-args]])
//
// assert.IsType(expectedObject, actualObject [, message [, format-args]])
//
// assert.Contains(stringOrSlice, substringOrElement [, message [, format-args]])
//
// assert.NotContains(stringOrSlice, substringOrElement [, message [, format-args]])
//
// assert.Panics(func(){
//
// // call code that should panic
//
// } [, message [, format-args]])
//
// assert.NotPanics(func(){
//
// // call code that should not panic
//
// } [, message [, format-args]])
//
// assert.WithinDuration(timeA, timeB, deltaTime, [, message [, format-args]])
//
// assert.InDelta(numA, numB, delta, [, message [, format-args]])
//
// assert.InEpsilon(numA, numB, epsilon, [, message [, format-args]])
package assert

@ -1,7 +1,5 @@
package assert
import "time"
// Assertions provides assertion methods around the
// TestingT interface.
type Assertions struct {
@ -15,251 +13,4 @@ func New(t TestingT) *Assertions {
}
}
// Fail reports a failure through
func (a *Assertions) Fail(failureMessage string, msgAndArgs ...interface{}) bool {
return Fail(a.t, failureMessage, msgAndArgs...)
}
// Implements asserts that an object is implemented by the specified interface.
//
// assert.Implements((*MyInterface)(nil), new(MyObject), "MyObject")
func (a *Assertions) Implements(interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) bool {
return Implements(a.t, interfaceObject, object, msgAndArgs...)
}
// IsType asserts that the specified objects are of the same type.
func (a *Assertions) IsType(expectedType interface{}, object interface{}, msgAndArgs ...interface{}) bool {
return IsType(a.t, expectedType, object, msgAndArgs...)
}
// Equal asserts that two objects are equal.
//
// assert.Equal(123, 123, "123 and 123 should be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Equal(expected, actual interface{}, msgAndArgs ...interface{}) bool {
return Equal(a.t, expected, actual, msgAndArgs...)
}
// EqualValues asserts that two objects are equal or convertable to the same types
// and equal.
//
// assert.EqualValues(uint32(123), int32(123), "123 and 123 should be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) EqualValues(expected, actual interface{}, msgAndArgs ...interface{}) bool {
return EqualValues(a.t, expected, actual, msgAndArgs...)
}
// Exactly asserts that two objects are equal is value and type.
//
// assert.Exactly(int32(123), int64(123), "123 and 123 should NOT be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Exactly(expected, actual interface{}, msgAndArgs ...interface{}) bool {
return Exactly(a.t, expected, actual, msgAndArgs...)
}
// NotNil asserts that the specified object is not nil.
//
// assert.NotNil(err, "err should be something")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NotNil(object interface{}, msgAndArgs ...interface{}) bool {
return NotNil(a.t, object, msgAndArgs...)
}
// Nil asserts that the specified object is nil.
//
// assert.Nil(err, "err should be nothing")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Nil(object interface{}, msgAndArgs ...interface{}) bool {
return Nil(a.t, object, msgAndArgs...)
}
// Empty asserts that the specified object is empty. I.e. nil, "", false, 0 or a
// slice with len == 0.
//
// assert.Empty(obj)
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Empty(object interface{}, msgAndArgs ...interface{}) bool {
return Empty(a.t, object, msgAndArgs...)
}
// NotEmpty asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or a
// slice with len == 0.
//
// if assert.NotEmpty(obj) {
// assert.Equal("two", obj[1])
// }
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NotEmpty(object interface{}, msgAndArgs ...interface{}) bool {
return NotEmpty(a.t, object, msgAndArgs...)
}
// Len asserts that the specified object has specific length.
// Len also fails if the object has a type that len() not accept.
//
// assert.Len(mySlice, 3, "The size of slice is not 3")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Len(object interface{}, length int, msgAndArgs ...interface{}) bool {
return Len(a.t, object, length, msgAndArgs...)
}
// True asserts that the specified value is true.
//
// assert.True(myBool, "myBool should be true")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) True(value bool, msgAndArgs ...interface{}) bool {
return True(a.t, value, msgAndArgs...)
}
// False asserts that the specified value is true.
//
// assert.False(myBool, "myBool should be false")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) False(value bool, msgAndArgs ...interface{}) bool {
return False(a.t, value, msgAndArgs...)
}
// NotEqual asserts that the specified values are NOT equal.
//
// assert.NotEqual(obj1, obj2, "two objects shouldn't be equal")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NotEqual(expected, actual interface{}, msgAndArgs ...interface{}) bool {
return NotEqual(a.t, expected, actual, msgAndArgs...)
}
// Contains asserts that the specified string contains the specified substring.
//
// assert.Contains("Hello World", "World", "But 'Hello World' does contain 'World'")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Contains(s, contains interface{}, msgAndArgs ...interface{}) bool {
return Contains(a.t, s, contains, msgAndArgs...)
}
// NotContains asserts that the specified string does NOT contain the specified substring.
//
// assert.NotContains("Hello World", "Earth", "But 'Hello World' does NOT contain 'Earth'")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NotContains(s, contains interface{}, msgAndArgs ...interface{}) bool {
return NotContains(a.t, s, contains, msgAndArgs...)
}
// Condition uses a Comparison to assert a complex condition.
func (a *Assertions) Condition(comp Comparison, msgAndArgs ...interface{}) bool {
return Condition(a.t, comp, msgAndArgs...)
}
// Panics asserts that the code inside the specified PanicTestFunc panics.
//
// assert.Panics(func(){
// GoCrazy()
// }, "Calling GoCrazy() should panic")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Panics(f PanicTestFunc, msgAndArgs ...interface{}) bool {
return Panics(a.t, f, msgAndArgs...)
}
// NotPanics asserts that the code inside the specified PanicTestFunc does NOT panic.
//
// assert.NotPanics(func(){
// RemainCalm()
// }, "Calling RemainCalm() should NOT panic")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NotPanics(f PanicTestFunc, msgAndArgs ...interface{}) bool {
return NotPanics(a.t, f, msgAndArgs...)
}
// WithinDuration asserts that the two times are within duration delta of each other.
//
// assert.WithinDuration(time.Now(), time.Now(), 10*time.Second, "The difference should not be more than 10s")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) WithinDuration(expected, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) bool {
return WithinDuration(a.t, expected, actual, delta, msgAndArgs...)
}
// InDelta asserts that the two numerals are within delta of each other.
//
// assert.InDelta(t, math.Pi, (22 / 7.0), 0.01)
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) InDelta(expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
return InDelta(a.t, expected, actual, delta, msgAndArgs...)
}
// InEpsilon asserts that expected and actual have a relative error less than epsilon
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) InEpsilon(expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
return InEpsilon(a.t, expected, actual, epsilon, msgAndArgs...)
}
// NoError asserts that a function returned no error (i.e. `nil`).
//
// actualObj, err := SomeFunction()
// if assert.NoError(err) {
// assert.Equal(actualObj, expectedObj)
// }
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NoError(theError error, msgAndArgs ...interface{}) bool {
return NoError(a.t, theError, msgAndArgs...)
}
// Error asserts that a function returned an error (i.e. not `nil`).
//
// actualObj, err := SomeFunction()
// if assert.Error(err, "An error was expected") {
// assert.Equal(err, expectedError)
// }
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Error(theError error, msgAndArgs ...interface{}) bool {
return Error(a.t, theError, msgAndArgs...)
}
// EqualError asserts that a function returned an error (i.e. not `nil`)
// and that it is equal to the provided error.
//
// actualObj, err := SomeFunction()
// if assert.Error(err, "An error was expected") {
// assert.Equal(err, expectedError)
// }
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) EqualError(theError error, errString string, msgAndArgs ...interface{}) bool {
return EqualError(a.t, theError, errString, msgAndArgs...)
}
// Regexp asserts that a specified regexp matches a string.
//
// assert.Regexp(t, regexp.MustCompile("start"), "it's starting")
// assert.Regexp(t, "start...$", "it's not starting")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) Regexp(rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
return Regexp(a.t, rx, str, msgAndArgs...)
}
// NotRegexp asserts that a specified regexp does not match a string.
//
// assert.NotRegexp(t, regexp.MustCompile("starts"), "it's starting")
// assert.NotRegexp(t, "^start", "it's not starting")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) NotRegexp(rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
return NotRegexp(a.t, rx, str, msgAndArgs...)
