You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tailscale/wgengine/magicsock/magicsock.go

1517 lines
39 KiB
Go

// Copyright 2019 Tailscale & AUTHORS. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package magicsock implements a socket that can change its communication path while
// in use, actively searching for the best way to communicate.
package magicsock
import (
"context"
"crypto/tls"
"encoding/binary"
"errors"
"fmt"
"hash/fnv"
"log"
"math/rand"
"net"
"os"
"strconv"
"strings"
"sync"
"sync/atomic"
"syscall"
"time"
"github.com/tailscale/wireguard-go/conn"
"github.com/tailscale/wireguard-go/device"
"github.com/tailscale/wireguard-go/wgcfg"
"golang.org/x/time/rate"
"tailscale.com/derp"
"tailscale.com/derp/derphttp"
"tailscale.com/derp/derpmap"
"tailscale.com/net/dnscache"
"tailscale.com/net/interfaces"
"tailscale.com/netcheck"
"tailscale.com/stun"
"tailscale.com/tailcfg"
"tailscale.com/types/key"
"tailscale.com/types/logger"
"tailscale.com/version"
)
// A Conn routes UDP packets and actively manages a list of its endpoints.
// It implements wireguard/device.Bind.
type Conn struct {
pconn *RebindingUDPConn
pconnPort uint16
startEpUpdate chan struct{} // send to trigger endpoint update
epFunc func(endpoints []string)
logf logger.Logf
sendLogLimit *rate.Limiter
derps *derpmap.World
netChecker *netcheck.Client
goroutines sync.WaitGroup
// bufferedIPv4From and bufferedIPv4Packet are owned by
// ReceiveIPv4, and used when both a DERP and IPv4 packet arrive
// at the same time. It stores the IPv4 packet for use in the next call.
bufferedIPv4From *net.UDPAddr // if non-nil, then bufferedIPv4Packet is valid
bufferedIPv4Packet []byte // the received packet (reused, owned by ReceiveIPv4)
connCtx context.Context // closed on Conn.Close
connCtxCancel func() // closes connCtx
linkChangeMu sync.Mutex
linkState *interfaces.State
// addrsByUDP is a map of every remote ip:port to a priority
// list of endpoint addresses for a peer.
// The priority list is provided by wgengine configuration.
//
// Given a wgcfg describing:
// machineA: 10.0.0.1:1, 10.0.0.2:2
// machineB: 10.0.0.3:3
// the addrsByUDP map contains:
// 10.0.0.1:1 -> [10.0.0.1:1, 10.0.0.2:2]
// 10.0.0.2:2 -> [10.0.0.1:1, 10.0.0.2:2]
// 10.0.0.3:3 -> [10.0.0.3:3]
addrsMu sync.Mutex
addrsByUDP map[udpAddr]*AddrSet // TODO: clean up this map sometime?
addrsByKey map[key.Public]*AddrSet // TODO: clean up this map sometime?
// stunReceiveFunc holds the current STUN packet processing func.
// Its Loaded value is always non-nil.
stunReceiveFunc atomic.Value // of func(p []byte, fromAddr *net.UDPAddr)
netInfoMu sync.Mutex
netInfoFunc func(*tailcfg.NetInfo) // nil until set
netInfoLast *tailcfg.NetInfo
udpRecvCh chan udpReadResult
derpRecvCh chan derpReadResult
derpMu sync.Mutex
wantDerp bool
privateKey key.Private
myDerp int // nearest DERP server; 0 means none/unknown
activeDerp map[int]activeDerp
derpTLSConfig *tls.Config // normally nil; used by tests
}
// DerpMagicIP is a fake WireGuard endpoint IP address that means
// to use DERP. When used, the port number of the WireGuard endpoint
// is the DERP server number to use.
//
// Mnemonic: 3.3.40 are numbers above the keys D, E, R, P.
const DerpMagicIP = "127.3.3.40"
var derpMagicIP = net.ParseIP(DerpMagicIP).To4()
// activeDerp contains fields for an active DERP connection.
type activeDerp struct {
c *derphttp.Client
cancel context.CancelFunc
writeCh chan<- derpWriteRequest
lastWrite *time.Time
}
// udpAddr is the key in the addrsByUDP map.
