You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tailscale/wgengine/userspace.go

1656 lines
47 KiB
Go

// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package wgengine
import (
"bufio"
"bytes"
"context"
crand "crypto/rand"
"errors"
"fmt"
"io"
"net"
"os"
"os/exec"
"runtime"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/tailscale/wireguard-go/device"
"github.com/tailscale/wireguard-go/tun"
"go4.org/mem"
"inet.af/netaddr"
"tailscale.com/control/controlclient"
"tailscale.com/health"
"tailscale.com/internal/deepprint"
"tailscale.com/ipn/ipnstate"
"tailscale.com/net/flowtrack"
"tailscale.com/net/interfaces"
"tailscale.com/net/packet"
"tailscale.com/net/tsaddr"
"tailscale.com/net/tshttpproxy"
"tailscale.com/tailcfg"
"tailscale.com/types/ipproto"
"tailscale.com/types/key"
"tailscale.com/types/logger"
"tailscale.com/types/netmap"
"tailscale.com/types/wgkey"
"tailscale.com/version"
"tailscale.com/version/distro"
"tailscale.com/wgengine/filter"
"tailscale.com/wgengine/magicsock"
"tailscale.com/wgengine/monitor"
"tailscale.com/wgengine/router"
"tailscale.com/wgengine/tsdns"
"tailscale.com/wgengine/tstun"
"tailscale.com/wgengine/wgcfg"
"tailscale.com/wgengine/wglog"
)
// minimalMTU is the MTU we set on tailscale's TUN
// interface. wireguard-go defaults to 1420 bytes, which only works if
// the "outer" MTU is 1500 bytes. This breaks on DSL connections
// (typically 1492 MTU) and on GCE (1460 MTU?!).
//
// 1280 is the smallest MTU allowed for IPv6, which is a sensible
// "probably works everywhere" setting until we develop proper PMTU
// discovery.
const minimalMTU = 1280
const magicDNSPort = 53
var magicDNSIP = netaddr.IPv4(100, 100, 100, 100)
// Lazy wireguard-go configuration parameters.
const (
// lazyPeerIdleThreshold is the idle duration after
// which we remove a peer from the wireguard configuration.
// (This includes peers that have never been idle, which
// effectively have infinite idleness)
lazyPeerIdleThreshold = 5 * time.Minute
// packetSendTimeUpdateFrequency controls how often we record
// the time that we wrote a packet to an IP address.
packetSendTimeUpdateFrequency = 10 * time.Second
// packetSendRecheckWireguardThreshold controls how long we can go
// between packet sends to an IP before checking to see
// whether this IP address needs to be added back to the
// Wireguard peer oconfig.
packetSendRecheckWireguardThreshold = 1 * time.Minute
)
type userspaceEngine struct {
logf logger.Logf
wgLogger *wglog.Logger //a wireguard-go logging wrapper
reqCh chan struct{}
waitCh chan struct{} // chan is closed when first Close call completes; contrast with closing bool
timeNow func() time.Time
tundev *tstun.TUN
wgdev *device.Device
router router.Router
resolver *tsdns.Resolver
magicConn *magicsock.Conn
linkMon *monitor.Mon
linkMonOwned bool // whether we created linkMon (and thus need to close it)
linkMonUnregister func() // unsubscribes from changes; used regardless of linkMonOwned
testMaybeReconfigHook func() // for tests; if non-nil, fires if maybeReconfigWireguardLocked called
// localAddrs is the set of IP addresses assigned to the local
// tunnel interface. It's used to reflect local packets
// incorrectly sent to us.
localAddrs atomic.Value // of map[netaddr.IP]bool
wgLock sync.Mutex // serializes all wgdev operations; see lock order comment below
lastCfgFull wgcfg.Config
lastRouterSig string // of router.Config
lastEngineSigFull string // of full wireguard config
lastEngineSigTrim string // of trimmed wireguard config
recvActivityAt map[tailcfg.DiscoKey]time.Time
trimmedDisco map[tailcfg.DiscoKey]bool // set of disco keys of peers currently excluded from wireguard config
sentActivityAt map[netaddr.IP]*int64 // value is atomic int64 of unixtime
destIPActivityFuncs map[netaddr.IP]func()
statusBufioReader *bufio.Reader // reusable for UAPI
mu sync.Mutex // guards following; see lock order comment below
netMap *netmap.NetworkMap // or nil
closing bool // Close was called (even if we're still closing)
statusCallback StatusCallback
peerSequence []wgkey.Key
endpoints []string
pingers map[wgkey.Key]*pinger // legacy pingers for pre-discovery peers
pendOpen map[flowtrack.Tuple]*pendingOpenFlow // see pendopen.go
networkMapCallbacks map[*someHandle]NetworkMapCallback
tsIPByIPPort map[netaddr.IPPort]netaddr.IP // allows registration of IP:ports as belonging to a certain Tailscale IP for whois lookups
pongCallback map[[8]byte]func() // for TSMP pong responses
// Lock ordering: magicsock.Conn.mu, wgLock, then mu.
}
// InternalsGetter is implemented by Engines that can export their internals.
type InternalsGetter interface {
GetInternals() (*tstun.TUN, *magicsock.Conn)
}
func (e *userspaceEngine) GetInternals() (*tstun.TUN, *magicsock.Conn) {
return e.tundev, e.magicConn
}
// RouterGen is the signature for a function that creates a
// router.Router.
type RouterGen func(logf logger.Logf, wgdev *device.Device, tundev tun.Device) (router.Router, error)
// Config is the engine configuration.
type Config struct {
// TUN is the TUN device used by the engine.
// Exactly one of either TUN or TUNName must be specified.
TUN tun.Device
// TUNName is the TUN device to create.
// Exactly one of either TUN or TUNName must be specified.
TUNName string
// RouterGen is the function used to instantiate the router.
// If nil, wgengine/router.New is used.
RouterGen RouterGen
// LinkMonitor optionally provides an existing link monitor to re-use.
// If nil, a new link monitor is created.
LinkMonitor *monitor.Mon
// ListenPort is the port on which the engine will listen.
// If zero, a port is automatically selected.
ListenPort uint16
// Fake determines whether this engine should automatically
// reply to ICMP pings.
