mirror of https://github.com/tailscale/tailscale/
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
364 lines
8.8 KiB
Go
364 lines
8.8 KiB
Go
// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package packet
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"encoding/json"
|
|
"fmt"
|
|
"log"
|
|
"net"
|
|
"strings"
|
|
)
|
|
|
|
type IPProto int
|
|
|
|
const (
|
|
Junk IPProto = iota
|
|
Fragment
|
|
ICMP
|
|
UDP
|
|
TCP
|
|
)
|
|
|
|
// RFC1858: prevent overlapping fragment attacks.
|
|
const MIN_FRAG = 60 + 20 // max IPv4 header + basic TCP header
|
|
|
|
func (p IPProto) String() string {
|
|
switch p {
|
|
case Fragment:
|
|
return "Frag"
|
|
case ICMP:
|
|
return "ICMP"
|
|
case UDP:
|
|
return "UDP"
|
|
case TCP:
|
|
return "TCP"
|
|
default:
|
|
return "Junk"
|
|
}
|
|
}
|
|
|
|
type IP uint32
|
|
|
|
const IPAny = IP(0)
|
|
|
|
func NewIP(b net.IP) IP {
|
|
b4 := b.To4()
|
|
if b4 == nil {
|
|
panic(fmt.Sprintf("To4(%v) failed", b))
|
|
}
|
|
return IP(binary.BigEndian.Uint32(b4))
|
|
}
|
|
|
|
func (ip IP) String() string {
|
|
if ip == 0 {
|
|
return "*"
|
|
}
|
|
b := make([]byte, 4)
|
|
binary.BigEndian.PutUint32(b, uint32(ip))
|
|
return fmt.Sprintf("%d.%d.%d.%d", b[0], b[1], b[2], b[3])
|
|
}
|
|
|
|
func (ipp *IP) MarshalJSON() ([]byte, error) {
|
|
s := "\"" + (*ipp).String() + "\""
|
|
return []byte(s), nil
|
|
}
|
|
|
|
func (ipp *IP) UnmarshalJSON(b []byte) error {
|
|
var hostp *string
|
|
err := json.Unmarshal(b, &hostp)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
host := *hostp
|
|
ip := net.ParseIP(host)
|
|
if ip != nil && ip.IsUnspecified() {
|
|
// For clarity, reject 0.0.0.0 as an input
|
|
return fmt.Errorf("Ports=%#v: to allow all IP addresses, use *:port, not 0.0.0.0:port", host)
|
|
} else if ip == nil && host == "*" {
|
|
// User explicitly requested wildcard dst ip
|
|
*ipp = IPAny
|
|
} else {
|
|
if ip != nil {
|
|
ip = ip.To4()
|
|
}
|
|
if ip == nil || len(ip) != 4 {
|
|
return fmt.Errorf("Ports=%#v: invalid IPv4 address", host)
|
|
}
|
|
*ipp = NewIP(ip)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
const (
|
|
EchoReply uint8 = 0x00
|
|
EchoRequest uint8 = 0x08
|
|
)
|
|
|
|
const (
|
|
TCPSyn uint8 = 0x02
|
|
TCPAck uint8 = 0x10
|
|
TCPSynAck uint8 = TCPSyn | TCPAck
|
|
)
|
|
|
|
type QDecode struct {
|
|
b []byte // Packet buffer that this decodes
|
|
subofs int // byte offset of IP subprotocol
|
|
|
|
IPProto IPProto // IP subprotocol (UDP, TCP, etc)
|
|
SrcIP IP // IP source address
|
|
DstIP IP // IP destination address
|
|
SrcPort uint16 // TCP/UDP source port
|
|
DstPort uint16 // TCP/UDP destination port
|
|
TCPFlags uint8 // TCP flags (SYN, ACK, etc)
|
|
}
|
|
|
|
func (q QDecode) String() string {
|
|
if q.IPProto == Junk {
|
|
return "Junk{}"
|
|
}
|
|
srcip := make([]byte, 4)
|
|
dstip := make([]byte, 4)
|
|
binary.BigEndian.PutUint32(srcip, uint32(q.SrcIP))
|
|
binary.BigEndian.PutUint32(dstip, uint32(q.DstIP))
|
|
return fmt.Sprintf("%v{%d.%d.%d.%d:%d > %d.%d.%d.%d:%d}",
|
|
q.IPProto,
|
|
srcip[0], srcip[1], srcip[2], srcip[3], q.SrcPort,
|
|
dstip[0], dstip[1], dstip[2], dstip[3], q.DstPort)
|
|
}
|
|
|
|
// based on https://tools.ietf.org/html/rfc1071
|
|
func ipChecksum(b []byte) uint16 {
|
|
var ac uint32
|
|
i := 0
|
|
n := len(b)
|
|
for n >= 2 {
|
|
ac += uint32(binary.BigEndian.Uint16(b[i : i+2]))