// It maps an ip:port onto an *AddrSet.
type udpAddr struct {
ip wgcfg.IP
port uint16
}
// DefaultPort is the default port to listen on.
// The current default (zero) means to auto-select a random free port.
const DefaultPort = 0
var DisableSTUNForTesting bool
// Options contains options for Listen.
type Options struct {
Logf logger.Logf
// Port is the port to listen on.
// Zero means to pick one automatically.
Port uint16
// STUN, if non-empty, specifies alternate STUN servers for testing.
// If empty, the production DERP servers are used.
STUN []string
// EndpointsFunc optionally provides a func to be called when
// endpoints change. The called func does not own the slice.
EndpointsFunc func(endpoint []string)
derpTLSConfig *tls.Config // normally nil; used by tests
}
func (o *Options) endpointsFunc() func([]string) {
if o == nil || o.EndpointsFunc == nil {
return func([]string) {}
}
return o.EndpointsFunc
}
// Listen creates a magic Conn listening on opts.Port.
// As the set of possible endpoints for a Conn changes, the
// callback opts.EndpointsFunc is called.
func Listen(opts Options) (*Conn, error) {
var packetConn net.PacketConn
var err error
logf := log.Printf
if opts.Logf != nil {
logf = opts.Logf
}
if opts.Port == 0 {
// Our choice of port. Start with DefaultPort.
// If unavailable, pick any port.
want := fmt.Sprintf(":%d", DefaultPort)
logf("magicsock: bind: trying %v\n", want)
packetConn, err = net.ListenPacket("udp4", want)
if err != nil {
want = ":0"
logf("magicsock: bind: falling back to %v (%v)\n", want, err)
packetConn, err = net.ListenPacket("udp4", want)
}
} else {
packetConn, err = net.ListenPacket("udp4", fmt.Sprintf(":%d", opts.Port))
}
if err != nil {
return nil, fmt.Errorf("magicsock.Listen: %v", err)
}
connCtx, connCtxCancel := context.WithCancel(context.Background())
c := &Conn{
pconn: new(RebindingUDPConn),
pconnPort: opts.Port,
sendLogLimit: rate.NewLimiter(rate.Every(1*time.Minute), 1),
startEpUpdate: make(chan struct{}, 1),
connCtx: connCtx,
connCtxCancel: connCtxCancel,
epFunc: opts.endpointsFunc(),
logf: logf,
addrsByUDP: make(map[udpAddr]*AddrSet),
addrsByKey: make(map[key.Public]*AddrSet),
wantDerp: true,
derpRecvCh: make(chan derpReadResult),
udpRecvCh: make(chan udpReadResult),
derpTLSConfig: opts.derpTLSConfig,
derps: derpmap.Prod(),
}
c.linkState, _ = getLinkState()
if len(opts.STUN) > 0 {
c.derps = derpmap.NewTestWorld(opts.STUN...)
}
c.netChecker = &netcheck.Client{
DERP: c.derps,
Logf: logger.WithPrefix(c.logf, "netcheck: "),
GetSTUNConn4: func() netcheck.STUNConn { return c.pconn },
// TODO: add GetSTUNConn6 once Conn has a pconn6
}
c.ignoreSTUNPackets()
c.pconn.Reset(packetConn.(*net.UDPConn))
c.reSTUN()
c.goroutines.Add(1)
go func() {
defer c.goroutines.Done()
c.epUpdate(connCtx)
}()
return c, nil
}
func (c *Conn) donec() <-chan struct{} { return c.connCtx.Done() }
// ignoreSTUNPackets sets a STUN packet processing func that does nothing.
func (c *Conn) ignoreSTUNPackets() {
c.stunReceiveFunc.Store(func([]byte, *net.UDPAddr) {})
}
// epUpdate runs in its own goroutine until ctx is shut down.