Fake bool
}
func NewFakeUserspaceEngine(logf logger.Logf, listenPort uint16) (Engine, error) {
logf("Starting userspace wireguard engine (with fake TUN device)")
return NewUserspaceEngine(logf, Config{
TUN: tstun.NewFakeTUN(),
RouterGen: router.NewFake,
ListenPort: listenPort,
Fake: true,
})
}
// NewUserspaceEngine creates the named tun device and returns a
// Tailscale Engine running on it.
func NewUserspaceEngine(logf logger.Logf, conf Config) (Engine, error) {
if conf.TUN != nil && conf.TUNName != "" {
return nil, errors.New("TUN and TUNName are mutually exclusive")
}
if conf.TUN == nil && conf.TUNName == "" {
return nil, errors.New("either TUN or TUNName are required")
}
tunDev := conf.TUN
var err error
if tunName := conf.TUNName; tunName != "" {
logf("Starting userspace wireguard engine with tun device %q", tunName)
tunDev, err = tun.CreateTUN(tunName, minimalMTU)
if err != nil {
diagnoseTUNFailure(tunName, logf)
logf("CreateTUN: %v", err)
return nil, err
}
logf("CreateTUN ok.")
if err := waitInterfaceUp(tunDev, 90*time.Second, logf); err != nil {
return nil, err
}
}
if conf.RouterGen == nil {
conf.RouterGen = router.New
}
return newUserspaceEngine(logf, tunDev, conf)
}
func newUserspaceEngine(logf logger.Logf, rawTUNDev tun.Device, conf Config) (_ Engine, reterr error) {
var closePool closeOnErrorPool
defer closePool.closeAllIfError(&reterr)
tsTUNDev := tstun.WrapTUN(logf, rawTUNDev)
closePool.add(tsTUNDev)
e := &userspaceEngine{
timeNow: time.Now,
logf: logf,
reqCh: make(chan struct{}, 1),
waitCh: make(chan struct{}),
tundev: tsTUNDev,
pingers: make(map[wgkey.Key]*pinger),
}
e.localAddrs.Store(map[netaddr.IP]bool{})
if conf.LinkMonitor != nil {
e.linkMon = conf.LinkMonitor
} else {
mon, err := monitor.New(logf)
if err != nil {
return nil, err
}
closePool.add(mon)
e.linkMon = mon
e.linkMonOwned = true
}
e.resolver = tsdns.NewResolver(tsdns.ResolverConfig{
Logf: logf,
Forward: true,
LinkMonitor: e.linkMon,
})
logf("link state: %+v", e.linkMon.InterfaceState())
unregisterMonWatch := e.linkMon.RegisterChangeCallback(func(changed bool, st *interfaces.State) {
tshttpproxy.InvalidateCache()
e.linkChange(changed, st)
})
closePool.addFunc(unregisterMonWatch)
e.linkMonUnregister = unregisterMonWatch
endpointsFn := func(endpoints []string) {
e.mu.Lock()
e.endpoints = append(e.endpoints[:0], endpoints...)
e.mu.Unlock()
e.RequestStatus()
}
magicsockOpts := magicsock.Options{
Logf: logf,
Port: conf.ListenPort,
EndpointsFunc: endpointsFn,
DERPActiveFunc: e.RequestStatus,
IdleFunc: e.tundev.IdleDuration,
NoteRecvActivity: e.noteReceiveActivity,
LinkMonitor: e.linkMon,
}
var err error
e.magicConn, err = magicsock.NewConn(magicsockOpts)
if err != nil {
return nil, fmt.Errorf("wgengine: %v", err)
}
closePool.add(e.magicConn)
e.magicConn.SetNetworkUp(e.linkMon.InterfaceState().AnyInterfaceUp())
// Respond to all pings only in fake mode.
if conf.Fake {
e.tundev.PostFilterIn = echoRespondToAll
}
e.tundev.PreFilterOut = e.handleLocalPackets
if debugConnectFailures() {
if e.tundev.PreFilterIn != nil {
return nil, errors.New("unexpected PreFilterIn already set")
}
e.tundev.PreFilterIn = e.trackOpenPreFilterIn
if e.tundev.PostFilterOut != nil {
return nil, errors.New("unexpected PostFilterOut already set")
}
e.tundev.PostFilterOut = e.trackOpenPostFilterOut
}
e.wgLogger = wglog.NewLogger(logf)
opts := &device.DeviceOptions{
HandshakeDone: func(peerKey device.NoisePublicKey, peer *device.Peer, deviceAllowedIPs *device.AllowedIPs) {
// Send an unsolicited status event every time a
// handshake completes. This makes sure our UI can
// update quickly as soon as it connects to a peer.
//
// We use a goroutine here to avoid deadlocking
// wireguard, since RequestStatus() will call back
// into it, and wireguard is what called us to get
// here.
go e.RequestStatus()
peerWGKey := wgkey.Key(peerKey)
if e.magicConn.PeerHasDiscoKey(tailcfg.NodeKey(peerKey)) {
e.logf("wireguard handshake complete for %v", peerWGKey.ShortString())
// This is a modern peer with discovery support. No need to send pings.
return
}
e.logf("wireguard handshake complete for %v; sending legacy pings", peerWGKey.ShortString())
// Ping every single-IP that peer routes.
// These synthetic packets are used to traverse NATs.
var ips []netaddr.IP
var allowedIPs []netaddr.IPPrefix
deviceAllowedIPs.EntriesForPeer(peer, func(stdIP net.IP, cidr uint) bool {
ip, ok := netaddr.FromStdIP(stdIP)
if !ok {
logf("[unexpected] bad IP from deviceAllowedIPs.EntriesForPeer: %v", stdIP)
return true
}
ipp := netaddr.IPPrefix{IP: ip, Bits: uint8(cidr)}
allowedIPs = append(allowedIPs, ipp)
if ipp.IsSingleIP() {
ips = append(ips, ip)
}
return true
})
if len(ips) > 0 {
go e.pinger(peerWGKey, ips)
} else {
logf("[unexpected] peer %s has no single-IP routes: %v", peerWGKey.ShortString(), allowedIPs)
}
},
CreateBind: e.magicConn.CreateBind,
CreateEndpoint: e.magicConn.CreateEndpoint,
SkipBindUpdate: true,
}
e.tundev.OnTSMPPongReceived = func(data [8]byte) {
e.mu.Lock()
defer e.mu.Unlock()
cb := e.pongCallback[data]
e.logf("wgengine: got TSMP pong %02x; cb=%v", data, cb != nil)
if cb != nil {
go cb()
}
}
// wgdev takes ownership of tundev, will close it when closed.
e.logf("Creating wireguard device...")
e.wgdev = device.NewDevice(e.tundev, e.wgLogger.DeviceLogger, opts)
closePool.addFunc(e.wgdev.Close)
// Pass the underlying tun.(*NativeDevice) to the router:
// routers do not Read or Write, but do access native interfaces.
e.logf("Creating router...")
e.router, err = conf.RouterGen(logf, e.wgdev, e.tundev.Unwrap())
if err != nil {
return nil, err
}
closePool.add(e.router)
go func() {
up := false
for event := range e.tundev.Events() {
if event&tun.EventMTUUpdate != 0 {
mtu, err := e.tundev.MTU()
e.logf("external route MTU: %d (%v)", mtu, err)
}
if event&tun.EventUp != 0 && !up {
e.logf("external route: up")
e.RequestStatus()
up = true
}
if event&tun.EventDown != 0 && up {
e.logf("external route: down")
e.RequestStatus()
up = false
}
}
}()
e.logf("Bringing wireguard device up...")