}
//go:generate go run ../_codegen/main.go -output-package=assert -template=assertion_forward.go.tmpl

@ -509,3 +509,103 @@ func TestRegexpWrapper(t *testing.T) {
True(t, assert.NotRegexp(regexp.MustCompile(tc.rx), tc.str))
}
}
func TestZeroWrapper(t *testing.T) {
assert := New(t)
mockAssert := New(new(testing.T))
for _, test := range zeros {
assert.True(mockAssert.Zero(test), "Zero should return true for %v", test)
}
for _, test := range nonZeros {
assert.False(mockAssert.Zero(test), "Zero should return false for %v", test)
}
}
func TestNotZeroWrapper(t *testing.T) {
assert := New(t)
mockAssert := New(new(testing.T))
for _, test := range zeros {
assert.False(mockAssert.NotZero(test), "Zero should return true for %v", test)
}
for _, test := range nonZeros {
assert.True(mockAssert.NotZero(test), "Zero should return false for %v", test)
}
}
func TestJSONEqWrapper_EqualSONString(t *testing.T) {
assert := New(new(testing.T))
if !assert.JSONEq(`{"hello": "world", "foo": "bar"}`, `{"hello": "world", "foo": "bar"}`) {
t.Error("JSONEq should return true")
}
}
func TestJSONEqWrapper_EquivalentButNotEqual(t *testing.T) {
assert := New(new(testing.T))
if !assert.JSONEq(`{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`) {
t.Error("JSONEq should return true")
}
}
func TestJSONEqWrapper_HashOfArraysAndHashes(t *testing.T) {
assert := New(new(testing.T))
if !assert.JSONEq("{\r\n\t\"numeric\": 1.5,\r\n\t\"array\": [{\"foo\": \"bar\"}, 1, \"string\", [\"nested\", \"array\", 5.5]],\r\n\t\"hash\": {\"nested\": \"hash\", \"nested_slice\": [\"this\", \"is\", \"nested\"]},\r\n\t\"string\": \"foo\"\r\n}",
"{\r\n\t\"numeric\": 1.5,\r\n\t\"hash\": {\"nested\": \"hash\", \"nested_slice\": [\"this\", \"is\", \"nested\"]},\r\n\t\"string\": \"foo\",\r\n\t\"array\": [{\"foo\": \"bar\"}, 1, \"string\", [\"nested\", \"array\", 5.5]]\r\n}") {
t.Error("JSONEq should return true")
}
}
func TestJSONEqWrapper_Array(t *testing.T) {
assert := New(new(testing.T))
if !assert.JSONEq(`["foo", {"hello": "world", "nested": "hash"}]`, `["foo", {"nested": "hash", "hello": "world"}]`) {
t.Error("JSONEq should return true")
}
}
func TestJSONEqWrapper_HashAndArrayNotEquivalent(t *testing.T) {
assert := New(new(testing.T))
if assert.JSONEq(`["foo", {"hello": "world", "nested": "hash"}]`, `{"foo": "bar", {"nested": "hash", "hello": "world"}}`) {
t.Error("JSONEq should return false")
}
}
func TestJSONEqWrapper_HashesNotEquivalent(t *testing.T) {
assert := New(new(testing.T))
if assert.JSONEq(`{"foo": "bar"}`, `{"foo": "bar", "hello": "world"}`) {
t.Error("JSONEq should return false")
}
}
func TestJSONEqWrapper_ActualIsNotJSON(t *testing.T) {
assert := New(new(testing.T))
if assert.JSONEq(`{"foo": "bar"}`, "Not JSON") {
t.Error("JSONEq should return false")
}
}
func TestJSONEqWrapper_ExpectedIsNotJSON(t *testing.T) {
assert := New(new(testing.T))
if assert.JSONEq("Not JSON", `{"foo": "bar", "hello": "world"}`) {
t.Error("JSONEq should return false")
}
}
func TestJSONEqWrapper_ExpectedAndActualNotJSON(t *testing.T) {
assert := New(new(testing.T))
if assert.JSONEq("Not JSON", "Not JSON") {
t.Error("JSONEq should return false")
}
}
func TestJSONEqWrapper_ArraysOfDifferentOrder(t *testing.T) {
assert := New(new(testing.T))
if assert.JSONEq(`["foo", {"hello": "world", "nested": "hash"}]`, `[{ "hello": "world", "nested": "hash"}, "foo"]`) {
t.Error("JSONEq should return false")
}
}

@ -10,9 +10,9 @@ import (
// httpCode is a helper that returns HTTP code of the response. It returns -1
// if building a new request fails.
func httpCode(handler http.HandlerFunc, mode, url string, values url.Values) int {
func httpCode(handler http.HandlerFunc, method, url string, values url.Values) int {
w := httptest.NewRecorder()
req, err := http.NewRequest(mode, url+"?"+values.Encode(), nil)
req, err := http.NewRequest(method, url+"?"+values.Encode(), nil)
if err != nil {
return -1
}
@ -25,8 +25,8 @@ func httpCode(handler http.HandlerFunc, mode, url string, values url.Values) int
// assert.HTTPSuccess(t, myHandler, "POST", "http://www.google.com", nil)
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPSuccess(t TestingT, handler http.HandlerFunc, mode, url string, values url.Values) bool {
code := httpCode(handler, mode, url, values)
func HTTPSuccess(t TestingT, handler http.HandlerFunc, method, url string, values url.Values) bool {
code := httpCode(handler, method, url, values)
if code == -1 {
return false
}
@ -38,8 +38,8 @@ func HTTPSuccess(t TestingT, handler http.HandlerFunc, mode, url string, values
// assert.HTTPRedirect(t, myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPRedirect(t TestingT, handler http.HandlerFunc, mode, url string, values url.Values) bool {
code := httpCode(handler, mode, url, values)
func HTTPRedirect(t TestingT, handler http.HandlerFunc, method, url string, values url.Values) bool {
code := httpCode(handler, method, url, values)
if code == -1 {
return false
}
@ -51,8 +51,8 @@ func HTTPRedirect(t TestingT, handler http.HandlerFunc, mode, url string, values
// assert.HTTPError(t, myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPError(t TestingT, handler http.HandlerFunc, mode, url string, values url.Values) bool {
code := httpCode(handler, mode, url, values)
func HTTPError(t TestingT, handler http.HandlerFunc, method, url string, values url.Values) bool {
code := httpCode(handler, method, url, values)
if code == -1 {
return false
}
@ -61,9 +61,9 @@ func HTTPError(t TestingT, handler http.HandlerFunc, mode, url string, values ur
// HTTPBody is a helper that returns HTTP body of the response. It returns
// empty string if building a new request fails.
func HTTPBody(handler http.HandlerFunc, mode, url string, values url.Values) string {
func HTTPBody(handler http.HandlerFunc, method, url string, values url.Values) string {
w := httptest.NewRecorder()
req, err := http.NewRequest(mode, url+"?"+values.Encode(), nil)
req, err := http.NewRequest(method, url+"?"+values.Encode(), nil)
if err != nil {
return ""
}
@ -77,8 +77,8 @@ func HTTPBody(handler http.HandlerFunc, mode, url string, values url.Values) str
// assert.HTTPBodyContains(t, myHandler, "www.google.com", nil, "I'm Feeling Lucky")
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPBodyContains(t TestingT, handler http.HandlerFunc, mode, url string, values url.Values, str interface{}) bool {
body := HTTPBody(handler, mode, url, values)
func HTTPBodyContains(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, str interface{}) bool {
body := HTTPBody(handler, method, url, values)
contains := strings.Contains(body, fmt.Sprint(str))
if !contains {
@ -94,8 +94,8 @@ func HTTPBodyContains(t TestingT, handler http.HandlerFunc, mode, url string, va
// assert.HTTPBodyNotContains(t, myHandler, "www.google.com", nil, "I'm Feeling Lucky")
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPBodyNotContains(t TestingT, handler http.HandlerFunc, mode, url string, values url.Values, str interface{}) bool {
body := HTTPBody(handler, mode, url, values)
func HTTPBodyNotContains(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, str interface{}) bool {
body := HTTPBody(handler, method, url, values)
contains := strings.Contains(body, fmt.Sprint(str))
if contains {
@ -104,54 +104,3 @@ func HTTPBodyNotContains(t TestingT, handler http.HandlerFunc, mode, url string,
return !contains
}
//
// Assertions Wrappers
//
// HTTPSuccess asserts that a specified handler returns a success status code.
//
// assert.HTTPSuccess(myHandler, "POST", "http://www.google.com", nil)
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPSuccess(handler http.HandlerFunc, mode, url string, values url.Values) bool {
return HTTPSuccess(a.t, handler, mode, url, values)
}
// HTTPRedirect asserts that a specified handler returns a redirect status code.
//
// assert.HTTPRedirect(myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPRedirect(handler http.HandlerFunc, mode, url string, values url.Values) bool {
return HTTPRedirect(a.t, handler, mode, url, values)
}
// HTTPError asserts that a specified handler returns an error status code.
//
// assert.HTTPError(myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPError(handler http.HandlerFunc, mode, url string, values url.Values) bool {
return HTTPError(a.t, handler, mode, url, values)
}
// HTTPBodyContains asserts that a specified handler returns a
// body that contains a string.
//
// assert.HTTPBodyContains(t, myHandler, "www.google.com", nil, "I'm Feeling Lucky")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPBodyContains(handler http.HandlerFunc, mode, url string, values url.Values, str interface{}) bool {
return HTTPBodyContains(a.t, handler, mode, url, values, str)
}
// HTTPBodyNotContains asserts that a specified handler returns a
// body that does not contain a string.
//
// assert.HTTPBodyNotContains(t, myHandler, "www.google.com", nil, "I'm Feeling Lucky")
//
// Returns whether the assertion was successful (true) or not (false).
func (a *Assertions) HTTPBodyNotContains(handler http.HandlerFunc, mode, url string, values url.Values, str interface{}) bool {
return HTTPBodyNotContains(a.t, handler, mode, url, values, str)
}

@ -1,4 +1,5 @@
// Provides a system by which it is possible to mock your objects and verify calls are happening as expected.