// Whenever c.startEpUpdate receives a value, it starts an
// STUN endpoint lookup.
func (c *Conn) epUpdate(ctx context.Context) {
var lastEndpoints []string
var lastCancel func()
var lastDone chan struct{}
var regularUpdate <-chan time.Time
if !version.IsMobile() {
// We assume that LinkChange notifications are plumbed through well
// on our mobile clients, so don't do the timer thing to save radio/battery/CPU/etc.
ticker := time.NewTicker(28 * time.Second) // just under 30s, a likely UDP NAT timeout
defer ticker.Stop()
regularUpdate = ticker.C
}
for {
select {
case <-ctx.Done():
if lastCancel != nil {
lastCancel()
<-lastDone
}
return
case <-c.startEpUpdate:
case <-regularUpdate:
}
if lastCancel != nil {
lastCancel()
<-lastDone
}
var epCtx context.Context
epCtx, lastCancel = context.WithCancel(ctx)
lastDone = make(chan struct{})
go func() {
defer close(lastDone)
c.cleanStaleDerp()
netReport, err := c.updateNetInfo(epCtx)
if err != nil {
c.logf("magicsock.Conn: updateNetInfo failed: %v", err)
return
}
endpoints, err := c.determineEndpoints(epCtx, netReport)
if err != nil {
c.logf("magicsock.Conn: endpoint update failed: %v", err)
// TODO(crawshaw): are there any conditions under which
// we should trigger a retry based on the error here?
return
}
if stringsEqual(endpoints, lastEndpoints) {
return
}
lastEndpoints = endpoints
c.epFunc(endpoints)
}()
}
}
func (c *Conn) updateNetInfo(ctx context.Context) (*netcheck.Report, error) {
if DisableSTUNForTesting {
return new(netcheck.Report), nil
}
ctx, cancel := context.WithTimeout(ctx, 2*time.Second)
defer cancel()
c.stunReceiveFunc.Store(c.netChecker.ReceiveSTUNPacket)
defer c.ignoreSTUNPackets()
report, err := c.netChecker.GetReport(ctx)
if err != nil {
return nil, err
}
ni := &tailcfg.NetInfo{
DERPLatency: map[string]float64{},
MappingVariesByDestIP: report.MappingVariesByDestIP,
HairPinning: report.HairPinning,
}
for server, d := range report.DERPLatency {
ni.DERPLatency[server] = d.Seconds()
}
ni.WorkingIPv6.Set(report.IPv6)
ni.WorkingUDP.Set(report.UDP)
ni.PreferredDERP = report.PreferredDERP
if ni.PreferredDERP == 0 {
// Perhaps UDP is blocked. Pick a deterministic but arbitrary
// one.
ni.PreferredDERP = c.pickDERPFallback()
}
if !c.setNearestDERP(ni.PreferredDERP) {
ni.PreferredDERP = 0
}
// TODO: set link type
c.callNetInfoCallback(ni)
return report, nil
}
var processStartUnixNano = time.Now().UnixNano()
// pickDERPFallback returns a non-zero but deterministic DERP node to
// connect to. This is only used if netcheck couldn't find the
// nearest one (for instance, if UDP is blocked and thus STUN latency
// checks aren't working).
func (c *Conn) pickDERPFallback() int {
c.derpMu.Lock()
defer c.derpMu.Unlock()
if c.myDerp != 0 {
// If we already had one in the past, stay on it.
return c.myDerp
}
ids := c.derps.IDs()
if len(ids) == 0 {
// No DERP nodes registered.
return 0
}
h := fnv.New64()
h.Write([]byte(fmt.Sprintf("%p/%d", c, processStartUnixNano))) // arbitrary
return ids[rand.New(rand.NewSource(int64(h.Sum64()))).Intn(len(ids))]
}
// callNetInfoCallback calls the NetInfo callback (if previously
// registered with SetNetInfoCallback) if ni has substantially changed
// since the last state.