e.wgdev.Up()
e.logf("Bringing router up...")
if err := e.router.Up(); err != nil {
return nil, err
}
// It's a little pointless to apply no-op settings here (they
// should already be empty?), but it at least exercises the
// router implementation early on the machine.
e.logf("Clearing router settings...")
if err := e.router.Set(nil); err != nil {
return nil, err
}
e.logf("Starting link monitor...")
e.linkMon.Start()
e.logf("Starting magicsock...")
e.magicConn.Start()
e.logf("Starting resolver...")
e.resolver.Start()
go e.pollResolver()
e.logf("Engine created.")
return e, nil
}
// echoRespondToAll is an inbound post-filter responding to all echo requests.
func echoRespondToAll(p *packet.Parsed, t *tstun.TUN) filter.Response {
if p.IsEchoRequest() {
header := p.ICMP4Header()
header.ToResponse()
outp := packet.Generate(&header, p.Payload())
t.InjectOutbound(outp)
// We already responded to it, but it's not an error.
// Proceed with regular delivery. (Since this code is only
// used in fake mode, regular delivery just means throwing
// it away. If this ever gets run in non-fake mode, you'll
// get double responses to pings, which is an indicator you
// shouldn't be doing that I guess.)
return filter.Accept
}
return filter.Accept
}
// handleLocalPackets inspects packets coming from the local network
// stack, and intercepts any packets that should be handled by
// tailscaled directly. Other packets are allowed to proceed into the
// main ACL filter.
func (e *userspaceEngine) handleLocalPackets(p *packet.Parsed, t *tstun.TUN) filter.Response {
if verdict := e.handleDNS(p, t); verdict == filter.Drop {
// local DNS handled the packet.
return filter.Drop
}
if (runtime.GOOS == "darwin" || runtime.GOOS == "ios") && e.isLocalAddr(p.Dst.IP) {
// macOS NetworkExtension directs packets destined to the
// tunnel's local IP address into the tunnel, instead of
// looping back within the kernel network stack. We have to
// notice that an outbound packet is actually destined for
// ourselves, and loop it back into macOS.
t.InjectInboundCopy(p.Buffer())
return filter.Drop
}
return filter.Accept
}
func (e *userspaceEngine) isLocalAddr(ip netaddr.IP) bool {
localAddrs, ok := e.localAddrs.Load().(map[netaddr.IP]bool)
if !ok {
e.logf("[unexpected] e.localAddrs was nil, can't check for loopback packet")
return false
}
return localAddrs[ip]
}
// handleDNS is an outbound pre-filter resolving Tailscale domains.
func (e *userspaceEngine) handleDNS(p *packet.Parsed, t *tstun.TUN) filter.Response {
if p.Dst.IP == magicDNSIP && p.Dst.Port == magicDNSPort && p.IPProto == ipproto.UDP {
request := tsdns.Packet{
Payload: append([]byte(nil), p.Payload()...),
Addr: netaddr.IPPort{IP: p.Src.IP, Port: p.Src.Port},
}
err := e.resolver.EnqueueRequest(request)
if err != nil {
e.logf("tsdns: enqueue: %v", err)
}
return filter.Drop
}
return filter.Accept
}
// pollResolver reads responses from the DNS resolver and injects them inbound.
func (e *userspaceEngine) pollResolver() {
for {
resp, err := e.resolver.NextResponse()
if err == tsdns.ErrClosed {
return
}
if err != nil {
e.logf("tsdns: error: %v", err)
continue
}
h := packet.UDP4Header{
IP4Header: packet.IP4Header{
Src: magicDNSIP,
Dst: resp.Addr.IP,
},
SrcPort: magicDNSPort,
DstPort: resp.Addr.Port,
}
hlen := h.Len()
// TODO(dmytro): avoid this allocation without importing tstun quirks into tsdns.
const offset = tstun.PacketStartOffset
buf := make([]byte, offset+hlen+len(resp.Payload))
copy(buf[offset+hlen:], resp.Payload)
h.Marshal(buf[offset:])
e.tundev.InjectInboundDirect(buf, offset)
}
}
// pinger sends ping packets for a few seconds.
//
// These generated packets are used to ensure we trigger the spray logic in
// the magicsock package for NAT traversal.
//
// These are only used with legacy peers (before 0.100.0) that don't
// have advertised discovery keys.
type pinger struct {
e *userspaceEngine
done chan struct{} // closed after shutdown (not the ctx.Done() chan)
cancel context.CancelFunc
}
// close cleans up pinger and removes it from the userspaceEngine.pingers map.
// It cannot be called while p.e.mu is held.
func (p *pinger) close() {
p.cancel()
<-p.done
}
func (p *pinger) run(ctx context.Context, peerKey wgkey.Key, ips []netaddr.IP, srcIP netaddr.IP) {
defer func() {
p.e.mu.Lock()
if p.e.pingers[peerKey] == p {
delete(p.e.pingers, peerKey)
}
p.e.mu.Unlock()
close(p.done)
}()
header := packet.ICMP4Header{
IP4Header: packet.IP4Header{
Src: srcIP,
},
Type: packet.ICMP4EchoRequest,
Code: packet.ICMP4NoCode,
}
// sendFreq is slightly longer than sprayFreq in magicsock to ensure
// that if these ping packets are the only source of early packets
// sent to the peer, that each one will be sprayed.
const sendFreq = 300 * time.Millisecond
const stopAfter = 3 * time.Second
start := time.Now()
var dstIPs []netaddr.IP
for _, ip := range ips {
if ip.Is6() {
// This code is only used for legacy (pre-discovery)
// peers. They're not going to work right with IPv6 on the
// overlay anyway, so don't bother trying to make ping
// work.
continue
}
dstIPs = append(dstIPs, ip)
}
payload := []byte("magicsock_spray") // no meaning
header.IPID = 1
t := time.NewTicker(sendFreq)
defer t.Stop()
for {
select {
case <-ctx.Done():
return
case <-t.C:
}
if time.Since(start) > stopAfter {
return
}
for _, dstIP := range dstIPs {
header.Dst = dstIP
// InjectOutbound take ownership of the packet, so we allocate.
b := packet.Generate(&header, payload)
p.e.tundev.InjectOutbound(b)
}
header.IPID++
}
}
// pinger sends ping packets for a few seconds.
//
// These generated packets are used to ensure we trigger the spray logic in
// the magicsock package for NAT traversal.