// Package mock provides a system by which it is possible to mock your objects
// and verify calls are happening as expected.
//
// Example Usage
//

@ -3,6 +3,7 @@ package mock
import (
"fmt"
"reflect"
"regexp"
"runtime"
"strings"
"sync"
@ -16,6 +17,7 @@ import (
type TestingT interface {
Logf(format string, args ...interface{})
Errorf(format string, args ...interface{})
FailNow()
}
/*
@ -25,6 +27,7 @@ type TestingT interface {
// Call represents a method call and is used for setting expectations,
// as well as recording activity.
type Call struct {
Parent *Mock
// The name of the method that was or will be called.
Method string
@ -47,151 +50,173 @@ type Call struct {
// Holds a handler used to manipulate arguments content that are passed by
// reference. It's useful when mocking methods such as unmarshalers or
// decoders.
Run func(Arguments)
RunFn func(Arguments)
}
func newCall(parent *Mock, methodName string, methodArguments ...interface{}) *Call {
return &Call{
Parent: parent,
Method: methodName,
Arguments: methodArguments,
ReturnArguments: make([]interface{}, 0),
Repeatability: 0,
WaitFor: nil,
RunFn: nil,
}
}
// Mock is the workhorse used to track activity on another object.
// For an example of its usage, refer to the "Example Usage" section at the top of this document.
type Mock struct {
// The method name that is currently
// being referred to by the On method.
onMethodName string
// An array of the arguments that are
// currently being referred to by the On method.
onMethodArguments Arguments
// Represents the calls that are expected of
// an object.
ExpectedCalls []Call
// Holds the calls that were made to this mocked object.
Calls []Call
// TestData holds any data that might be useful for testing. Testify ignores
// this data completely allowing you to do whatever you like with it.
testData objx.Map
mutex sync.Mutex
func (c *Call) lock() {
c.Parent.mutex.Lock()
}
// TestData holds any data that might be useful for testing. Testify ignores
// this data completely allowing you to do whatever you like with it.
func (m *Mock) TestData() objx.Map {
if m.testData == nil {
m.testData = make(objx.Map)
}
return m.testData
func (c *Call) unlock() {
c.Parent.mutex.Unlock()
}
/*
Setting expectations
*/
// On starts a description of an expectation of the specified method
// being called.
// Return specifies the return arguments for the expectation.
//
// Mock.On("MyMethod", arg1, arg2)
func (m *Mock) On(methodName string, arguments ...interface{}) *Mock {
m.onMethodName = methodName
m.onMethodArguments = arguments
// Mock.On("DoSomething").Return(errors.New("failed"))
func (c *Call) Return(returnArguments ...interface{}) *Call {
c.lock()
defer c.unlock()
for _, arg := range arguments {
if v := reflect.ValueOf(arg); v.Kind() == reflect.Func {
panic(fmt.Sprintf("cannot use Func in expectations. Use mock.AnythingOfType(\"%T\")", arg))
}
}
return m
}
// Return finishes a description of an expectation of the method (and arguments)
// specified in the most recent On method call.
//
// Mock.On("MyMethod", arg1, arg2).Return(returnArg1, returnArg2)
func (m *Mock) Return(returnArguments ...interface{}) *Mock {
m.mutex.Lock()
defer m.mutex.Unlock()
c.ReturnArguments = returnArguments
m.ExpectedCalls = append(m.ExpectedCalls, Call{m.onMethodName, m.onMethodArguments, returnArguments, 0, nil, nil})
return m
return c
}
// Once indicates that that the mock should only return the value once.
//
// Mock.On("MyMethod", arg1, arg2).Return(returnArg1, returnArg2).Once()
func (m *Mock) Once() {
m.mutex.Lock()
m.ExpectedCalls[len(m.ExpectedCalls)-1].Repeatability = 1
m.mutex.Unlock()
func (c *Call) Once() *Call {
return c.Times(1)
}
// Twice indicates that that the mock should only return the value twice.
//
// Mock.On("MyMethod", arg1, arg2).Return(returnArg1, returnArg2).Twice()
func (m *Mock) Twice() {
m.mutex.Lock()
m.ExpectedCalls[len(m.ExpectedCalls)-1].Repeatability = 2
m.mutex.Unlock()
func (c *Call) Twice() *Call {
return c.Times(2)
}
// Times indicates that that the mock should only return the indicated number
// of times.
//
// Mock.On("MyMethod", arg1, arg2).Return(returnArg1, returnArg2).Times(5)
func (m *Mock) Times(i int) {
m.mutex.Lock()
m.ExpectedCalls[len(m.ExpectedCalls)-1].Repeatability = i
m.mutex.Unlock()
func (c *Call) Times(i int) *Call {
c.lock()
defer c.unlock()
c.Repeatability = i
return c
}
// WaitUntil sets the channel that will block the mock's return until its closed
// or a message is received.
//
// Mock.On("MyMethod", arg1, arg2).WaitUntil(time.After(time.Second))
func (m *Mock) WaitUntil(w <-chan time.Time) *Mock {
m.mutex.Lock()
m.ExpectedCalls[len(m.ExpectedCalls)-1].WaitFor = w
m.mutex.Unlock()
return m
func (c *Call) WaitUntil(w <-chan time.Time) *Call {
c.lock()
defer c.unlock()
c.WaitFor = w
return c
}
// After sets how long to block until the call returns
//
// Mock.On("MyMethod", arg1, arg2).After(time.Second)
func (m *Mock) After(d time.Duration) *Mock {
return m.WaitUntil(time.After(d))
func (c *Call) After(d time.Duration) *Call {
return c.WaitUntil(time.After(d))
}
// Run sets a handler to be called before returning. It can be used when
// mocking a method such as unmarshalers that takes a pointer to a struct and
// sets properties in such struct
//
// Mock.On("Unmarshal", AnythingOfType("*map[string]interface{}").Return().Run(function(args Arguments) {
// Mock.On("Unmarshal", AnythingOfType("*map[string]interface{}").Return().Run(func(args Arguments) {
// arg := args.Get(0).(*map[string]interface{})
// arg["foo"] = "bar"
// })
func (m *Mock) Run(fn func(Arguments)) *Mock {
m.mutex.Lock()
m.ExpectedCalls[len(m.ExpectedCalls)-1].Run = fn
m.mutex.Unlock()
return m
func (c *Call) Run(fn func(Arguments)) *Call {
c.lock()
defer c.unlock()
c.RunFn = fn
return c
}
// On chains a new expectation description onto the mocked interface. This
// allows syntax like.
//
// Mock.
// On("MyMethod", 1).Return(nil).
// On("MyOtherMethod", 'a', 'b', 'c').Return(errors.New("Some Error"))
func (c *Call) On(methodName string, arguments ...interface{}) *Call {
return c.Parent.On(methodName, arguments...)
}
// Mock is the workhorse used to track activity on another object.
// For an example of its usage, refer to the "Example Usage" section at the top
// of this document.
type Mock struct {
// Represents the calls that are expected of
// an object.
ExpectedCalls []*Call
// Holds the calls that were made to this mocked object.
Calls []Call
// TestData holds any data that might be useful for testing. Testify ignores
// this data completely allowing you to do whatever you like with it.
testData objx.Map
mutex sync.Mutex
}
// TestData holds any data that might be useful for testing. Testify ignores
// this data completely allowing you to do whatever you like with it.
func (m *Mock) TestData() objx.Map {
if m.testData == nil {
m.testData = make(objx.Map)
}
return m.testData
}
/*
Recording and responding to activity
Setting expectations
*/
// On starts a description of an expectation of the specified method
// being called.
//
// Mock.On("MyMethod", arg1, arg2)
func (m *Mock) On(methodName string, arguments ...interface{}) *Call {
for _, arg := range arguments {
if v := reflect.ValueOf(arg); v.Kind() == reflect.Func {
panic(fmt.Sprintf("cannot use Func in expectations. Use mock.AnythingOfType(\"%T\")", arg))
}
}
m.mutex.Lock()
defer m.mutex.Unlock()
c := newCall(m, methodName, arguments...)
m.ExpectedCalls = append(m.ExpectedCalls, c)
return c
}
// /*
// Recording and responding to activity
// */
func (m *Mock) findExpectedCall(method string, arguments ...interface{}) (int, *Call) {
for i, call := range m.expectedCalls() {
m.mutex.Lock()
defer m.mutex.Unlock()
for i, call := range m.ExpectedCalls {
if call.Method == method && call.Repeatability > -1 {
_, diffCount := call.Arguments.Diff(arguments)
if diffCount == 0 {
return i, &call
return i, call
}
}
@ -201,7 +226,7 @@ func (m *Mock) findExpectedCall(method string, arguments ...interface{}) (int, *
func (m *Mock) findClosestCall(method string, arguments ...interface{}) (bool, *Call) {
diffCount := 0
var closestCall *Call = nil
var closestCall *Call
for _, call := range m.expectedCalls() {
if call.Method == method {
@ -209,7 +234,7 @@ func (m *Mock) findClosestCall(method string, arguments ...interface{}) (bool, *
_, tempDiffCount := call.Arguments.Diff(arguments)
if tempDiffCount < diffCount || diffCount == 0 {
diffCount = tempDiffCount
closestCall = &call
closestCall = call
}
}
@ -224,11 +249,11 @@ func (m *Mock) findClosestCall(method string, arguments ...interface{}) (bool, *
func callString(method string, arguments Arguments, includeArgumentValues bool) string {
var argValsString string = ""
var argValsString string
if includeArgumentValues {
var argVals []string
for argIndex, arg := range arguments {
argVals = append(argVals, fmt.Sprintf("%d: %v", argIndex, arg))
argVals = append(argVals, fmt.Sprintf("%d: %#v", argIndex, arg))
}
argValsString = fmt.Sprintf("\n\t\t%s", strings.Join(argVals, "\n\t\t"))
}
@ -247,6 +272,14 @@ func (m *Mock) Called(arguments ...interface{}) Arguments {
panic("Couldn't get the caller information")
}
functionPath := runtime.FuncForPC(pc).Name()
//Next four lines are required to use GCCGO function naming conventions.