//
// callNetInfoCallback takes ownership of ni.
func (c *Conn) callNetInfoCallback(ni *tailcfg.NetInfo) {
c.netInfoMu.Lock()
defer c.netInfoMu.Unlock()
if ni.BasicallyEqual(c.netInfoLast) {
return
}
c.netInfoLast = ni
if c.netInfoFunc != nil {
c.logf("netInfo update: %+v", ni)
go c.netInfoFunc(ni)
}
}
func (c *Conn) SetNetInfoCallback(fn func(*tailcfg.NetInfo)) {
if fn == nil {
panic("nil NetInfoCallback")
}
c.netInfoMu.Lock()
last := c.netInfoLast
c.netInfoFunc = fn
c.netInfoMu.Unlock()
if last != nil {
fn(last)
}
}
func (c *Conn) setNearestDERP(derpNum int) (wantDERP bool) {
c.derpMu.Lock()
defer c.derpMu.Unlock()
if !c.wantDerp {
c.myDerp = 0
return false
}
if derpNum == c.myDerp {
// No change.
return true
}
c.myDerp = derpNum
c.logf("home DERP server is now %v, %v", derpNum, c.derps.ServerByID(derpNum))
for i, ad := range c.activeDerp {
go ad.c.NotePreferred(i == c.myDerp)
}
if derpNum != 0 && derpNum != c.myDerp {
// On change, start connecting to it:
go c.derpWriteChanOfAddr(&net.UDPAddr{IP: derpMagicIP, Port: derpNum})
}
return true
}
// determineEndpoints returns the machine's endpoint addresses. It
// does a STUN lookup to determine its public address.
func (c *Conn) determineEndpoints(ctx context.Context, nr *netcheck.Report) (ipPorts []string, err error) {
already := make(map[string]bool) // endpoint -> true
var eps []string // unique endpoints
addAddr := func(s, reason string) {
c.logf("magicsock: found local %s (%s)\n", s, reason)
if !already[s] {
already[s] = true
eps = append(eps, s)
}
}
if nr.GlobalV4 != "" {
addAddr(nr.GlobalV4, "stun")
}
const tailControlDoesIPv6 = false // TODO: when IPv6 filtering/splitting is enabled in tailcontrol
if nr.GlobalV6 != "" && tailControlDoesIPv6 {
addAddr(nr.GlobalV6, "stun")
}
c.ignoreSTUNPackets()
if localAddr := c.pconn.LocalAddr(); localAddr.IP.IsUnspecified() {
ips, loopback, err := interfaces.LocalAddresses()
if err != nil {
return nil, err
}
reason := "localAddresses"
if len(ips) == 0 {
// Only include loopback addresses if we have no
// interfaces at all to use as endpoints. This allows
// for localhost testing when you're on a plane and
// offline, for example.
ips = loopback
reason = "loopback"
}
for _, ipStr := range ips {
addAddr(net.JoinHostPort(ipStr, fmt.Sprint(localAddr.Port)), reason)
}
} else {
// Our local endpoint is bound to a particular address.
// Do not offer addresses on other local interfaces.
addAddr(localAddr.String(), "socket")
}
// Note: the endpoints are intentionally returned in priority order,
// from "farthest but most reliable" to "closest but least
// reliable." Addresses returned from STUN should be globally
// addressable, but might go farther on the network than necessary.
// Local interface addresses might have lower latency, but not be
// globally addressable.
//
// The STUN address(es) are always first so that legacy wireguard
// can use eps[0] as its only known endpoint address (although that's
// obviously non-ideal).
return eps, nil
}
func stringsEqual(x, y []string) bool {
if len(x) != len(y) {
return false
}
for i := range x {
if x[i] != y[i] {
return false
}
}
return true
}
func (c *Conn) LocalPort() uint16 {
laddr := c.pconn.LocalAddr()
return uint16(laddr.Port)
}
func shouldSprayPacket(b []byte) bool {
if len(b) < 4 {
return false
}
msgType := binary.LittleEndian.Uint32(b[:4])
switch msgType {
case device.MessageInitiationType,
device.MessageResponseType,
device.MessageCookieReplyType: // TODO: necessary?
return true
}
return false
}
var logPacketDests, _ = strconv.ParseBool(os.Getenv("DEBUG_LOG_PACKET_DESTS"))
// appendDests appends to dsts the destinations that b should be
// written to in order to reach as. Some of the returned UDPAddrs may
// be fake addrs representing DERP servers.