//
// This is only used with legacy peers (before 0.100.0) that don't
// have advertised discovery keys.
func (e *userspaceEngine) pinger(peerKey wgkey.Key, ips []netaddr.IP) {
e.logf("[v1] generating initial ping traffic to %s (%v)", peerKey.ShortString(), ips)
var srcIP netaddr.IP
e.wgLock.Lock()
if len(e.lastCfgFull.Addresses) > 0 {
srcIP = e.lastCfgFull.Addresses[0].IP
}
e.wgLock.Unlock()
if srcIP.IsZero() {
e.logf("generating initial ping traffic: no source IP")
return
}
ctx, cancel := context.WithCancel(context.Background())
p := &pinger{
e: e,
done: make(chan struct{}),
cancel: cancel,
}
e.mu.Lock()
if e.closing {
e.mu.Unlock()
return
}
oldPinger := e.pingers[peerKey]
e.pingers[peerKey] = p
e.mu.Unlock()
if oldPinger != nil {
oldPinger.close()
}
p.run(ctx, peerKey, ips, srcIP)
}
var (
debugTrimWireguardEnv = os.Getenv("TS_DEBUG_TRIM_WIREGUARD")
debugTrimWireguard, _ = strconv.ParseBool(debugTrimWireguardEnv)
)
// forceFullWireguardConfig reports whether we should give wireguard
// our full network map, even for inactive peers
//
// TODO(bradfitz): remove this after our 1.0 launch; we don't want to
// enable wireguard config trimming quite yet because it just landed
// and we haven't got enough time testing it.
func forceFullWireguardConfig(numPeers int) bool {
// Did the user explicitly enable trimmming via the environment variable knob?
if debugTrimWireguardEnv != "" {
return !debugTrimWireguard
}
if opt := controlclient.TrimWGConfig(); opt != "" {
return !opt.EqualBool(true)
}
// On iOS with large networks, it's critical, so turn on trimming.
// Otherwise we run out of memory from wireguard-go goroutine stacks+buffers.
// This will be the default later for all platforms and network sizes.
if numPeers > 50 && version.OS() == "iOS" {
return false
}
return false
}
// isTrimmablePeer reports whether p is a peer that we can trim out of the
// network map.
//
// We can only trim peers that both a) support discovery (because we
// know who they are when we receive their data and don't need to rely
// on wireguard-go figuring it out) and b) for implementation
// simplicity, have only non-subnet AllowedIPs (an IPv4 /32 or IPv6
// /128), which is the common case for most peers. Subnet router nodes
// will just always be created in the wireguard-go config.
func isTrimmablePeer(p *wgcfg.Peer, numPeers int) bool {
if forceFullWireguardConfig(numPeers) {
return false
}
if !isSingleEndpoint(p.Endpoints) {
return false
}
host, _, err := net.SplitHostPort(p.Endpoints)
if err != nil {
return false
}
if !strings.HasSuffix(host, ".disco.tailscale") {
return false
}
// AllowedIPs must all be single IPs, not subnets.
for _, aip := range p.AllowedIPs {
if !aip.IsSingleIP() {
return false
}
}
return true
}
// noteReceiveActivity is called by magicsock when a packet has been received
// by the peer using discovery key dk. Magicsock calls this no more than
// every 10 seconds for a given peer.
func (e *userspaceEngine) noteReceiveActivity(dk tailcfg.DiscoKey) {
e.wgLock.Lock()
defer e.wgLock.Unlock()
if _, ok := e.recvActivityAt[dk]; !ok {
// Not a trimmable peer we care about tracking. (See isTrimmablePeer)
if e.trimmedDisco[dk] {
e.logf("wgengine: [unexpected] noteReceiveActivity called on idle discokey %v that's not in recvActivityAt", dk.ShortString())
}
return
}
now := e.timeNow()
e.recvActivityAt[dk] = now
// If the last activity time jumped a bunch (say, at least
// half the idle timeout) then see if we need to reprogram
// Wireguard. This could probably be just
// lazyPeerIdleThreshold without the divide by 2, but
// maybeReconfigWireguardLocked is cheap enough to call every
// couple minutes (just not on every packet).
if e.trimmedDisco[dk] {
e.logf("wgengine: idle peer %v now active, reconfiguring wireguard", dk.ShortString())
e.maybeReconfigWireguardLocked(nil)
}
}
// isActiveSince reports whether the peer identified by (dk, ip) has
// had a packet sent to or received from it since t.
//
// e.wgLock must be held.
func (e *userspaceEngine) isActiveSince(dk tailcfg.DiscoKey, ip netaddr.IP, t time.Time) bool {
if e.recvActivityAt[dk].After(t) {
return true
}
timePtr, ok := e.sentActivityAt[ip]
if !ok {
return false
}
unixTime := atomic.LoadInt64(timePtr)
return unixTime >= t.Unix()
}
// discoKeyFromPeer returns the DiscoKey for a wireguard config's Peer.
//
// Invariant: isTrimmablePeer(p) == true, so it should have 1 endpoint with
// Host of form "<64-hex-digits>.disco.tailscale". If invariant is violated,
// we return the zero value.
func discoKeyFromPeer(p *wgcfg.Peer) tailcfg.DiscoKey {
if len(p.Endpoints) < 64 {
return tailcfg.DiscoKey{}
}
host, rest := p.Endpoints[:64], p.Endpoints[64:]
if !strings.HasPrefix(rest, ".disco.tailscale") {
return tailcfg.DiscoKey{}
}
k, err := key.NewPublicFromHexMem(mem.S(host))
if err != nil {
return tailcfg.DiscoKey{}
}
return tailcfg.DiscoKey(k)
}
// discoChanged are the set of peers whose disco keys have changed, implying they've restarted.
// If a peer is in this set and was previously in the live wireguard config,
// it needs to be first removed and then re-added to flush out its wireguard session key.
// If discoChanged is nil or empty, this extra removal step isn't done.
//
// e.wgLock must be held.
func (e *userspaceEngine) maybeReconfigWireguardLocked(discoChanged map[key.Public]bool) error {
if hook := e.testMaybeReconfigHook; hook != nil {
hook()
return nil
}
full := e.lastCfgFull
e.wgLogger.SetPeers(full.Peers)
// Compute a minimal config to pass to wireguard-go
// based on the full config. Prune off all the peers
// and only add the active ones back.
min := full
min.Peers = nil
// We'll only keep a peer around if it's been active in
// the past 5 minutes. That's more than WireGuard's key
// rotation time anyway so it's no harm if we remove it
// later if it's been inactive.
activeCutoff := e.timeNow().Add(-lazyPeerIdleThreshold)
// Not all peers can be trimmed from the network map (see
// isTrimmablePeer). For those are are trimmable, keep track
// of their DiscoKey and Tailscale IPs. These are the ones
// we'll need to install tracking hooks for to watch their
// send/receive activity.