|
|
n -= 2
|
|
i += 2
|
|
}
|
|
if n == 1 {
|
|
ac += uint32(b[i]) << 8
|
|
}
|
|
for (ac >> 16) > 0 {
|
|
ac = (ac >> 16) + (ac & 0xffff)
|
|
}
|
|
return uint16(^ac)
|
|
}
|
|
|
|
func GenICMP(srcIP, dstIP IP, ipid uint16, icmpType uint8, icmpCode uint8, payload []byte) []byte {
|
|
if len(payload) < 4 {
|
|
return nil
|
|
}
|
|
if len(payload) > 65535-24 {
|
|
return nil
|
|
}
|
|
|
|
sz := 24 + len(payload)
|
|
out := make([]byte, 24+len(payload))
|
|
out[0] = 0x45 // IPv4, 20-byte header
|
|
out[1] = 0x00 // DHCP, ECN
|
|
binary.BigEndian.PutUint16(out[2:4], uint16(sz))
|
|
binary.BigEndian.PutUint16(out[4:6], ipid)
|
|
binary.BigEndian.PutUint16(out[6:8], 0) // flags, offset
|
|
out[8] = 64 // TTL
|
|
out[9] = 0x01 // ICMPv4
|
|
// out[10:12] = 0x00 // blank IP header checksum
|
|
binary.BigEndian.PutUint32(out[12:16], uint32(srcIP))
|
|
binary.BigEndian.PutUint32(out[16:20], uint32(dstIP))
|
|
|
|
out[20] = icmpType
|
|
out[21] = icmpCode
|
|
//out[22:24] = 0x00 // blank ICMP checksum
|
|
copy(out[24:len(out)], payload)
|
|
|
|
binary.BigEndian.PutUint16(out[10:12], ipChecksum(out[0:20]))
|
|
binary.BigEndian.PutUint16(out[22:24], ipChecksum(out))
|
|
return out
|
|
}
|
|
|
|
// An extremely simple packet decoder for basic IPv4 packet types.
|
|
// It extracts only the subprotocol id, IP addresses, and (if any) ports,
|
|
// and shouldn't need any memory allocation.
|
|
func (q *QDecode) Decode(b []byte) {
|
|
q.b = nil
|
|
|
|
if len(b) < 20 {
|
|
q.IPProto = Junk
|
|
return
|
|
}
|
|
// Check that it's IPv4.
|
|
// TODO(apenwarr): consider IPv6 support
|
|
if ((b[0] & 0xF0) >> 4) != 4 {
|
|
q.IPProto = Junk
|
|
return
|
|
}
|
|
|
|
n := int(binary.BigEndian.Uint16(b[2:4]))
|
|
if len(b) < n {
|
|
// Packet was cut off before full IPv4 length.
|
|
q.IPProto = Junk
|
|
return
|
|
}
|
|
|
|
// If it's valid IPv4, then the IP addresses are valid
|
|
q.SrcIP = IP(binary.BigEndian.Uint32(b[12:16]))
|
|
q.DstIP = IP(binary.BigEndian.Uint32(b[16:20]))
|
|
|
|
q.subofs = int((b[0] & 0x0F) * 4)
|
|
sub := b[q.subofs:]
|
|
|
|
// We don't care much about IP fragmentation, except insofar as it's
|
|
// used for firewall bypass attacks. The trick is make the first
|
|
// fragment of a TCP or UDP packet so short that it doesn't fit
|
|
// the TCP or UDP header, so we can't read the port, in hope that
|
|
// it'll sneak past. Then subsequent fragments fill it in, but we're
|
|
// missing the first part of the header, so we can't read that either.
|
|
//
|
|
// A "perfectly correct" implementation would have to reassemble
|
|
// fragments before deciding what to do. But the truth is there's
|
|
// zero reason to send such a short first fragment, so we can treat
|
|
// it as Junk. We can also treat any subsequent fragment that starts
|
|
// at such a low offset as Junk.
|
|
fragFlags := binary.BigEndian.Uint16(b[6:8])
|
|
moreFrags := (fragFlags & 0x20) != 0
|
|
fragOfs := fragFlags & 0x1FFF
|
|
if fragOfs == 0 {
|
|
// This is the first fragment
|
|
if moreFrags && len(sub) < MIN_FRAG {
|
|
// Suspiciously short first fragment, dump it.
|
|
log.Printf("junk1!\n")
|
|
q.IPProto = Junk
|
|
return
|
|
}
|
|
// otherwise, this is either non-fragmented (the usual case)
|
|
// or a big enough initial fragment that we can read the
|
|
// whole subprotocol header.