//For Ex: github_com_docker_libkv_store_mock.WatchTree.pN39_github_com_docker_libkv_store_mock.Mock
//uses inteface information unlike golang github.com/docker/libkv/store/mock.(*Mock).WatchTree
//With GCCGO we need to remove interface information starting from pN<dd>.
re := regexp.MustCompile("\\.pN\\d+_")
if re.MatchString(functionPath) {
functionPath = re.Split(functionPath, -1)[0]
}
parts := strings.Split(functionPath, ".")
functionName := parts[len(parts)-1]
@ -272,17 +305,16 @@ func (m *Mock) Called(arguments ...interface{}) Arguments {
switch {
case call.Repeatability == 1:
call.Repeatability = -1
m.ExpectedCalls[found] = *call
case call.Repeatability > 1:
call.Repeatability -= 1
m.ExpectedCalls[found] = *call
call.Repeatability--
}
m.mutex.Unlock()
}
// add the call
m.mutex.Lock()
m.Calls = append(m.Calls, Call{functionName, arguments, make([]interface{}, 0), 0, nil, nil})
m.Calls = append(m.Calls, *newCall(m, functionName, arguments...))
m.mutex.Unlock()
// block if specified
@ -290,12 +322,11 @@ func (m *Mock) Called(arguments ...interface{}) Arguments {
<-call.WaitFor
}
if call.Run != nil {
call.Run(arguments)
if call.RunFn != nil {
call.RunFn(arguments)
}
return call.ReturnArguments
}
/*
@ -307,7 +338,7 @@ func (m *Mock) Called(arguments ...interface{}) Arguments {
//
// Calls may have occurred in any order.
func AssertExpectationsForObjects(t TestingT, testObjects ...interface{}) bool {
var success bool = true
var success = true
for _, obj := range testObjects {
mockObj := obj.(Mock)
success = success && mockObj.AssertExpectations(t)
@ -318,22 +349,25 @@ func AssertExpectationsForObjects(t TestingT, testObjects ...interface{}) bool {
// AssertExpectations asserts that everything specified with On and Return was
// in fact called as expected. Calls may have occurred in any order.
func (m *Mock) AssertExpectations(t TestingT) bool {
var somethingMissing bool = false
var failedExpectations int = 0
var somethingMissing bool
var failedExpectations int
// iterate through each expectation
expectedCalls := m.expectedCalls()
for _, expectedCall := range expectedCalls {
switch {
case !m.methodWasCalled(expectedCall.Method, expectedCall.Arguments):
if !m.methodWasCalled(expectedCall.Method, expectedCall.Arguments) {
somethingMissing = true
failedExpectations++
t.Logf("\u274C\t%s(%s)", expectedCall.Method, expectedCall.Arguments.String())
case expectedCall.Repeatability > 0:
somethingMissing = true
failedExpectations++
default:
t.Logf("\u2705\t%s(%s)", expectedCall.Method, expectedCall.Arguments.String())
} else {
m.mutex.Lock()
if expectedCall.Repeatability > 0 {
somethingMissing = true
failedExpectations++
} else {
t.Logf("\u2705\t%s(%s)", expectedCall.Method, expectedCall.Arguments.String())
}
m.mutex.Unlock()
}
}
@ -346,13 +380,13 @@ func (m *Mock) AssertExpectations(t TestingT) bool {
// AssertNumberOfCalls asserts that the method was called expectedCalls times.
func (m *Mock) AssertNumberOfCalls(t TestingT, methodName string, expectedCalls int) bool {
var actualCalls int = 0
var actualCalls int
for _, call := range m.calls() {
if call.Method == methodName {
actualCalls++
}
}
return assert.Equal(t, actualCalls, expectedCalls, fmt.Sprintf("Expected number of calls (%d) does not match the actual number of calls (%d).", expectedCalls, actualCalls))
return assert.Equal(t, expectedCalls, actualCalls, fmt.Sprintf("Expected number of calls (%d) does not match the actual number of calls (%d).", expectedCalls, actualCalls))
}
// AssertCalled asserts that the method was called.
@ -390,10 +424,10 @@ func (m *Mock) methodWasCalled(methodName string, expected []interface{}) bool {
return false
}
func (m *Mock) expectedCalls() []Call {
func (m *Mock) expectedCalls() []*Call {
m.mutex.Lock()
defer m.mutex.Unlock()
return append([]Call{}, m.ExpectedCalls...)
return append([]*Call{}, m.ExpectedCalls...)
}
func (m *Mock) calls() []Call {
@ -410,8 +444,8 @@ func (m *Mock) calls() []Call {
type Arguments []interface{}
const (
// The "any" argument. Used in Diff and Assert when
// the argument being tested shouldn't be taken into consideration.
// Anything is used in Diff and Assert when the argument being tested
// shouldn't be taken into consideration.
Anything string = "mock.Anything"
)
@ -428,6 +462,54 @@ func AnythingOfType(t string) AnythingOfTypeArgument {
return AnythingOfTypeArgument(t)
}
// argumentMatcher performs custom argument matching, returning whether or
// not the argument is matched by the expectation fixture function.
type argumentMatcher struct {
// fn is a function which accepts one argument, and returns a bool.
fn reflect.Value
}
func (f argumentMatcher) Matches(argument interface{}) bool {
expectType := f.fn.Type().In(0)
if reflect.TypeOf(argument).AssignableTo(expectType) {
result := f.fn.Call([]reflect.Value{reflect.ValueOf(argument)})
return result[0].Bool()
}
return false
}
func (f argumentMatcher) String() string {
return fmt.Sprintf("func(%s) bool", f.fn.Type().In(0).Name())
}
// MatchedBy can be used to match a mock call based on only certain properties
// from a complex struct or some calculation. It takes a function that will be
// evaluated with the called argument and will return true when there's a match
// and false otherwise.
//
// Example:
// m.On("Do", func(req *http.Request) bool { return req.Host == "example.com" })
//
// |fn|, must be a function accepting a single argument (of the expected type)
// which returns a bool. If |fn| doesn't match the required signature,
// MathedBy() panics.
func MatchedBy(fn interface{}) argumentMatcher {
fnType := reflect.TypeOf(fn)
if fnType.Kind() != reflect.Func {
panic(fmt.Sprintf("assert: arguments: %s is not a func", fn))
}
if fnType.NumIn() != 1 {
panic(fmt.Sprintf("assert: arguments: %s does not take exactly one argument", fn))
}
if fnType.NumOut() != 1 || fnType.Out(0).Kind() != reflect.Bool {
panic(fmt.Sprintf("assert: arguments: %s does not return a bool", fn))
}
return argumentMatcher{fn: reflect.ValueOf(fn)}
}
// Get Returns the argument at the specified index.
func (args Arguments) Get(index int) interface{} {
if index+1 > len(args) {
@ -452,10 +534,10 @@ func (args Arguments) Is(objects ...interface{}) bool {
// Returns the diff string and number of differences found.
func (args Arguments) Diff(objects []interface{}) (string, int) {
var output string = "\n"
var output = "\n"
var differences int
var maxArgCount int = len(args)
var maxArgCount = len(args)
if len(objects) > maxArgCount {
maxArgCount = len(objects)
}
@ -475,7 +557,14 @@ func (args Arguments) Diff(objects []interface{}) (string, int) {
expected = args[i]
}
if reflect.TypeOf(expected) == reflect.TypeOf((*AnythingOfTypeArgument)(nil)).Elem() {
if matcher, ok := expected.(argumentMatcher); ok {
if matcher.Matches(actual) {
output = fmt.Sprintf("%s\t%d: \u2705 %s matched by %s\n", output, i, actual, matcher)
} else {
differences++
output = fmt.Sprintf("%s\t%d: \u2705 %s not matched by %s\n", output, i, actual, matcher)
}
} else if reflect.TypeOf(expected) == reflect.TypeOf((*AnythingOfTypeArgument)(nil)).Elem() {
// type checking
if reflect.TypeOf(actual).Name() != string(expected.(AnythingOfTypeArgument)) && reflect.TypeOf(actual).String() != string(expected.(AnythingOfTypeArgument)) {
@ -543,7 +632,7 @@ func (args Arguments) String(indexOrNil ...int) string {
return strings.Join(argsStr, ",")
} else if len(indexOrNil) == 1 {
// Index has been specified - get the argument at that index
var index int = indexOrNil[0]
var index = indexOrNil[0]
var s string
var ok bool
if s, ok = args.Get(index).(string); !ok {

@ -3,6 +3,7 @@ package mock
import (
"errors"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"testing"
"time"
)
@ -67,62 +68,154 @@ func (i *TestExampleImplementation) TheExampleMethodFuncType(fn ExampleFuncType)
func Test_Mock_TestData(t *testing.T) {
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
if assert.NotNil(t, mockedService.TestData()) {
mockedService.TestData().Set("something", 123)
assert.Equal(t, 123, mockedService.TestData().Get("something").Data())
}
}
func Test_Mock_On(t *testing.T) {
// make a test impl object
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
assert.Equal(t, mockedService.On("TheExampleMethod"), &mockedService.Mock)
assert.Equal(t, "TheExampleMethod", mockedService.onMethodName)
c := mockedService.On("TheExampleMethod")
assert.Equal(t, []*Call{c}, mockedService.ExpectedCalls)
assert.Equal(t, "TheExampleMethod", c.Method)
}
func Test_Mock_Chained_On(t *testing.T) {
// make a test impl object
var mockedService = new(TestExampleImplementation)
mockedService.