trackDisco := make([]tailcfg.DiscoKey, 0, len(full.Peers))
trackIPs := make([]netaddr.IP, 0, len(full.Peers))
trimmedDisco := map[tailcfg.DiscoKey]bool{} // TODO: don't re-alloc this map each time
needRemoveStep := false
for i := range full.Peers {
p := &full.Peers[i]
if !isTrimmablePeer(p, len(full.Peers)) {
min.Peers = append(min.Peers, *p)
if discoChanged[key.Public(p.PublicKey)] {
needRemoveStep = true
}
continue
}
dk := discoKeyFromPeer(p)
trackDisco = append(trackDisco, dk)
recentlyActive := false
for _, cidr := range p.AllowedIPs {
trackIPs = append(trackIPs, cidr.IP)
recentlyActive = recentlyActive || e.isActiveSince(dk, cidr.IP, activeCutoff)
}
if recentlyActive {
min.Peers = append(min.Peers, *p)
if discoChanged[key.Public(p.PublicKey)] {
needRemoveStep = true
}
} else {
trimmedDisco[dk] = true
}
}
if !deepprint.UpdateHash(&e.lastEngineSigTrim, min, trimmedDisco, trackDisco, trackIPs) {
// No changes
return nil
}
e.trimmedDisco = trimmedDisco
e.updateActivityMapsLocked(trackDisco, trackIPs)
if needRemoveStep {
minner := min
minner.Peers = nil
numRemove := 0
for _, p := range min.Peers {
if discoChanged[key.Public(p.PublicKey)] {
numRemove++
continue
}
minner.Peers = append(minner.Peers, p)
}
if numRemove > 0 {
e.logf("wgengine: Reconfig: removing session keys for %d peers", numRemove)
if err := wgcfg.ReconfigDevice(e.wgdev, &minner, e.logf); err != nil {
e.logf("wgdev.Reconfig: %v", err)
return err
}
}
}
e.logf("wgengine: Reconfig: configuring userspace wireguard config (with %d/%d peers)", len(min.Peers), len(full.Peers))
if err := wgcfg.ReconfigDevice(e.wgdev, &min, e.logf); err != nil {
e.logf("wgdev.Reconfig: %v", err)
return err
}
return nil
}
// updateActivityMapsLocked updates the data structures used for tracking the activity
// of wireguard peers that we might add/remove dynamically from the real config
// as given to wireguard-go.
//
// e.wgLock must be held.
func (e *userspaceEngine) updateActivityMapsLocked(trackDisco []tailcfg.DiscoKey, trackIPs []netaddr.IP) {
// Generate the new map of which discokeys we want to track
// receive times for.
mr := map[tailcfg.DiscoKey]time.Time{} // TODO: only recreate this if set of keys changed
for _, dk := range trackDisco {
// Preserve old times in the new map, but also
// populate map entries for new trackDisco values with
// time.Time{} zero values. (Only entries in this map
// are tracked, so the Time zero values allow it to be
// tracked later)
mr[dk] = e.recvActivityAt[dk]
}
e.recvActivityAt = mr
oldTime := e.sentActivityAt
e.sentActivityAt = make(map[netaddr.IP]*int64, len(oldTime))
oldFunc := e.destIPActivityFuncs
e.destIPActivityFuncs = make(map[netaddr.IP]func(), len(oldFunc))
updateFn := func(timePtr *int64) func() {
return func() {
now := e.timeNow().Unix()
old := atomic.LoadInt64(timePtr)
// How long's it been since we last sent a packet?
// For our first packet, old is Unix epoch time 0 (1970).
elapsedSec := now - old
if elapsedSec >= int64(packetSendTimeUpdateFrequency/time.Second) {
atomic.StoreInt64(timePtr, now)
}
// On a big jump, assume we might no longer be in the wireguard
// config and go check.
if elapsedSec >= int64(packetSendRecheckWireguardThreshold/time.Second) {
e.wgLock.Lock()
defer e.wgLock.Unlock()
e.maybeReconfigWireguardLocked(nil)
}
}
}
for _, ip := range trackIPs {
timePtr := oldTime[ip]
if timePtr == nil {
timePtr = new(int64)
}
e.sentActivityAt[ip] = timePtr
fn := oldFunc[ip]
if fn == nil {
fn = updateFn(timePtr)
}
e.destIPActivityFuncs[ip] = fn
}
e.tundev.SetDestIPActivityFuncs(e.destIPActivityFuncs)
}
func (e *userspaceEngine) Reconfig(cfg *wgcfg.Config, routerCfg *router.Config) error {
if routerCfg == nil {
panic("routerCfg must not be nil")
}
localAddrs := map[netaddr.IP]bool{}
for _, addr := range routerCfg.LocalAddrs {
localAddrs[addr.IP] = true
}
e.localAddrs.Store(localAddrs)
e.wgLock.Lock()
defer e.wgLock.Unlock()
peerSet := make(map[key.Public]struct{}, len(cfg.Peers))
e.mu.Lock()
e.peerSequence = e.peerSequence[:0]
for _, p := range cfg.Peers {
e.peerSequence = append(e.peerSequence, wgkey.Key(p.PublicKey))
peerSet[key.Public(p.PublicKey)] = struct{}{}
}
e.mu.Unlock()
engineChanged := deepprint.UpdateHash(&e.lastEngineSigFull, cfg)
routerChanged := deepprint.UpdateHash(&e.lastRouterSig, routerCfg)
if !engineChanged && !routerChanged {
return ErrNoChanges
}
// See if any peers have changed disco keys, which means they've restarted.
// If so, we need to update the wireguard-go/device.Device in two phases:
// once without the node which has restarted, to clear its wireguard session key,
// and a second time with it.
discoChanged := make(map[key.Public]bool)
{
prevEP := make(map[key.Public]string)
for i := range e.lastCfgFull.Peers {
if p := &e.lastCfgFull.Peers[i]; isSingleEndpoint(p.Endpoints) {
prevEP[key.Public(p.PublicKey)] = p.Endpoints
}
}
for i := range cfg.Peers {
p := &cfg.Peers[i]
if !isSingleEndpoint(p.Endpoints) {
continue
}
pub := key.Public(p.PublicKey)
if old, ok := prevEP[pub]; ok && old != p.Endpoints {
discoChanged[pub] = true
e.logf("wgengine: Reconfig: %s changed from %q to %q", pub.ShortString(), old, p.Endpoints)
}
}
}
e.lastCfgFull = cfg.Copy()
// Tell magicsock about the new (or initial) private key
// (which is needed by DERP) before wgdev gets it, as wgdev
// will start trying to handshake, which we want to be able to
// go over DERP.
