package com.todoroo.andlib.utility; /* * Copyright (C) 2008 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import java.util.concurrent.BlockingQueue; import java.util.concurrent.Callable; import java.util.concurrent.CancellationException; import java.util.concurrent.ExecutionException; import java.util.concurrent.FutureTask; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.RejectedExecutionException; import java.util.concurrent.ThreadFactory; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; import java.util.concurrent.TimeoutException; import java.util.concurrent.atomic.AtomicInteger; import android.os.Handler; import android.os.Message; import android.os.Process; /** *

UserTask enables proper and easy use of the UI thread. This class allows to * perform background operations and publish results on the UI thread without * having to manipulate threads and/or handlers.

* *

A user task is defined by a computation that runs on a background thread and * whose result is published on the UI thread. A user task is defined by 3 generic * types, called Params, Progress and Result, * and 4 steps, called begin, doInBackground, * processProgress and end.

* *

Usage

*

UserTask must be subclassed to be used. The subclass will override at least * one method ({@link #doInBackground(Object[])}), and most often will override a * second one ({@link #end(Object)}.)

* *

Here is an example of subclassing:

*
 * private class DownloadFilesTask extends UserTask<URL, Integer, Long> {
 *     public File doInBackground(URL... urls) {
 *         int count = urls.length;
 *         long totalSize = 0;
 *         for (int i = 0; i < count; i++) {
 *             totalSize += Downloader.downloadFile(urls[i]);
 *             publishProgress((int) ((i / (float) count) * 100));
 *         }
 *     }
 *
 *     public void processProgress(Integer... progress) {
 *         setProgressPercent(progress[0]);
 *     }
 *
 *     public void end(Long result) {
 *         showDialog("Downloaded " + result + " bytes");
 *     }
 * }
 * 
* *

Once created, a task is executed very simply:

*
 * new DownloadFilesTask().execute(new URL[] { ... });
 * 
* *

User task's generic types

*

The three types used by a user task are the following:

*
    *
  1. Params, the type of the parameters sent to the task upon * execution.
  2. *
  3. Progress, the type of the progress units published during * the background computation.
  4. *
  5. Result, the type of the result of the background * computation.
  6. *
*

Not all types are always used by a user task. To mark a type as unused, * simply use the type {@link Void}:

*
 * private class MyTask extends UserTask
 *
 * 

The 4 steps

*

When a user task is executed, the task goes through 4 steps:

*
    *
  1. {@link #begin()}, invoked on the UI thread immediately after the task * is executed. This step is normally used to setup the task, for instance by * showing a progress bar in the user interface.
  2. *
  3. {@link #doInBackground(Object[])}, invoked on the background thread * immediately after {@link #begin()} finishes executing. This step is used * to perform background computation that can take a long time. The parameters * of the user task are passed to this step. The result of the computation must * be returned by this step and will be passed back to the last step. This step * can also use {@link #publishProgress(Object[])} to publish one or more units * of progress. These values are published on the UI thread, in the * {@link #processProgress(Object[])} step.
  4. *
  5. {@link #processProgress(Object[])}, invoked on the UI thread after a * call to {@link #publishProgress(Object[])}. The timing of the execution is * undefined. This method is used to display any form of progress in the user * interface while the background computation is still executing. For instance, * it can be used to animate a progress bar or show logs in a text field.
  6. *
  7. {@link #end(Object)}, invoked on the UI thread after the background * computation finishes. The result of the background computation is passed to * this step as a parameter.
  8. *
* *

Threading rules

*

There are a few threading rules that must be followed for this class to * work properly:

*
    *
  • The task instance must be created on the UI thread.
  • *
  • {@link #execute(Object[])} must be invoked on the UI thread.
  • *
  • Do not call {@link #begin()}, {@link #end(Object)}, * {@link #doInBackground(Object[])}, {@link #processProgress(Object[])} * manually.
  • *
  • The task can be executed only once (an exception will be thrown if * a second execution is attempted.)
  • *
*/ @SuppressWarnings("nls") public abstract class UserTask { private static final String LOG_TAG = "UserTask"; private static final int CORE_POOL_SIZE = 4; private static final int MAXIMUM_POOL_SIZE = 10; private static final int KEEP_ALIVE = 10; private static final BlockingQueue sWorkQueue = new LinkedBlockingQueue(MAXIMUM_POOL_SIZE); private static final ThreadFactory sThreadFactory = new ThreadFactory() { private final AtomicInteger mCount = new AtomicInteger(1); public Thread newThread(Runnable r) { final Thread thread = new Thread(r, "UserTask #" + mCount.getAndIncrement()); Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND); return thread; } }; private static final ThreadPoolExecutor sExecutor = new ThreadPoolExecutor(CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE, TimeUnit.SECONDS, sWorkQueue, sThreadFactory); private static final int MESSAGE_POST_RESULT = 0x1; private static final int MESSAGE_POST_PROGRESS = 0x2; protected static InternalHandler sHandler; private final WorkerRunnable mWorker; private final FutureTask mFuture; private volatile Status mStatus = Status.PENDING; /** * Indicates the current status of the task. Each status will be set only once * during the lifetime of a task. */ public enum Status { /** * Indicates that the task has not been executed yet. */ PENDING, /** * Indicates that the task is running. */ RUNNING, /** * Indicates that {@link UserTask#end(Object)} has finished. */ FINISHED, } /** * Creates a new user task. This constructor must be invoked on the UI thread. */ public UserTask() { synchronized(UserTask.class) { if (sHandler == null) { sHandler = new InternalHandler(); } } mWorker = new WorkerRunnable() { public Result call() throws Exception { return doInBackground(mParams); } }; mFuture = new FutureTask(mWorker) { @Override protected void done() { Result result = null; try { result = mFuture.get(); } catch (InterruptedException e) { android.util.Log.w(LOG_TAG, e); } catch (ExecutionException e) { throw new RuntimeException("An error occured while executing doInBackground()", e.getCause()); } catch (CancellationException e) { return; } catch (Throwable t) { throw new RuntimeException("An error occured while executing " + "doInBackground()", t); } final Message message = sHandler.obtainMessage(MESSAGE_POST_RESULT, new UserTaskResult(UserTask.this, result)); message.sendToTarget(); } }; } /** * Returns the current status of this task. * * @return The current status. */ public final Status getStatus() { return mStatus; } /** * Override this method to perform a computation on a background thread. The * specified parameters are the parameters passed to {@link #execute(Object[])} * by the caller of this task. * * This method can call {@link #publishProgress(Object[])} to publish updates * on the UI thread. * * @params params The parameters of the task. * * @return A result, defined by the subclass of this task. * * @see #begin() * @see #end(Object) * @see #publishProgress(Object[]) */ public Result doInBackground(@SuppressWarnings("unused") Params... params) { return null; } /** * Runs on the UI thread before {@link #doInBackground(Object[])}. * * @see #end(Object) * @see #doInBackground(Object[]) */ public void begin() { // ... } /** * Runs on the UI thread after {@link #doInBackground(Object[])}. The * specified result is the value returned by {@link #doInBackground(Object[])} * or null if the task was cancelled or an exception occured. * * @see #begin() * @see #doInBackground(Object[]) */ public void end(@SuppressWarnings("unused") Result result) { // ... } /** * Runs on the UI thread after {@link #publishProgress(Object[])} is invoked. * The specified values are the values passed to {@link #publishProgress(Object[])}. * * @see #publishProgress(Object[]) * @see #doInBackground(Object[]) */ public void processProgress(@SuppressWarnings("unused") Progress... values) { // ... } /** * Returns true if this task was cancelled before it completed * normally. * * @return true if task was cancelled before it completed * * @see #cancel(boolean) */ public final boolean isCancelled() { return mFuture.isCancelled(); } /** * Attempts to cancel execution of this task. This attempt will * fail if the task has already completed, already been cancelled, * or could not be cancelled for some other reason. If successful, * and this task has not started when cancel is called, * this task should never run. If the task has already started, * then the mayInterruptIfRunning parameter determines * whether the thread executing this task should be interrupted in * an attempt to stop the task. * * @param mayInterruptIfRunning true if the thread executing this * task should be interrupted; otherwise, in-progress tasks are allowed * to complete. * * @return false if the task could not be cancelled, * typically because it has already completed normally; * true otherwise * * @see #isCancelled() */ public final boolean cancel(boolean mayInterruptIfRunning) { return mFuture.cancel(mayInterruptIfRunning); } /** * Waits if necessary for the computation to complete, and then * retrieves its result. * * @return The computed result. * * @throws CancellationException If the computation was cancelled. * @throws ExecutionException If the computation threw an exception. * @throws InterruptedException If the current thread was interrupted * while waiting. */ public final Result get() throws InterruptedException, ExecutionException { return mFuture.get(); } /** * Waits if necessary for at most the given time for the computation * to complete, and then retrieves its result. * * @return The computed result. * * @throws CancellationException If the computation was cancelled. * @throws ExecutionException If the computation threw an exception. * @throws InterruptedException If the current thread was interrupted * while waiting. * @throws TimeoutException If the wait timed out. */ public final Result get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException { return mFuture.get(timeout, unit); } /** * Executes the task with the specified parameters. The task returns * itself (this) so that the caller can keep a reference to it. * * This method must be invoked on the UI thread. * * @params params The parameters of the task. * * @return This instance of UserTask. * * @throws IllegalStateException If {@link #getStatus()} returns either * {@link com.google.android.photostream.UserTask.Status#RUNNING} or * {@link com.google.android.photostream.UserTask.Status#FINISHED}. */ public final UserTask execute(Params... params) { if (mStatus != Status.PENDING) { switch (mStatus) { case RUNNING: throw new IllegalStateException("Cannot execute task:" + " the task is already running."); case FINISHED: throw new IllegalStateException("Cannot execute task:" + " the task has already been executed " + "(a task can be executed only once)"); } } mStatus = Status.RUNNING; begin(); mWorker.mParams = params; try { sExecutor.execute(mFuture); } catch (RejectedExecutionException e) { // cannot schedule because of some other error. just die quietly } return this; } /** * This method can be invoked from {@link #doInBackground(Object[])} to * publish updates on the UI thread while the background computation is * still running. Each call to this method will trigger the execution of * {@link #processProgress(Object[])} on the UI thread. * * @params values The progress values to update the UI with. * * @see #processProgress(Object[]) * @see #doInBackground(Object[]) */ protected final void publishProgress(Progress... values) { sHandler.obtainMessage(MESSAGE_POST_PROGRESS, new UserTaskResult(this, values)).sendToTarget(); } protected void finish(Result result) { end(result); mStatus = Status.FINISHED; } protected static class InternalHandler extends Handler { @SuppressWarnings("unchecked") @Override public void handleMessage(Message msg) { UserTaskResult result = (UserTaskResult) msg.obj; switch (msg.what) { case MESSAGE_POST_RESULT: // There is only one result result.mTask.finish(result.mData[0]); break; case MESSAGE_POST_PROGRESS: result.mTask.processProgress(result.mData); break; } } } protected static abstract class WorkerRunnable implements Callable { Params[] mParams; } protected static class UserTaskResult { final UserTask mTask; final Data[] mData; UserTaskResult(UserTask task, Data... data) { mTask = task; mData = data; } } }