You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tailscale/net/packet/checksum/checksum.go

296 lines
8.6 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
// Package checksum provides functions for updating checksums in parsed packets.
package checksum
import (
"encoding/binary"
"net/netip"
"tailscale.com/net/packet"
"tailscale.com/types/ipproto"
)
// UpdateSrcAddr updates the source address in the packet buffer (e.g. during
// SNAT). It also updates the checksum. Currently (2023-09-22) only TCP/UDP/ICMP
// is supported. It panics if provided with an address in a different
// family to the parsed packet.
func UpdateSrcAddr(q *packet.Parsed, src netip.Addr) {
if src.Is6() && q.IPVersion != 6 {
panic("UpdateSrcAddr: cannot write IPv6 address to v4 packet")
} else if src.Is4() && q.IPVersion != 4 {
panic("UpdateSrcAddr: cannot write IPv4 address to v6 packet")
}
q.CaptureMeta.DidSNAT = true
q.CaptureMeta.OriginalSrc = q.Src
old := q.Src.Addr()
q.Src = netip.AddrPortFrom(src, q.Src.Port())
b := q.Buffer()
if src.Is6() {
v6 := src.As16()
copy(b[8:24], v6[:])
updateV6PacketChecksums(q, old, src)
} else {
v4 := src.As4()
copy(b[12:16], v4[:])
updateV4PacketChecksums(q, old, src)
}
}
// UpdateDstAddr updates the destination address in the packet buffer (e.g. during
// DNAT). It also updates the checksum. Currently (2022-12-10) only TCP/UDP/ICMP
// is supported. It panics if provided with an address in a different
// family to the parsed packet.
func UpdateDstAddr(q *packet.Parsed, dst netip.Addr) {
if dst.Is6() && q.IPVersion != 6 {
panic("UpdateDstAddr: cannot write IPv6 address to v4 packet")
} else if dst.Is4() && q.IPVersion != 4 {
panic("UpdateDstAddr: cannot write IPv4 address to v6 packet")
}
q.CaptureMeta.DidDNAT = true
q.CaptureMeta.OriginalDst = q.Dst
old := q.Dst.Addr()
q.Dst = netip.AddrPortFrom(dst, q.Dst.Port())
b := q.Buffer()
if dst.Is6() {
v6 := dst.As16()
copy(b[24:40], v6[:])
updateV6PacketChecksums(q, old, dst)
} else {
v4 := dst.As4()
copy(b[16:20], v4[:])
updateV4PacketChecksums(q, old, dst)
}
}
// updateV4PacketChecksums updates the checksums in the packet buffer.
// Currently (2023-03-01) only TCP/UDP/ICMP over IPv4 is supported.
// p is modified in place.
// If p.IPProto is unknown, only the IP header checksum is updated.
func updateV4PacketChecksums(p *packet.Parsed, old, new netip.Addr) {
if len(p.Buffer()) < 12 {
// Not enough space for an IPv4 header.
return
}
o4, n4 := old.As4(), new.As4()
// First update the checksum in the IP header.
updateV4Checksum(p.Buffer()[10:12], o4[:], n4[:])
// Now update the transport layer checksums, where applicable.
tr := p.Transport()
switch p.IPProto {
case ipproto.UDP, ipproto.DCCP:
if len(tr) < minUDPSize {
// Not enough space for a UDP header.
return
}
updateV4Checksum(tr[6:8], o4[:], n4[:])
case ipproto.TCP:
if len(tr) < minTCPSize {
// Not enough space for a TCP header.
return
}
updateV4Checksum(tr[16:18], o4[:], n4[:])
case ipproto.GRE:
if len(tr) < 6 {
// Not enough space for a GRE header.
return
}
if tr[0] == 1 { // checksum present
updateV4Checksum(tr[4:6], o4[:], n4[:])
}
case ipproto.SCTP, ipproto.ICMPv4:
// No transport layer update required.
}
}
const (
minUDPSize = 8
minTCPSize = 20
minICMPv6Size = 8
minIPv6Header = 40
offsetICMPv6Checksum = 2
offsetUDPChecksum = 6
offsetTCPChecksum = 16
)
// updateV6PacketChecksums updates the checksums in the packet buffer.
// p is modified in place.