if err := e.magicConn.SetPrivateKey(wgkey.Private(cfg.PrivateKey)); err != nil {
e.logf("wgengine: Reconfig: SetPrivateKey: %v", err)
}
e.magicConn.UpdatePeers(peerSet)
if err := e.maybeReconfigWireguardLocked(discoChanged); err != nil {
return err
}
if routerChanged {
if routerCfg.DNS.Proxied {
ips := routerCfg.DNS.Nameservers
upstreams := make([]net.Addr, len(ips))
for i, ip := range ips {
stdIP := ip.IPAddr()
upstreams[i] = &net.UDPAddr{
IP: stdIP.IP,
Port: 53,
Zone: stdIP.Zone,
}
}
e.resolver.SetUpstreams(upstreams)
routerCfg.DNS.Nameservers = []netaddr.IP{tsaddr.TailscaleServiceIP()}
}
e.logf("wgengine: Reconfig: configuring router")
err := e.router.Set(routerCfg)
health.SetRouterHealth(err)
if err != nil {
return err
}
}
e.logf("[v1] wgengine: Reconfig done")
return nil
}
// isSingleEndpoint reports whether endpoints contains exactly one host:port pair.
func isSingleEndpoint(s string) bool {
return s != "" && !strings.Contains(s, ",")
}
func (e *userspaceEngine) GetFilter() *filter.Filter {
return e.tundev.GetFilter()
}
func (e *userspaceEngine) SetFilter(filt *filter.Filter) {
e.tundev.SetFilter(filt)
}
func (e *userspaceEngine) SetDNSMap(dm *tsdns.Map) {
e.resolver.SetMap(dm)
}
func (e *userspaceEngine) SetStatusCallback(cb StatusCallback) {
e.mu.Lock()
defer e.mu.Unlock()
e.statusCallback = cb
}
func (e *userspaceEngine) getStatusCallback() StatusCallback {
e.mu.Lock()
defer e.mu.Unlock()
return e.statusCallback
}
var singleNewline = []byte{'\n'}
func (e *userspaceEngine) getStatus() (*Status, error) {
// Grab derpConns before acquiring wgLock to not violate lock ordering;
// the DERPs method acquires magicsock.Conn.mu.
// (See comment in userspaceEngine's declaration.)
derpConns := e.magicConn.DERPs()
e.wgLock.Lock()
defer e.wgLock.Unlock()
e.mu.Lock()
closing := e.closing
e.mu.Unlock()
if closing {
return nil, errors.New("engine closing; no status")
}
if e.wgdev == nil {
// RequestStatus was invoked before the wgengine has
// finished initializing. This can happen when wgegine
// provides a callback to magicsock for endpoint
// updates that calls RequestStatus.
return nil, nil
}
pr, pw := io.Pipe()
defer pr.Close() // to unblock writes on error path returns
errc := make(chan error, 1)
go func() {
defer pw.Close()
// TODO(apenwarr): get rid of silly uapi stuff for in-process comms
// FIXME: get notified of status changes instead of polling.
err := e.wgdev.IpcGetOperation(pw)
if err != nil {
err = fmt.Errorf("IpcGetOperation: %w", err)
}
errc <- err
}()
pp := make(map[wgkey.Key]*ipnstate.PeerStatusLite)
p := &ipnstate.PeerStatusLite{}
var hst1, hst2, n int64
br := e.statusBufioReader
if br != nil {
br.Reset(pr)
} else {
br = bufio.NewReaderSize(pr, 1<<10)
e.statusBufioReader = br
}
for {
line, err := br.ReadSlice('\n')
if err == io.EOF {
break
}
if err != nil {
return nil, fmt.Errorf("reading from UAPI pipe: %w", err)
}
line = bytes.TrimSuffix(line, singleNewline)
k := line
var v mem.RO
if i := bytes.IndexByte(line, '='); i != -1 {
k = line[:i]
v = mem.B(line[i+1:])
}
switch string(k) {
case "public_key":
pk, err := key.NewPublicFromHexMem(v)
if err != nil {
return nil, fmt.Errorf("IpcGetOperation: invalid key in line %q", line)
}
p = &ipnstate.PeerStatusLite{}
pp[wgkey.Key(pk)] = p
key := tailcfg.NodeKey(pk)
p.NodeKey = key
case "rx_bytes":
n, err = mem.ParseInt(v, 10, 64)
p.RxBytes = n
if err != nil {
return nil, fmt.Errorf("IpcGetOperation: rx_bytes invalid: %#v", line)
}
case "tx_bytes":
n, err = mem.ParseInt(v, 10, 64)
p.TxBytes = n
if err != nil {
return nil, fmt.Errorf("IpcGetOperation: tx_bytes invalid: %#v", line)
}
case "last_handshake_time_sec":
hst1, err = mem.ParseInt(v, 10, 64)
if err != nil {
return nil, fmt.Errorf("IpcGetOperation: hst1 invalid: %#v", line)
}
case "last_handshake_time_nsec":
hst2, err = mem.ParseInt(v, 10, 64)
if err != nil {
return nil, fmt.Errorf("IpcGetOperation: hst2 invalid: %#v", line)
}
if hst1 != 0 || hst2 != 0 {
p.LastHandshake = time.Unix(hst1, hst2)
} // else leave at time.IsZero()
}
}
if err := <-errc; err != nil {
return nil, fmt.Errorf("IpcGetOperation: %v", err)
}
e.mu.Lock()
defer e.mu.Unlock()
var peers []ipnstate.PeerStatusLite
for _, pk := range e.peerSequence {
if p, ok := pp[pk]; ok { // ignore idle ones not in wireguard-go's config
peers = append(peers, *p)
}
}
return &Status{
LocalAddrs: append([]string(nil), e.endpoints...),
Peers: peers,
DERPs: derpConns,
}, nil
}
func (e *userspaceEngine) RequestStatus() {
// This is slightly tricky. e.getStatus() can theoretically get
// blocked inside wireguard for a while, and RequestStatus() is
// sometimes called from a goroutine, so we don't want a lot of
// them hanging around. On the other hand, requesting multiple
// status updates simultaneously is pointless anyway; they will
// all say the same thing.