On("TheExampleMethod", 1, 2, 3).
Return(0).
On("TheExampleMethod3", AnythingOfType("*mock.ExampleType")).
Return(nil)
expectedCalls := []*Call{
&Call{
Parent: &mockedService.Mock,
Method: "TheExampleMethod",
Arguments: []interface{}{1, 2, 3},
ReturnArguments: []interface{}{0},
},
&Call{
Parent: &mockedService.Mock,
Method: "TheExampleMethod3",
Arguments: []interface{}{AnythingOfType("*mock.ExampleType")},
ReturnArguments: []interface{}{nil},
},
}
assert.Equal(t, expectedCalls, mockedService.ExpectedCalls)
}
func Test_Mock_On_WithArgs(t *testing.T) {
// make a test impl object
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
assert.Equal(t, mockedService.On("TheExampleMethod", 1, 2, 3), &mockedService.Mock)
assert.Equal(t, "TheExampleMethod", mockedService.onMethodName)
assert.Equal(t, 1, mockedService.onMethodArguments[0])
assert.Equal(t, 2, mockedService.onMethodArguments[1])
assert.Equal(t, 3, mockedService.onMethodArguments[2])
c := mockedService.On("TheExampleMethod", 1, 2, 3, 4)
assert.Equal(t, []*Call{c}, mockedService.ExpectedCalls)
assert.Equal(t, "TheExampleMethod", c.Method)
assert.Equal(t, Arguments{1, 2, 3, 4}, c.Arguments)
}
func Test_Mock_On_WithFuncArg(t *testing.T) {
// make a test impl object
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
assert.Equal(t, mockedService.On("TheExampleMethodFunc", AnythingOfType("func(string) error")).Return(nil), &mockedService.Mock)
assert.Equal(t, "TheExampleMethodFunc", mockedService.onMethodName)
assert.Equal(t, AnythingOfType("func(string) error"), mockedService.onMethodArguments[0])
c := mockedService.
On("TheExampleMethodFunc", AnythingOfType("func(string) error")).
Return(nil)
assert.Equal(t, []*Call{c}, mockedService.ExpectedCalls)
assert.Equal(t, "TheExampleMethodFunc", c.Method)
assert.Equal(t, 1, len(c.Arguments))
assert.Equal(t, AnythingOfType("func(string) error"), c.Arguments[0])
fn := func(string) error { return nil }
mockedService.TheExampleMethodFunc(fn)
assert.NotPanics(t, func() {
mockedService.TheExampleMethodFunc(fn)
})
}
func Test_Mock_On_WithIntArgMatcher(t *testing.T) {
var mockedService TestExampleImplementation
mockedService.On("TheExampleMethod",
MatchedBy(func(a int) bool {
return a == 1
}), MatchedBy(func(b int) bool {
return b == 2
}), MatchedBy(func(c int) bool {
return c == 3
})).Return(0, nil)
assert.Panics(t, func() {
mockedService.TheExampleMethod(1, 2, 4)
})
assert.Panics(t, func() {
mockedService.TheExampleMethod(2, 2, 3)
})
assert.NotPanics(t, func() {
mockedService.TheExampleMethod(1, 2, 3)
})
}
func Test_Mock_On_WithPtrArgMatcher(t *testing.T) {
var mockedService TestExampleImplementation
mockedService.On("TheExampleMethod3",
MatchedBy(func(a *ExampleType) bool { return a.ran == true }),
).Return(nil)
mockedService.On("TheExampleMethod3",
MatchedBy(func(a *ExampleType) bool { return a.ran == false }),
).Return(errors.New("error"))
assert.Equal(t, mockedService.TheExampleMethod3(&ExampleType{true}), nil)
assert.EqualError(t, mockedService.TheExampleMethod3(&ExampleType{false}), "error")
}
func Test_Mock_On_WithFuncArgMatcher(t *testing.T) {
var mockedService TestExampleImplementation
fixture1, fixture2 := errors.New("fixture1"), errors.New("fixture2")
mockedService.On("TheExampleMethodFunc",
MatchedBy(func(a func(string) error) bool { return a("string") == fixture1 }),
).Return(errors.New("fixture1"))
mockedService.On("TheExampleMethodFunc",
MatchedBy(func(a func(string) error) bool { return a("string") == fixture2 }),
).Return(errors.New("fixture2"))
assert.EqualError(t, mockedService.TheExampleMethodFunc(
func(string) error { return fixture1 }), "fixture1")
assert.EqualError(t, mockedService.TheExampleMethodFunc(
func(string) error { return fixture2 }), "fixture2")
}
func Test_Mock_On_WithVariadicFunc(t *testing.T) {
// make a test impl object
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
c := mockedService.
On("TheExampleMethodVariadic", []int{1, 2, 3}).
Return(nil)
assert.Equal(t, mockedService.On("TheExampleMethodVariadic", []int{1, 2, 3}).Return(nil), &mockedService.Mock)
assert.Equal(t, "TheExampleMethodVariadic", mockedService.onMethodName)
assert.Equal(t, []int{1, 2, 3}, mockedService.onMethodArguments[0])
assert.Equal(t, []*Call{c}, mockedService.ExpectedCalls)
assert.Equal(t, 1, len(c.Arguments))
assert.Equal(t, []int{1, 2, 3}, c.Arguments[0])
assert.NotPanics(t, func() {
mockedService.TheExampleMethodVariadic(1, 2, 3)
@ -136,11 +229,14 @@ func Test_Mock_On_WithVariadicFunc(t *testing.T) {
func Test_Mock_On_WithVariadicFuncWithInterface(t *testing.T) {
// make a test impl object
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
assert.Equal(t, mockedService.On("TheExampleMethodVariadicInterface", []interface{}{1, 2, 3}).Return(nil), &mockedService.Mock)
assert.Equal(t, "TheExampleMethodVariadicInterface", mockedService.onMethodName)
assert.Equal(t, []interface{}{1, 2, 3}, mockedService.onMethodArguments[0])
c := mockedService.On("TheExampleMethodVariadicInterface", []interface{}{1, 2, 3}).
Return(nil)
assert.Equal(t, []*Call{c}, mockedService.ExpectedCalls)
assert.Equal(t, 1, len(c.Arguments))
assert.Equal(t, []interface{}{1, 2, 3}, c.Arguments[0])
assert.NotPanics(t, func() {
mockedService.TheExampleMethodVariadicInterface(1, 2, 3)
@ -154,12 +250,16 @@ func Test_Mock_On_WithVariadicFuncWithInterface(t *testing.T) {
func Test_Mock_On_WithVariadicFuncWithEmptyInterfaceArray(t *testing.T) {
// make a test impl object
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
var expected []interface{}
assert.Equal(t, mockedService.On("TheExampleMethodVariadicInterface", expected).Return(nil), &mockedService.Mock)
assert.Equal(t, "TheExampleMethodVariadicInterface", mockedService.onMethodName)
assert.Equal(t, expected, mockedService.onMethodArguments[0])
c := mockedService.
On("TheExampleMethodVariadicInterface", expected).
Return(nil)
assert.Equal(t, []*Call{c}, mockedService.ExpectedCalls)
assert.Equal(t, 1, len(c.Arguments))
assert.Equal(t, expected, c.Arguments[0])
assert.NotPanics(t, func() {
mockedService.TheExampleMethodVariadicInterface()
@ -172,7 +272,7 @@ func Test_Mock_On_WithVariadicFuncWithEmptyInterfaceArray(t *testing.T) {
func Test_Mock_On_WithFuncPanics(t *testing.T) {
// make a test impl object
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
assert.Panics(t, func() {
mockedService.On("TheExampleMethodFunc", func(string) error { return nil })
@ -182,217 +282,248 @@ func Test_Mock_On_WithFuncPanics(t *testing.T) {
func Test_Mock_On_WithFuncTypeArg(t *testing.T) {
// make a test impl object
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
assert.Equal(t, mockedService.On("TheExampleMethodFuncType", AnythingOfType("mock.ExampleFuncType")).Return(nil), &mockedService.Mock)
assert.Equal(t, "TheExampleMethodFuncType", mockedService.onMethodName)
assert.Equal(t, AnythingOfType("mock.ExampleFuncType"), mockedService.onMethodArguments[0])
c := mockedService.