//
// It also returns as's current roamAddr, if any.
func (as *AddrSet) appendDests(dsts []*net.UDPAddr, b []byte) (_ []*net.UDPAddr, roamAddr *net.UDPAddr) {
spray := shouldSprayPacket(b) // true for handshakes
now := as.timeNow()
as.mu.Lock()
defer as.mu.Unlock()
// Spray logic.
//
// After exchanging a handshake with a peer, we send some outbound
// packets to every endpoint of that peer. These packets are spaced out
// over several seconds to make sure that our peer has an opportunity to
// send its own spray packet to us before we are done spraying.
//
// Multiple packets are necessary because we have to both establish the
// NAT mappings between two peers *and use* the mappings to switch away
// from DERP to a higher-priority UDP endpoint.
const sprayPeriod = 3 * time.Second
const sprayFreq = 250 * time.Millisecond
if spray {
as.lastSpray = now
as.stopSpray = now.Add(sprayPeriod)
// Reset our favorite route on new handshakes so we
// can downgrade to a worse path if our better path
// goes away. (https://github.com/tailscale/tailscale/issues/92)
as.curAddr = -1
} else if now.Before(as.stopSpray) {
// We are in the spray window. If it has been sprayFreq since we
// last sprayed a packet, spray this packet.
if now.Sub(as.lastSpray) >= sprayFreq {
spray = true
as.lastSpray = now
}
}
// Pick our destination address(es).
switch {
case spray:
// This packet is being sprayed to all addresses.
for i := range as.addrs {
dsts = append(dsts, &as.addrs[i])
}
if as.roamAddr != nil {
dsts = append(dsts, as.roamAddr)
}
case as.roamAddr != nil:
// We have a roaming address, prefer it over other addrs.
// TODO(danderson): this is not correct, there's no reason
// roamAddr should be special like this.
dsts = append(dsts, as.roamAddr)
case as.curAddr != -1:
if as.curAddr >= len(as.addrs) {
log.Printf("[unexpected] magicsock bug: as.curAddr >= len(as.addrs): %d >= %d", as.curAddr, len(as.addrs))
break
}
// No roaming addr, but we've seen packets from a known peer
// addr, so keep using that one.
dsts = append(dsts, &as.addrs[as.curAddr])
default:
// We know nothing about how to reach this peer, and we're not
// spraying. Use the first address in the array, which will
// usually be a DERP address that guarantees connectivity.
if len(as.addrs) > 0 {
dsts = append(dsts, &as.addrs[0])
}
}
if logPacketDests {
log.Printf("spray=%v; roam=%v; dests=%v", spray, as.roamAddr, dsts)
}
return dsts, as.roamAddr
}
var errNoDestinations = errors.New("magicsock: no destinations")
func (c *Conn) Send(b []byte, ep conn.Endpoint) error {
var as *AddrSet
switch v := ep.(type) {
default:
panic(fmt.Sprintf("[unexpected] Endpoint type %T", v))
case *singleEndpoint:
addr := (*net.UDPAddr)(v)
if addr.IP.Equal(derpMagicIP) {
c.logf("[unexpected] DERP BUG: attempting to send packet to DERP address %v", addr)
return nil
}
_, err := c.pconn.WriteTo(b, addr)
return err
case *AddrSet:
as = v
}
var addrBuf [8]*net.UDPAddr
dsts, roamAddr := as.appendDests(addrBuf[:0], b)
if len(dsts) == 0 {
return errNoDestinations
}
var success bool
var ret error
for _, addr := range dsts {
err := c.sendAddr(addr, as.publicKey, b)
if err == nil {
success = true
} else if ret == nil {
ret = err
}
if err != nil && addr != roamAddr && c.sendLogLimit.Allow() {
if c.connCtx.Err() == nil { // don't log if we're closed
c.logf("magicsock: Conn.Send(%v): %v", addr, err)
}
}
}
if success {
return nil
}
return ret
}
var errConnClosed = errors.New("Conn closed")
var errDropDerpPacket = errors.New("too many DERP packets queued; dropping")
// sendAddr sends packet b to addr, which is either a real UDP address
// or a fake UDP address representing a DERP server (see derpmap.go).