|
|
proto := b[9]
|
|
switch proto {
|
|
case 1: // ICMPv4
|
|
if len(sub) < 8 {
|
|
q.IPProto = Junk
|
|
return
|
|
}
|
|
q.IPProto = ICMP
|
|
q.SrcPort = 0
|
|
q.DstPort = 0
|
|
q.b = b
|
|
return
|
|
case 6: // TCP
|
|
if len(sub) < 20 {
|
|
q.IPProto = Junk
|
|
return
|
|
}
|
|
q.IPProto = TCP
|
|
q.SrcPort = binary.BigEndian.Uint16(sub[0:2])
|
|
q.DstPort = binary.BigEndian.Uint16(sub[2:4])
|
|
q.TCPFlags = sub[13] & 0x3F
|
|
q.b = b
|
|
return
|
|
case 17: // UDP
|
|
if len(sub) < 8 {
|
|
q.IPProto = Junk
|
|
return
|
|
}
|
|
q.IPProto = UDP
|
|
q.SrcPort = binary.BigEndian.Uint16(sub[0:2])
|
|
q.DstPort = binary.BigEndian.Uint16(sub[2:4])
|
|
q.b = b
|
|
return
|
|
default:
|
|
q.IPProto = Junk
|
|
return
|
|
}
|
|
} else {
|
|
// This is a fragment other than the first one.
|
|
if fragOfs < MIN_FRAG {
|
|
// First frag was suspiciously short, so we can't
|
|
// trust the followup either.
|
|
q.IPProto = Junk
|
|
return
|
|
}
|
|
// otherwise, we have to permit the fragment to slide through.
|
|
// Second and later fragments don't have sub-headers.
|
|
// Ideally, we would drop fragments that we can't identify,
|
|
// but that would require statefulness. Anyway, receivers'
|
|
// kernels know to drop fragments where the initial fragment
|
|
// doesn't arrive.
|
|
q.IPProto = Fragment
|
|
return
|
|
}
|
|
}
|
|
|
|
// Returns a subset of the IP subprotocol section.
|
|
func (q *QDecode) Sub(begin, n int) []byte {
|
|
return q.b[q.subofs+begin : q.subofs+begin+n]
|
|
}
|
|
|
|
// For a packet that is known to be IPv4, trim the buffer to its IPv4 length.
|
|
// Sometimes packets arrive from an interface with extra bytes on the end.
|
|
// This removes them.
|
|
func (q *QDecode) Trim() []byte {
|
|
n := binary.BigEndian.Uint16(q.b[2:4])
|
|
return q.b[0:n]
|
|
}
|
|
|
|
// For a decoded TCP packet, return true if it's a TCP SYN packet (ie. the
|
|
// first packet in a new connection).
|
|
func (q *QDecode) IsTCPSyn() bool {
|
|
const Syn = 0x02
|
|
const Ack = 0x10
|
|
const SynAck = Syn | Ack
|
|
return (q.TCPFlags & SynAck) == Syn
|
|
}
|
|
|
|
// For a packet that has already been decoded, check if it's an IPv4 ICMP
|
|
// Echo Request.
|
|
func (q *QDecode) IsEchoRequest() bool {
|
|
if q.IPProto == ICMP && len(q.b) >= q.subofs+8 {
|
|
return q.b[q.subofs] == EchoRequest && q.b[q.subofs+1] == 0
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (q *QDecode) EchoRespond() []byte {
|
|
icmpid := binary.BigEndian.Uint16(q.Sub(4, 2))
|
|
b := q.Trim()
|
|
return GenICMP(q.DstIP, q.SrcIP, icmpid, EchoReply, 0, b[q.subofs+4:])
|
|
}
|
|
|
|
func Hexdump(b []byte) string {
|
|
out := new(strings.Builder)
|
|
for i := 0; i < len(b); i += 16 {
|
|
if i > 0 {
|
|
fmt.Fprintf(out, "\n")
|
|
}
|
|
fmt.Fprintf(out, " %04x ", i)
|
|
j := 0
|
|
for ; j < 16 && i+j < len(b); j++ {
|
|
if j == 8 {
|
|
fmt.Fprintf(out, " ")
|
|
}
|
|
fmt.Fprintf(out, "%02x ", b[i+j])
|
|
}
|
|
for ; j < 16; j++ {
|
|
if j == 8 {
|
|
fmt.Fprintf(out, " ")
|
|
}
|
|
fmt.Fprintf(out, " ")
|
|
}
|
|
fmt.Fprintf(out, " ")
|
|
for j = 0; j < 16 && i+j < len(b); j++ {
|
|
if b[i+j] >= 32 && b[i+j] < 128 {
|
|
fmt.Fprintf(out, "%c", b[i+j])
|
|
} else {
|
|
fmt.Fprintf(out, ".")
|
|
}
|
|
}
|
|
}
|
|
return out.String()
|
|
}
|