On("TheExampleMethodFuncType", AnythingOfType("mock.ExampleFuncType")).
Return(nil)
fn := func(string) error { return nil }
mockedService.TheExampleMethodFuncType(fn)
assert.Equal(t, []*Call{c}, mockedService.ExpectedCalls)
assert.Equal(t, 1, len(c.Arguments))
assert.Equal(t, AnythingOfType("mock.ExampleFuncType"), c.Arguments[0])
fn := func(string) error { return nil }
assert.NotPanics(t, func() {
mockedService.TheExampleMethodFuncType(fn)
})
}
func Test_Mock_Return(t *testing.T) {
// make a test impl object
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
assert.Equal(t, mockedService.On("TheExampleMethod", "A", "B", true).Return(1, "two", true), &mockedService.Mock)
c := mockedService.
On("TheExampleMethod", "A", "B", true).
Return(1, "two", true)
// ensure the call was created
if assert.Equal(t, 1, len(mockedService.ExpectedCalls)) {
call := mockedService.ExpectedCalls[0]
require.Equal(t, []*Call{c}, mockedService.ExpectedCalls)
assert.Equal(t, "TheExampleMethod", call.Method)
assert.Equal(t, "A", call.Arguments[0])
assert.Equal(t, "B", call.Arguments[1])
assert.Equal(t, true, call.Arguments[2])
assert.Equal(t, 1, call.ReturnArguments[0])
assert.Equal(t, "two", call.ReturnArguments[1])
assert.Equal(t, true, call.ReturnArguments[2])
assert.Equal(t, 0, call.Repeatability)
assert.Nil(t, call.WaitFor)
}
call := mockedService.ExpectedCalls[0]
assert.Equal(t, "TheExampleMethod", call.Method)
assert.Equal(t, "A", call.Arguments[0])
assert.Equal(t, "B", call.Arguments[1])
assert.Equal(t, true, call.Arguments[2])
assert.Equal(t, 1, call.ReturnArguments[0])
assert.Equal(t, "two", call.ReturnArguments[1])
assert.Equal(t, true, call.ReturnArguments[2])
assert.Equal(t, 0, call.Repeatability)
assert.Nil(t, call.WaitFor)
}
func Test_Mock_Return_WaitUntil(t *testing.T) {
// make a test impl object
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
ch := time.After(time.Second)
assert.Equal(t, mockedService.Mock.On("TheExampleMethod", "A", "B", true).Return(1, "two", true).WaitUntil(ch), &mockedService.Mock)
c := mockedService.Mock.
On("TheExampleMethod", "A", "B", true).
WaitUntil(ch).
Return(1, "two", true)
// ensure the call was created
if assert.Equal(t, 1, len(mockedService.Mock.ExpectedCalls)) {
call := mockedService.Mock.ExpectedCalls[0]
// assert that the call was created
require.Equal(t, []*Call{c}, mockedService.ExpectedCalls)
assert.Equal(t, "TheExampleMethod", call.Method)
assert.Equal(t, "A", call.Arguments[0])
assert.Equal(t, "B", call.Arguments[1])
assert.Equal(t, true, call.Arguments[2])
assert.Equal(t, 1, call.ReturnArguments[0])
assert.Equal(t, "two", call.ReturnArguments[1])
assert.Equal(t, true, call.ReturnArguments[2])
assert.Equal(t, 0, call.Repeatability)
assert.Equal(t, ch, call.WaitFor)
}
call := mockedService.ExpectedCalls[0]
assert.Equal(t, "TheExampleMethod", call.Method)
assert.Equal(t, "A", call.Arguments[0])
assert.Equal(t, "B", call.Arguments[1])
assert.Equal(t, true, call.Arguments[2])
assert.Equal(t, 1, call.ReturnArguments[0])
assert.Equal(t, "two", call.ReturnArguments[1])
assert.Equal(t, true, call.ReturnArguments[2])
assert.Equal(t, 0, call.Repeatability)
assert.Equal(t, ch, call.WaitFor)
}
func Test_Mock_Return_After(t *testing.T) {
// make a test impl object
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
assert.Equal(t, mockedService.Mock.On("TheExampleMethod", "A", "B", true).Return(1, "two", true).After(time.Second), &mockedService.Mock)
c := mockedService.Mock.
On("TheExampleMethod", "A", "B", true).
Return(1, "two", true).
After(time.Second)
// ensure the call was created
if assert.Equal(t, 1, len(mockedService.Mock.ExpectedCalls)) {
call := mockedService.Mock.ExpectedCalls[0]
require.Equal(t, []*Call{c}, mockedService.ExpectedCalls)
assert.Equal(t, "TheExampleMethod", call.Method)
assert.Equal(t, "A", call.Arguments[0])
assert.Equal(t, "B", call.Arguments[1])
assert.Equal(t, true, call.Arguments[2])
assert.Equal(t, 1, call.ReturnArguments[0])
assert.Equal(t, "two", call.ReturnArguments[1])
assert.Equal(t, true, call.ReturnArguments[2])
assert.Equal(t, 0, call.Repeatability)
assert.NotEqual(t, nil, call.WaitFor)
call := mockedService.Mock.ExpectedCalls[0]
}
assert.Equal(t, "TheExampleMethod", call.Method)
assert.Equal(t, "A", call.Arguments[0])
assert.Equal(t, "B", call.Arguments[1])
assert.Equal(t, true, call.Arguments[2])
assert.Equal(t, 1, call.ReturnArguments[0])
assert.Equal(t, "two", call.ReturnArguments[1])
assert.Equal(t, true, call.ReturnArguments[2])
assert.Equal(t, 0, call.Repeatability)
assert.NotEqual(t, nil, call.WaitFor)
}
func Test_Mock_Return_Run(t *testing.T) {
// make a test impl object
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
assert.Equal(t, mockedService.Mock.On("TheExampleMethod3", AnythingOfType("*mock.ExampleType")).Return(nil).Run(func(args Arguments) {
fn := func(args Arguments) {
arg := args.Get(0).(*ExampleType)
arg.ran = true
}), &mockedService.Mock)
}
// ensure the call was created
if assert.Equal(t, 1, len(mockedService.Mock.ExpectedCalls)) {
call := mockedService.Mock.ExpectedCalls[0]
c := mockedService.Mock.
On("TheExampleMethod3", AnythingOfType("*mock.ExampleType")).
Return(nil).
Run(fn)
assert.Equal(t, "TheExampleMethod3", call.Method)
assert.Equal(t, AnythingOfType("*mock.ExampleType"), call.Arguments[0])
assert.Equal(t, nil, call.ReturnArguments[0])
assert.Equal(t, 0, call.Repeatability)
assert.NotEqual(t, nil, call.WaitFor)
assert.NotNil(t, call.Run)
require.Equal(t, []*Call{c}, mockedService.ExpectedCalls)
}
call := mockedService.Mock.ExpectedCalls[0]
assert.Equal(t, "TheExampleMethod3", call.Method)
assert.Equal(t, AnythingOfType("*mock.ExampleType"), call.Arguments[0])
assert.Equal(t, nil, call.ReturnArguments[0])
assert.Equal(t, 0, call.Repeatability)
assert.NotEqual(t, nil, call.WaitFor)
assert.NotNil(t, call.Run)
et := ExampleType{}
assert.Equal(t, false, et.ran)
mockedService.TheExampleMethod3(&et)
assert.Equal(t, true, et.ran)
}
func Test_Mock_Return_Run_Out_Of_Order(t *testing.T) {
// make a test impl object
var mockedService = new(TestExampleImplementation)
f := func(args Arguments) {
arg := args.Get(0).(*ExampleType)
arg.ran = true
}
c := mockedService.Mock.
On("TheExampleMethod3", AnythingOfType("*mock.ExampleType")).
Run(f).
Return(nil)
require.Equal(t, []*Call{c}, mockedService.ExpectedCalls)
call := mockedService.Mock.ExpectedCalls[0]
assert.Equal(t, "TheExampleMethod3", call.Method)
assert.Equal(t, AnythingOfType("*mock.ExampleType"), call.Arguments[0])
assert.Equal(t, nil, call.ReturnArguments[0])
assert.Equal(t, 0, call.Repeatability)
assert.NotEqual(t, nil, call.WaitFor)
assert.NotNil(t, call.Run)
}
func Test_Mock_Return_Once(t *testing.T) {
// make a test impl object
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
mockedService.On("TheExampleMethod", "A", "B", true).Return(1, "two", true).Once()
var mockedService = new(TestExampleImplementation)
// ensure the call was created
if assert.Equal(t, 1, len(mockedService.ExpectedCalls)) {
call := mockedService.ExpectedCalls[0]
c := mockedService.On("TheExampleMethod", "A", "B", true).
Return(1, "two", true).