// Enqueue at most one request. If one is in progress already, this
// adds one more to the queue. If one has been requested but not
// started, it is a no-op.
select {
case e.reqCh <- struct{}{}:
default:
}
// Dequeue at most one request. Another thread may have already
// dequeued the request we enqueued above, which is fine, since the
// information is guaranteed to be at least as recent as the current
// call to RequestStatus().
select {
case <-e.reqCh:
s, err := e.getStatus()
if s == nil && err == nil {
e.logf("RequestStatus: weird: both s and err are nil")
return
}
if cb := e.getStatusCallback(); cb != nil {
cb(s, err)
}
default:
}
}
func (e *userspaceEngine) Close() {
var pingers []*pinger
e.mu.Lock()
if e.closing {
e.mu.Unlock()
return
}
e.closing = true
for _, pinger := range e.pingers {
pingers = append(pingers, pinger)
}
e.mu.Unlock()
r := bufio.NewReader(strings.NewReader(""))
e.wgdev.IpcSetOperation(r)
e.resolver.Close()
e.magicConn.Close()
e.linkMonUnregister()
if e.linkMonOwned {
e.linkMon.Close()
}
e.router.Close()
e.wgdev.Close()
e.tundev.Close()
// Shut down pingers after tundev is closed (by e.wgdev.Close) so the
// synchronous close does not get stuck on InjectOutbound.
for _, pinger := range pingers {
pinger.close()
}
close(e.waitCh)
}
func (e *userspaceEngine) Wait() {
<-e.waitCh
}
func (e *userspaceEngine) GetLinkMonitor() *monitor.Mon {
return e.linkMon
}
// LinkChange signals a network change event. It's currently
// (2021-03-03) only called on Android.
func (e *userspaceEngine) LinkChange(_ bool) {
e.linkMon.InjectEvent()
}
func (e *userspaceEngine) linkChange(changed bool, cur *interfaces.State) {
up := cur.AnyInterfaceUp()
if !up {
e.logf("LinkChange: all links down; pausing: %v", cur)
} else if changed {
e.logf("LinkChange: major, rebinding. New state: %v", cur)
} else {
e.logf("[v1] LinkChange: minor")
}
health.SetAnyInterfaceUp(up)
e.magicConn.SetNetworkUp(up)
why := "link-change-minor"
if changed {
why = "link-change-major"
e.magicConn.Rebind()
}
e.magicConn.ReSTUN(why)
}
func (e *userspaceEngine) AddNetworkMapCallback(cb NetworkMapCallback) func() {
e.mu.Lock()
defer e.mu.Unlock()
if e.networkMapCallbacks == nil {
e.networkMapCallbacks = make(map[*someHandle]NetworkMapCallback)
}
h := new(someHandle)
e.networkMapCallbacks[h] = cb
return func() {
e.mu.Lock()
defer e.mu.Unlock()
delete(e.networkMapCallbacks, h)
}
}
func (e *userspaceEngine) SetNetInfoCallback(cb NetInfoCallback) {
e.magicConn.SetNetInfoCallback(cb)
}
func (e *userspaceEngine) SetDERPMap(dm *tailcfg.DERPMap) {
e.magicConn.SetDERPMap(dm)
}
func (e *userspaceEngine) SetNetworkMap(nm *netmap.NetworkMap) {
e.magicConn.SetNetworkMap(nm)
e.mu.Lock()
e.netMap = nm
callbacks := make([]NetworkMapCallback, 0, 4)
for _, fn := range e.networkMapCallbacks {
callbacks = append(callbacks, fn)
}
e.mu.Unlock()
for _, fn := range callbacks {
fn(nm)
}
}
func (e *userspaceEngine) DiscoPublicKey() tailcfg.DiscoKey {
return e.magicConn.DiscoPublicKey()
}
func (e *userspaceEngine) UpdateStatus(sb *ipnstate.StatusBuilder) {
st, err := e.getStatus()
if err != nil {
e.logf("wgengine: getStatus: %v", err)
return
}
for _, ps := range st.Peers {
sb.AddPeer(key.Public(ps.NodeKey), &ipnstate.PeerStatus{
RxBytes: int64(ps.RxBytes),
TxBytes: int64(ps.TxBytes),
LastHandshake: ps.LastHandshake,
InEngine: true,
})
}
e.magicConn.UpdateStatus(sb)
}
func (e *userspaceEngine) Ping(ip netaddr.IP, useTSMP bool, cb func(*ipnstate.PingResult)) {
res := &ipnstate.PingResult{IP: ip.String()}
peer, err := e.peerForIP(ip)
if err != nil {
e.logf("ping(%v): %v", ip, err)
res.Err = err.Error()
cb(res)
return
}
if peer == nil {
e.logf("ping(%v): no matching peer", ip)
res.Err = "no matching peer"
cb(res)
return
}
pingType := "disco"
if useTSMP {
pingType = "TSMP"
}
e.logf("ping(%v): sending %v ping to %v %v ...", ip, pingType, peer.Key.ShortString(), peer.ComputedName)
if useTSMP {
e.sendTSMPPing(ip, peer, res, cb)
} else {
e.magicConn.Ping(peer, res, cb)
}
}
func (e *userspaceEngine) mySelfIPMatchingFamily(dst netaddr.IP) (src netaddr.IP, err error) {
e.mu.Lock()
defer e.mu.Unlock()
if e.netMap == nil {
return netaddr.IP{}, errors.New("no netmap")
}
for _, a := range e.netMap.Addresses {
if a.IsSingleIP() && a.IP.BitLen() == dst.BitLen() {
return a.IP, nil
}
}
if len(e.netMap.Addresses) == 0 {
return netaddr.IP{}, errors.New("no self address in netmap")
}
return netaddr.IP{}, errors.New("no self address in netmap matching address family")
}
func (e *userspaceEngine) sendTSMPPing(ip netaddr.IP, peer *tailcfg.Node, res *ipnstate.PingResult, cb func(*ipnstate.PingResult)) {
srcIP, err := e.mySelfIPMatchingFamily(ip)
if err != nil {
res.Err = err.Error()
cb(res)
return
}
var iph packet.Header
if srcIP.Is4() {
iph = packet.IP4Header{
IPProto: ipproto.TSMP,
Src: srcIP,
Dst: ip,
}
} else {
iph = packet.IP6Header{
IPProto: ipproto.TSMP,
Src: srcIP,
Dst: ip,
}
}
var data [8]byte
crand.Read(data[:])
expireTimer := time.AfterFunc(10*time.Second, func() {
e.setTSMPPongCallback(data, nil)
})
t0 := time.Now()
e.setTSMPPongCallback(data, func() {
expireTimer.Stop()
d := time.Since(t0)
res.LatencySeconds = d.Seconds()
res.NodeIP = ip.String()
res.NodeName = peer.ComputedName
cb(res)
})
var tsmpPayload [9]byte
tsmpPayload[0] = byte(packet.TSMPTypePing)
copy(tsmpPayload[1:], data[:])
tsmpPing := packet.Generate(iph, tsmpPayload[:])
e.tundev.InjectOutbound(tsmpPing)
}
func (e *userspaceEngine) setTSMPPongCallback(data [8]byte, cb func()) {
e.mu.Lock()
defer e.mu.Unlock()
if e.pongCallback == nil {
e.pongCallback = map[[8]byte]func(){}
}
if cb == nil {
delete(e.pongCallback, data)
} else {
e.pongCallback[data] = cb
}
}
func (e *userspaceEngine) RegisterIPPortIdentity(ipport netaddr.IPPort, tsIP netaddr.IP) {
e.mu.Lock()
defer e.mu.Unlock()
if e.tsIPByIPPort == nil {
e.tsIPByIPPort = make(map[netaddr.IPPort]netaddr.IP)
}
e.tsIPByIPPort[ipport] = tsIP
}
func (e *userspaceEngine) UnregisterIPPortIdentity(ipport netaddr.IPPort) {
e.mu.Lock()
defer e.mu.Unlock()
if e.tsIPByIPPort == nil {
return
}
delete(e.tsIPByIPPort, ipport)
}
func (e *userspaceEngine) WhoIsIPPort(ipport netaddr.IPPort) (tsIP netaddr.IP, ok bool) {
e.mu.Lock()
defer e.mu.Unlock()
tsIP, ok = e.tsIPByIPPort[ipport]
return tsIP, ok
}
// peerForIP returns the Node in the wireguard config
// that's responsible for handling the given IP address.