// If p.IPProto is unknown, no checksums are updated.
func updateV6PacketChecksums(p *packet.Parsed, old, new netip.Addr) {
if len(p.Buffer()) < minIPv6Header {
// Not enough space for an IPv6 header.
return
}
o6, n6 := old.As16(), new.As16()
// Now update the transport layer checksums, where applicable.
tr := p.Transport()
switch p.IPProto {
case ipproto.ICMPv6:
if len(tr) < minICMPv6Size {
return
}
ss := tr[offsetICMPv6Checksum:]
xsum := binary.BigEndian.Uint16(ss)
binary.BigEndian.PutUint16(ss,
^checksumUpdate2ByteAlignedAddress(^xsum, o6, n6))
case ipproto.UDP, ipproto.DCCP:
if len(tr) < minUDPSize {
return
}
ss := tr[offsetUDPChecksum:]
xsum := binary.BigEndian.Uint16(ss)
xsum = ^xsum
xsum = checksumUpdate2ByteAlignedAddress(xsum, o6, n6)
xsum = ^xsum
binary.BigEndian.PutUint16(ss, xsum)
case ipproto.TCP:
if len(tr) < minTCPSize {
return
}
ss := tr[offsetTCPChecksum:]
xsum := binary.BigEndian.Uint16(ss)
xsum = ^xsum
xsum = checksumUpdate2ByteAlignedAddress(xsum, o6, n6)
xsum = ^xsum
binary.BigEndian.PutUint16(ss, xsum)
case ipproto.SCTP:
// No transport layer update required.
}
}
// updateV4Checksum calculates and updates the checksum in the packet buffer for
// a change between old and new. The oldSum must point to the 16-bit checksum
// field in the packet buffer that holds the old checksum value, it will be
// updated in place.
//
// The old and new must be the same length, and must be an even number of bytes.
func updateV4Checksum(oldSum, old, new []byte) {
if len(old) != len(new) {
panic("old and new must be the same length")
}
if len(old)%2 != 0 {
panic("old and new must be of even length")
}
/*
RFC 1624
Given the following notation:
HC - old checksum in header
C - one's complement sum of old header
HC' - new checksum in header
C' - one's complement sum of new header
m - old value of a 16-bit field
m' - new value of a 16-bit field
HC' = ~(C + (-m) + m') -- [Eqn. 3]
HC' = ~(~HC + ~m + m')
This can be simplified to:
HC' = ~(C + ~m + m') -- [Eqn. 3]
HC' = ~C'
C' = C + ~m + m'
*/
c := uint32(^binary.BigEndian.Uint16(oldSum))
cPrime := c
for len(new) > 0 {
mNot := uint32(^binary.BigEndian.Uint16(old[:2]))
mPrime := uint32(binary.BigEndian.Uint16(new[:2]))
cPrime += mPrime + mNot
new, old = new[2:], old[2:]
}
// Account for overflows by adding the carry bits back into the sum.
for (cPrime >> 16) > 0 {
cPrime = cPrime&0xFFFF + cPrime>>16
}
hcPrime := ^uint16(cPrime)
binary.BigEndian.PutUint16(oldSum, hcPrime)
}
// checksumUpdate2ByteAlignedAddress updates an address in a calculated
// checksum.
//
// The addresses must have the same length and must contain an even number
// of bytes. The address MUST begin at a 2-byte boundary in the original buffer.
//
// This implementation is copied from gVisor, but updated to use [16]byte.
func checksumUpdate2ByteAlignedAddress(xsum uint16, old, new [16]byte) uint16 {
const uint16Bytes = 2
oldAddr := old[:]
newAddr := new[:]
// As per RFC 1071 page 4,
// (4) Incremental Update
//
// ...
//
// To update the checksum, simply add the differences of the
// sixteen bit integers that have been changed. To see why this
// works, observe that every 16-bit integer has an additive inverse
// and that addition is associative. From this it follows that
// given the original value m, the new value m', and the old
// checksum C, the new checksum C' is:
//
// C' = C + (-m) + m' = C + (m' - m)
for len(oldAddr) != 0 {
// Convert the 2 byte sequences to uint16 values then apply the increment
// update.
xsum = checksumUpdate2ByteAlignedUint16(xsum, (uint16(oldAddr[0])<<8)+uint16(oldAddr[1]), (uint16(newAddr[0])<<8)+uint16(newAddr[1]))
oldAddr = oldAddr[uint16Bytes:]
newAddr = newAddr[uint16Bytes:]
}
return xsum
}
// checksumUpdate2ByteAlignedUint16 updates a uint16 value in a calculated
// checksum.
//
// The value MUST begin at a 2-byte boundary in the original buffer.
//
// This implementation is copied from gVisor.
func checksumUpdate2ByteAlignedUint16(xsum, old, new uint16) uint16 {
// As per RFC 1071 page 4,
// (4) Incremental Update
//
// ...
//
// To update the checksum, simply add the differences of the
// sixteen bit integers that have been changed. To see why this
// works, observe that every 16-bit integer has an additive inverse
// and that addition is associative. From this it follows that
// given the original value m, the new value m', and the old
// checksum C, the new checksum C' is:
//
// C' = C + (-m) + m' = C + (m' - m)
if old == new {
return xsum
}
return checksumCombine(xsum, checksumCombine(new, ^old))
}
// checksumCombine combines the two uint16 to form their checksum. This is done
// by adding them and the carry.
//
// Note that checksum a must have been computed on an even number of bytes.
//
// This implementation is copied from gVisor.
func checksumCombine(a, b uint16) uint16 {
v := uint32(a) + uint32(b)
return uint16(v + v>>16)
}