Once()
assert.Equal(t, "TheExampleMethod", call.Method)
assert.Equal(t, "A", call.Arguments[0])
assert.Equal(t, "B", call.Arguments[1])
assert.Equal(t, true, call.Arguments[2])
assert.Equal(t, 1, call.ReturnArguments[0])
assert.Equal(t, "two", call.ReturnArguments[1])
assert.Equal(t, true, call.ReturnArguments[2])
assert.Equal(t, 1, call.Repeatability)
assert.Nil(t, call.WaitFor)
require.Equal(t, []*Call{c}, mockedService.ExpectedCalls)
}
call := mockedService.ExpectedCalls[0]
assert.Equal(t, "TheExampleMethod", call.Method)
assert.Equal(t, "A", call.Arguments[0])
assert.Equal(t, "B", call.Arguments[1])
assert.Equal(t, true, call.Arguments[2])
assert.Equal(t, 1, call.ReturnArguments[0])
assert.Equal(t, "two", call.ReturnArguments[1])
assert.Equal(t, true, call.ReturnArguments[2])
assert.Equal(t, 1, call.Repeatability)
assert.Nil(t, call.WaitFor)
}
func Test_Mock_Return_Twice(t *testing.T) {
// make a test impl object
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
mockedService.On("TheExampleMethod", "A", "B", true).Return(1, "two", true).Twice()
var mockedService = new(TestExampleImplementation)
// ensure the call was created
if assert.Equal(t, 1, len(mockedService.ExpectedCalls)) {
call := mockedService.ExpectedCalls[0]
c := mockedService.
On("TheExampleMethod", "A", "B", true).
Return(1, "two", true).
Twice()
assert.Equal(t, "TheExampleMethod", call.Method)
assert.Equal(t, "A", call.Arguments[0])
assert.Equal(t, "B", call.Arguments[1])
assert.Equal(t, true, call.Arguments[2])
assert.Equal(t, 1, call.ReturnArguments[0])
assert.Equal(t, "two", call.ReturnArguments[1])
assert.Equal(t, true, call.ReturnArguments[2])
assert.Equal(t, 2, call.Repeatability)
assert.Nil(t, call.WaitFor)
require.Equal(t, []*Call{c}, mockedService.ExpectedCalls)
}
call := mockedService.ExpectedCalls[0]
assert.Equal(t, "TheExampleMethod", call.Method)
assert.Equal(t, "A", call.Arguments[0])
assert.Equal(t, "B", call.Arguments[1])
assert.Equal(t, true, call.Arguments[2])
assert.Equal(t, 1, call.ReturnArguments[0])
assert.Equal(t, "two", call.ReturnArguments[1])
assert.Equal(t, true, call.ReturnArguments[2])
assert.Equal(t, 2, call.Repeatability)
assert.Nil(t, call.WaitFor)
}
func Test_Mock_Return_Times(t *testing.T) {
// make a test impl object
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
mockedService.On("TheExampleMethod", "A", "B", true).Return(1, "two", true).Times(5)
c := mockedService.
On("TheExampleMethod", "A", "B", true).
Return(1, "two", true).
Times(5)
// ensure the call was created
if assert.Equal(t, 1, len(mockedService.ExpectedCalls)) {
call := mockedService.ExpectedCalls[0]
require.Equal(t, []*Call{c}, mockedService.ExpectedCalls)
assert.Equal(t, "TheExampleMethod", call.Method)
assert.Equal(t, "A", call.Arguments[0])
assert.Equal(t, "B", call.Arguments[1])
assert.Equal(t, true, call.Arguments[2])
assert.Equal(t, 1, call.ReturnArguments[0])
assert.Equal(t, "two", call.ReturnArguments[1])
assert.Equal(t, true, call.ReturnArguments[2])
assert.Equal(t, 5, call.Repeatability)
assert.Nil(t, call.WaitFor)
}
call := mockedService.ExpectedCalls[0]
assert.Equal(t, "TheExampleMethod", call.Method)
assert.Equal(t, "A", call.Arguments[0])
assert.Equal(t, "B", call.Arguments[1])
assert.Equal(t, true, call.Arguments[2])
assert.Equal(t, 1, call.ReturnArguments[0])
assert.Equal(t, "two", call.ReturnArguments[1])
assert.Equal(t, true, call.ReturnArguments[2])
assert.Equal(t, 5, call.Repeatability)
assert.Nil(t, call.WaitFor)
}
func Test_Mock_Return_Nothing(t *testing.T) {
// make a test impl object
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
assert.Equal(t, mockedService.On("TheExampleMethod", "A", "B", true).Return(), &mockedService.Mock)
c := mockedService.
On("TheExampleMethod", "A", "B", true).
Return()
// ensure the call was created
if assert.Equal(t, 1, len(mockedService.ExpectedCalls)) {
call := mockedService.ExpectedCalls[0]
require.Equal(t, []*Call{c}, mockedService.ExpectedCalls)
assert.Equal(t, "TheExampleMethod", call.Method)
assert.Equal(t, "A", call.Arguments[0])
assert.Equal(t, "B", call.Arguments[1])
assert.Equal(t, true, call.Arguments[2])
assert.Equal(t, 0, len(call.ReturnArguments))
}
call := mockedService.ExpectedCalls[0]
assert.Equal(t, "TheExampleMethod", call.Method)
assert.Equal(t, "A", call.Arguments[0])
assert.Equal(t, "B", call.Arguments[1])
assert.Equal(t, true, call.Arguments[2])
assert.Equal(t, 0, len(call.ReturnArguments))
}
func Test_Mock_findExpectedCall(t *testing.T) {
@ -455,7 +586,7 @@ func Test_callString(t *testing.T) {
func Test_Mock_Called(t *testing.T) {
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
mockedService.On("Test_Mock_Called", 1, 2, 3).Return(5, "6", true)
@ -482,7 +613,7 @@ func asyncCall(m *Mock, ch chan Arguments) {
func Test_Mock_Called_blocks(t *testing.T) {
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
mockedService.Mock.On("asyncCall", 1, 2, 3).Return(5, "6", true).After(2 * time.Millisecond)
@ -515,10 +646,15 @@ func Test_Mock_Called_blocks(t *testing.T) {
func Test_Mock_Called_For_Bounded_Repeatability(t *testing.T) {
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
mockedService.On("Test_Mock_Called_For_Bounded_Repeatability", 1, 2, 3).Return(5, "6", true).Once()
mockedService.On("Test_Mock_Called_For_Bounded_Repeatability", 1, 2, 3).Return(-1, "hi", false)
mockedService.
On("Test_Mock_Called_For_Bounded_Repeatability", 1, 2, 3).
Return(5, "6", true).
Once()
mockedService.
On("Test_Mock_Called_For_Bounded_Repeatability", 1, 2, 3).
Return(-1, "hi", false)
returnArguments1 := mockedService.Called(1, 2, 3)
returnArguments2 := mockedService.Called(1, 2, 3)
@ -551,7 +687,7 @@ func Test_Mock_Called_For_Bounded_Repeatability(t *testing.T) {
func Test_Mock_Called_For_SetTime_Expectation(t *testing.T) {
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
mockedService.On("TheExampleMethod", 1, 2, 3).Return(5, "6", true).Times(4)
@ -567,7 +703,7 @@ func Test_Mock_Called_For_SetTime_Expectation(t *testing.T) {
func Test_Mock_Called_Unexpected(t *testing.T) {
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
// make sure it panics if no expectation was made
assert.Panics(t, func() {
@ -578,9 +714,9 @@ func Test_Mock_Called_Unexpected(t *testing.T) {
func Test_AssertExpectationsForObjects_Helper(t *testing.T) {
var mockedService1 *TestExampleImplementation = new(TestExampleImplementation)
var mockedService2 *TestExampleImplementation = new(TestExampleImplementation)
var mockedService3 *TestExampleImplementation = new(TestExampleImplementation)
var mockedService1 = new(TestExampleImplementation)
var mockedService2 = new(TestExampleImplementation)
var mockedService3 = new(TestExampleImplementation)
mockedService1.On("Test_AssertExpectationsForObjects_Helper", 1).Return()
mockedService2.On("Test_AssertExpectationsForObjects_Helper", 2).Return()
@ -596,9 +732,9 @@ func Test_AssertExpectationsForObjects_Helper(t *testing.T) {
func Test_AssertExpectationsForObjects_Helper_Failed(t *testing.T) {
var mockedService1 *TestExampleImplementation = new(TestExampleImplementation)
var mockedService2 *TestExampleImplementation = new(TestExampleImplementation)
var mockedService3 *TestExampleImplementation = new(TestExampleImplementation)
var mockedService1 = new(TestExampleImplementation)
var mockedService2 = new(TestExampleImplementation)
var mockedService3 = new(TestExampleImplementation)
mockedService1.On("Test_AssertExpectationsForObjects_Helper_Failed", 1).Return()
mockedService2.On("Test_AssertExpectationsForObjects_Helper_Failed", 2).Return()
@ -614,7 +750,7 @@ func Test_AssertExpectationsForObjects_Helper_Failed(t *testing.T) {
func Test_Mock_AssertExpectations(t *testing.T) {
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
mockedService.On("Test_Mock_AssertExpectations", 1, 2, 3).Return(5, 6, 7)
@ -631,7 +767,7 @@ func Test_Mock_AssertExpectations(t *testing.T) {
func Test_Mock_AssertExpectationsCustomType(t *testing.T) {
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
mockedService.On("TheExampleMethod3", AnythingOfType("*mock.ExampleType")).Return(nil).Once()
@ -648,7 +784,7 @@ func Test_Mock_AssertExpectationsCustomType(t *testing.T) {
func Test_Mock_AssertExpectations_With_Repeatability(t *testing.T) {
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
mockedService.On("Test_Mock_AssertExpectations_With_Repeatability", 1, 2, 3).Return(5, 6, 7).Twice()
@ -669,7 +805,7 @@ func Test_Mock_AssertExpectations_With_Repeatability(t *testing.T) {
func Test_Mock_TwoCallsWithDifferentArguments(t *testing.T) {
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
mockedService.On("Test_Mock_TwoCallsWithDifferentArguments", 1, 2, 3).Return(5, 6, 7)
mockedService.On("Test_Mock_TwoCallsWithDifferentArguments", 4, 5, 6).Return(5, 6, 7)
@ -688,7 +824,7 @@ func Test_Mock_TwoCallsWithDifferentArguments(t *testing.T) {
func Test_Mock_AssertNumberOfCalls(t *testing.T) {
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
mockedService.On("Test_Mock_AssertNumberOfCalls", 1, 2, 3).Return(5, 6, 7)
@ -702,7 +838,7 @@ func Test_Mock_AssertNumberOfCalls(t *testing.T) {
func Test_Mock_AssertCalled(t *testing.T) {
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
mockedService.On("Test_Mock_AssertCalled", 1, 2, 3).Return(5, 6, 7)
@ -714,9 +850,11 @@ func Test_Mock_AssertCalled(t *testing.T) {
func Test_Mock_AssertCalled_WithAnythingOfTypeArgument(t *testing.T) {
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
mockedService.On("Test_Mock_AssertCalled_WithAnythingOfTypeArgument", Anything, Anything, Anything).Return()
mockedService.