// The provided public key identifies the recipient.
func (c *Conn) sendAddr(addr *net.UDPAddr, pubKey key.Public, b []byte) error {
if !addr.IP.Equal(derpMagicIP) {
_, err := c.pconn.WriteTo(b, addr)
return err
}
ch := c.derpWriteChanOfAddr(addr)
if ch == nil {
return nil
}
errc := make(chan error, 1)
select {
case <-c.donec():
return errConnClosed
case ch <- derpWriteRequest{addr, pubKey, b, errc}:
select {
case <-c.donec():
return errConnClosed
case err := <-errc:
return err // usually nil
}
default:
// Too many writes queued. Drop packet.
return errDropDerpPacket
}
}
// bufferedDerpWritesBeforeDrop is how many packets writes can be
// queued up the DERP client to write on the wire before we start
// dropping.
//
// TODO: this is currently arbitrary. Figure out something better?
const bufferedDerpWritesBeforeDrop = 4
// derpWriteChanOfAddr returns a DERP client for fake UDP addresses that
// represent DERP servers, creating them as necessary. For real UDP
// addresses, it returns nil.
func (c *Conn) derpWriteChanOfAddr(addr *net.UDPAddr) chan<- derpWriteRequest {
if !addr.IP.Equal(derpMagicIP) {
return nil
}
c.derpMu.Lock()
defer c.derpMu.Unlock()
if !c.wantDerp {
return nil
}
if c.privateKey.IsZero() {
c.logf("DERP lookup of %v with no private key; ignoring", addr.IP)
return nil
}
ad, ok := c.activeDerp[addr.Port]
if !ok {
if c.activeDerp == nil {
c.activeDerp = make(map[int]activeDerp)
}
derpSrv := c.derps.ServerByID(addr.Port)
if derpSrv == nil || derpSrv.HostHTTPS == "" {
return nil
}
// TODO(bradfitz): don't hold derpMu here. It's slow. Release first and use singleflight to dial+re-lock to add.
dc, err := derphttp.NewClient(c.privateKey, "https://"+derpSrv.HostHTTPS+"/derp", c.logf)
if err != nil {
c.logf("derphttp.NewClient: port %d, host %q invalid? err: %v", addr.Port, derpSrv.HostHTTPS, err)
return nil
}
dc.NotePreferred(c.myDerp == addr.Port)
dc.DNSCache = dnscache.Get()
dc.TLSConfig = c.derpTLSConfig
ctx, cancel := context.WithCancel(context.Background())
ch := make(chan derpWriteRequest, bufferedDerpWritesBeforeDrop)
ad.c = dc
ad.writeCh = ch
ad.cancel = cancel
ad.lastWrite = new(time.Time)
c.activeDerp[addr.Port] = ad
go c.runDerpReader(ctx, addr, dc)
go c.runDerpWriter(ctx, addr, dc, ch)
}
*ad.lastWrite = time.Now()
return ad.writeCh
}
// derpReadResult is the type sent by runDerpClient to ReceiveIPv4
// when a DERP packet is available.