//
// If none is found in the wireguard config but one is found in
// the netmap, it's described in an error.
//
// If none is found in either place, (nil, nil) is returned.
//
// peerForIP acquires both e.mu and e.wgLock, but neither at the same
// time.
func (e *userspaceEngine) peerForIP(ip netaddr.IP) (n *tailcfg.Node, err error) {
e.mu.Lock()
nm := e.netMap
e.mu.Unlock()
if nm == nil {
return nil, errors.New("no network map")
}
// Check for exact matches before looking for subnet matches.
var bestInNMPrefix netaddr.IPPrefix
var bestInNM *tailcfg.Node
for _, p := range nm.Peers {
for _, a := range p.Addresses {
if a.IP == ip && a.IsSingleIP() && tsaddr.IsTailscaleIP(ip) {
return p, nil
}
}
for _, cidr := range p.AllowedIPs {
if !cidr.Contains(ip) {
continue
}
if bestInNMPrefix.IsZero() || cidr.Bits > bestInNMPrefix.Bits {
bestInNMPrefix = cidr
bestInNM = p
}
}
}
e.wgLock.Lock()
defer e.wgLock.Unlock()
// TODO(bradfitz): this is O(n peers). Add ART to netaddr?
var best netaddr.IPPrefix
var bestKey tailcfg.NodeKey
for _, p := range e.lastCfgFull.Peers {
for _, cidr := range p.AllowedIPs {
if !cidr.Contains(ip) {
continue
}
if best.IsZero() || cidr.Bits > best.Bits {
best = cidr
bestKey = tailcfg.NodeKey(p.PublicKey)
}
}
}
// And another pass. Probably better than allocating a map per peerForIP
// call. But TODO(bradfitz): add a lookup map to netmap.NetworkMap.
if !bestKey.IsZero() {
for _, p := range nm.Peers {
if p.Key == bestKey {
return p, nil
}
}
}
if bestInNM == nil {
return nil, nil
}
if bestInNMPrefix.Bits == 0 {
return nil, errors.New("exit node found but not enabled")
}
return nil, fmt.Errorf("node %q found, but not using its %v route", bestInNM.ComputedNameWithHost, bestInNMPrefix)
}
// diagnoseTUNFailure is called if tun.CreateTUN fails, to poke around
// the system and log some diagnostic info that might help debug why
// TUN failed. Because TUN's already failed and things the program's
// about to end, we might as well log a lot.
func diagnoseTUNFailure(tunName string, logf logger.Logf) {
switch runtime.GOOS {
case "linux":
diagnoseLinuxTUNFailure(tunName, logf)
case "darwin":
diagnoseDarwinTUNFailure(tunName, logf)
default:
logf("no TUN failure diagnostics for OS %q", runtime.GOOS)
}
}
func diagnoseDarwinTUNFailure(tunName string, logf logger.Logf) {
if os.Getuid() != 0 {
logf("failed to create TUN device as non-root user; use 'sudo tailscaled', or run under launchd with 'sudo tailscaled install-system-daemon'")
}
if tunName != "utun" {
logf("failed to create TUN device %q; try using tun device \"utun\" instead for automatic selection", tunName)
}
}
func diagnoseLinuxTUNFailure(tunName string, logf logger.Logf) {
kernel, err := exec.Command("uname", "-r").Output()
kernel = bytes.TrimSpace(kernel)
if err != nil {
logf("no TUN, and failed to look up kernel version: %v", err)
return
}
logf("Linux kernel version: %s", kernel)
modprobeOut, err := exec.Command("/sbin/modprobe", "tun").CombinedOutput()
if err == nil {
logf("'modprobe tun' successful")
// Either tun is currently loaded, or it's statically
// compiled into the kernel (which modprobe checks
// with /lib/modules/$(uname -r)/modules.builtin)
//
// So if there's a problem at this point, it's
// probably because /dev/net/tun doesn't exist.
const dev = "/dev/net/tun"
if fi, err := os.Stat(dev); err != nil {
logf("tun module loaded in kernel, but %s does not exist", dev)
} else {
logf("%s: %v", dev, fi.Mode())
}
// We failed to find why it failed. Just let our
// caller report the error it got from wireguard-go.
return
}
logf("is CONFIG_TUN enabled in your kernel? `modprobe tun` failed with: %s", modprobeOut)
switch distro.Get() {
case distro.Debian:
dpkgOut, err := exec.Command("dpkg", "-S", "kernel/drivers/net/tun.ko").CombinedOutput()
if len(bytes.TrimSpace(dpkgOut)) == 0 || err != nil {
logf("tun module not loaded nor found on disk")
return
}
if !bytes.Contains(dpkgOut, kernel) {
logf("kernel/drivers/net/tun.ko found on disk, but not for current kernel; are you in middle of a system update and haven't rebooted? found: %s", dpkgOut)
}
case distro.Arch:
findOut, err := exec.Command("find", "/lib/modules/", "-path", "*/net/tun.ko*").CombinedOutput()
if len(bytes.TrimSpace(findOut)) == 0 || err != nil {
logf("tun module not loaded nor found on disk")
return
}
if !bytes.Contains(findOut, kernel) {
logf("kernel/drivers/net/tun.ko found on disk, but not for current kernel; are you in middle of a system update and haven't rebooted? found: %s", findOut)
}
case distro.OpenWrt:
out, err := exec.Command("opkg", "list-installed").CombinedOutput()
if err != nil {
logf("error querying OpenWrt installed packages: %s", out)
return
}
for _, pkg := range []string{"kmod-tun", "ca-bundle"} {
if !bytes.Contains(out, []byte(pkg+" - ")) {
logf("Missing required package %s; run: opkg install %s", pkg, pkg)
}
}
}
}
type closeOnErrorPool []func()
func (p *closeOnErrorPool) add(c io.Closer) { *p = append(*p, func() { c.Close() }) }
func (p *closeOnErrorPool) addFunc(fn func()) { *p = append(*p, fn) }
func (p closeOnErrorPool) closeAllIfError(errp *error) {
if *errp != nil {
for _, closeFn := range p {
closeFn()
}
}
}