On("Test_Mock_AssertCalled_WithAnythingOfTypeArgument", Anything, Anything, Anything).
Return()
mockedService.Called(1, "two", []uint8("three"))
@ -726,7 +864,7 @@ func Test_Mock_AssertCalled_WithAnythingOfTypeArgument(t *testing.T) {
func Test_Mock_AssertCalled_WithArguments(t *testing.T) {
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
mockedService.On("Test_Mock_AssertCalled_WithArguments", 1, 2, 3).Return(5, 6, 7)
@ -740,7 +878,7 @@ func Test_Mock_AssertCalled_WithArguments(t *testing.T) {
func Test_Mock_AssertCalled_WithArguments_With_Repeatability(t *testing.T) {
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
mockedService.On("Test_Mock_AssertCalled_WithArguments_With_Repeatability", 1, 2, 3).Return(5, 6, 7).Once()
mockedService.On("Test_Mock_AssertCalled_WithArguments_With_Repeatability", 2, 3, 4).Return(5, 6, 7).Once()
@ -757,7 +895,7 @@ func Test_Mock_AssertCalled_WithArguments_With_Repeatability(t *testing.T) {
func Test_Mock_AssertNotCalled(t *testing.T) {
var mockedService *TestExampleImplementation = new(TestExampleImplementation)
var mockedService = new(TestExampleImplementation)
mockedService.On("Test_Mock_AssertNotCalled", 1, 2, 3).Return(5, 6, 7)
@ -772,7 +910,7 @@ func Test_Mock_AssertNotCalled(t *testing.T) {
*/
func Test_Arguments_Get(t *testing.T) {
var args Arguments = []interface{}{"string", 123, true}
var args = Arguments([]interface{}{"string", 123, true})
assert.Equal(t, "string", args.Get(0).(string))
assert.Equal(t, 123, args.Get(1).(int))
@ -782,7 +920,7 @@ func Test_Arguments_Get(t *testing.T) {
func Test_Arguments_Is(t *testing.T) {
var args Arguments = []interface{}{"string", 123, true}
var args = Arguments([]interface{}{"string", 123, true})
assert.True(t, args.Is("string", 123, true))
assert.False(t, args.Is("wrong", 456, false))
@ -791,7 +929,7 @@ func Test_Arguments_Is(t *testing.T) {
func Test_Arguments_Diff(t *testing.T) {
var args Arguments = []interface{}{"Hello World", 123, true}
var args = Arguments([]interface{}{"Hello World", 123, true})
var diff string
var count int
diff, count = args.Diff([]interface{}{"Hello World", 456, "false"})
@ -804,7 +942,7 @@ func Test_Arguments_Diff(t *testing.T) {
func Test_Arguments_Diff_DifferentNumberOfArgs(t *testing.T) {
var args Arguments = []interface{}{"string", 123, true}
var args = Arguments([]interface{}{"string", 123, true})
var diff string
var count int
diff, count = args.Diff([]interface{}{"string", 456, "false", "extra"})
@ -816,7 +954,7 @@ func Test_Arguments_Diff_DifferentNumberOfArgs(t *testing.T) {
func Test_Arguments_Diff_WithAnythingArgument(t *testing.T) {
var args Arguments = []interface{}{"string", 123, true}
var args = Arguments([]interface{}{"string", 123, true})
var count int
_, count = args.Diff([]interface{}{"string", Anything, true})
@ -826,7 +964,7 @@ func Test_Arguments_Diff_WithAnythingArgument(t *testing.T) {
func Test_Arguments_Diff_WithAnythingArgument_InActualToo(t *testing.T) {
var args Arguments = []interface{}{"string", Anything, true}
var args = Arguments([]interface{}{"string", Anything, true})
var count int
_, count = args.Diff([]interface{}{"string", 123, true})
@ -836,7 +974,7 @@ func Test_Arguments_Diff_WithAnythingArgument_InActualToo(t *testing.T) {
func Test_Arguments_Diff_WithAnythingOfTypeArgument(t *testing.T) {
var args Arguments = []interface{}{"string", AnythingOfType("int"), true}
var args = Arguments([]interface{}{"string", AnythingOfType("int"), true})
var count int
_, count = args.Diff([]interface{}{"string", 123, true})
@ -846,7 +984,7 @@ func Test_Arguments_Diff_WithAnythingOfTypeArgument(t *testing.T) {
func Test_Arguments_Diff_WithAnythingOfTypeArgument_Failing(t *testing.T) {
var args Arguments = []interface{}{"string", AnythingOfType("string"), true}
var args = Arguments([]interface{}{"string", AnythingOfType("string"), true})
var count int
var diff string
diff, count = args.Diff([]interface{}{"string", 123, true})
@ -856,9 +994,31 @@ func Test_Arguments_Diff_WithAnythingOfTypeArgument_Failing(t *testing.T) {
}
func Test_Arguments_Diff_WithArgMatcher(t *testing.T) {
matchFn := func(a int) bool {
return a == 123
}
var args = Arguments([]interface{}{"string", MatchedBy(matchFn), true})
diff, count := args.Diff([]interface{}{"string", 124, true})
assert.Equal(t, 1, count)
assert.Contains(t, diff, `%!s(int=124) not matched by func(int) bool`)
diff, count = args.Diff([]interface{}{"string", false, true})
assert.Equal(t, 1, count)
assert.Contains(t, diff, `%!s(bool=false) not matched by func(int) bool`)
diff, count = args.Diff([]interface{}{"string", 123, false})
assert.Contains(t, diff, `%!s(int=123) matched by func(int) bool`)
diff, count = args.Diff([]interface{}{"string", 123, true})
assert.Equal(t, 0, count)
assert.Contains(t, diff, `No differences.`)
}
func Test_Arguments_Assert(t *testing.T) {
var args Arguments = []interface{}{"string", 123, true}
var args = Arguments([]interface{}{"string", 123, true})
assert.True(t, args.Assert(t, "string", 123, true))
@ -866,43 +1026,43 @@ func Test_Arguments_Assert(t *testing.T) {
func Test_Arguments_String_Representation(t *testing.T) {
var args Arguments = []interface{}{"string", 123, true}
var args = Arguments([]interface{}{"string", 123, true})
assert.Equal(t, `string,int,bool`, args.String())
}
func Test_Arguments_String(t *testing.T) {
var args Arguments = []interface{}{"string", 123, true}
var args = Arguments([]interface{}{"string", 123, true})
assert.Equal(t, "string", args.String(0))
}
func Test_Arguments_Error(t *testing.T) {
var err error = errors.New("An Error")
var args Arguments = []interface{}{"string", 123, true, err}
var err = errors.New("An Error")
var args = Arguments([]interface{}{"string", 123, true, err})
assert.Equal(t, err, args.Error(3))
}
func Test_Arguments_Error_Nil(t *testing.T) {
var args Arguments = []interface{}{"string", 123, true, nil}
var args = Arguments([]interface{}{"string", 123, true, nil})
assert.Equal(t, nil, args.Error(3))
}
func Test_Arguments_Int(t *testing.T) {
var args Arguments = []interface{}{"string", 123, true}
var args = Arguments([]interface{}{"string", 123, true})
assert.Equal(t, 123, args.Int(1))
}
func Test_Arguments_Bool(t *testing.T) {
var args Arguments = []interface{}{"string", 123, true}
var args = Arguments([]interface{}{"string", 123, true})
assert.Equal(t, true, args.Bool(2))
}

Loading…
Cancel
Save