//
// Notably, it doesn't include the derp.ReceivedPacket because we
// don't want to give the receiver access to the aliased []byte. To
// get at the packet contents they need to call copyBuf to copy it
// out, which also releases the buffer.
type derpReadResult struct {
derpAddr *net.UDPAddr
n int // length of data received
src key.Public // may be zero until server deployment if v2+
// copyBuf is called to copy the data to dst. It returns how
// much data was copied, which will be n if dst is large
// enough. copyBuf can only be called once.
copyBuf func(dst []byte) int
}
var logDerpVerbose, _ = strconv.ParseBool(os.Getenv("DEBUG_DERP_VERBOSE"))
// runDerpReader runs in a goroutine for the life of a DERP
// connection, handling received packets.
func (c *Conn) runDerpReader(ctx context.Context, derpFakeAddr *net.UDPAddr, dc *derphttp.Client) {
didCopy := make(chan struct{}, 1)
var buf [derp.MaxPacketSize]byte
res := derpReadResult{derpAddr: derpFakeAddr}
var pkt derp.ReceivedPacket
res.copyBuf = func(dst []byte) int {
n := copy(dst, pkt.Data)
didCopy <- struct{}{}
return n
}
for {
msg, err := dc.Recv(buf[:])
if err == derphttp.ErrClientClosed {
return
}
if err != nil {
select {
case <-c.donec():
return
case <-ctx.Done():
return
default:
}
c.logf("derp.Recv(derp%d): %v", derpFakeAddr.Port, err)
time.Sleep(250 * time.Millisecond)
continue
}
switch m := msg.(type) {
case derp.ReceivedPacket:
pkt = m
res.n = len(m.Data)
res.src = m.Source
if logDerpVerbose {
c.logf("got derp %v packet: %q", derpFakeAddr, m.Data)
}
default:
// Ignore.
// TODO: handle endpoint notification messages.
continue
}
select {
case <-c.donec():
return
case c.derpRecvCh <- res:
<-didCopy
}
}
}
type derpWriteRequest struct {
addr *net.UDPAddr
pubKey key.Public
b []byte
errc chan<- error
}
// runDerpWriter runs in a goroutine for the life of a DERP
// connection, handling received packets.
func (c *Conn) runDerpWriter(ctx context.Context, derpFakeAddr *net.UDPAddr, dc *derphttp.Client, ch <-chan derpWriteRequest) {
for {
select {
case <-ctx.Done():
return
case <-c.donec():
return
case wr := <-ch:
err := dc.Send(wr.pubKey, wr.b)
if err != nil {
c.logf("magicsock: derp.Send(%v): %v", wr.addr, err)
}
select {
case wr.errc <- err:
case <-c.donec():
return
}
}
}
}
// findEndpoint maps from a UDP address to a WireGuard endpoint, for
// ReceiveIPv4/ReceiveIPv6.
func (c *Conn) findEndpoint(addr *net.UDPAddr) conn.Endpoint {
if as := c.findAddrSet(addr); as != nil {
return as
}
// The peer that sent this packet has roamed beyond the
// knowledge provided by the control server.
// If the packet is valid wireguard will call UpdateDst
// on the original endpoint using this addr.
return (*singleEndpoint)(addr)
}
func (c *Conn) findAddrSet(addr *net.UDPAddr) *AddrSet {
var epAddr udpAddr
copy(epAddr.ip.Addr[:], addr.IP.To16())
epAddr.port = uint16(addr.Port)
c.addrsMu.Lock()
defer c.addrsMu.Unlock()
return c.addrsByUDP[epAddr]
}
type udpReadResult struct {
n int
err error
addr *net.UDPAddr
}
// aLongTimeAgo is a non-zero time, far in the past, used for
// immediate cancellation of network operations.
var aLongTimeAgo = time.Unix(233431200, 0)
// awaitUDP4 reads a single IPv4 UDP packet (or an error) and sends it
// to c.udpRecvCh, skipping over (but handling) any STUN replies.
func (c *Conn) awaitUDP4(b []byte) {
for {
n, pAddr, err := c.pconn.ReadFrom(b)
if err != nil {
select {
case c.udpRecvCh <- udpReadResult{err: err}:
case <-c.donec():
}
return
}
addr := pAddr.(*net.UDPAddr)
if stun.Is(b[:n]) {
c.stunReceiveFunc.Load().(func([]byte, *net.UDPAddr))(b, addr)
continue
}
addr.IP = addr.IP.To4()
select {
case c.udpRecvCh <- udpReadResult{n: n, addr: addr}:
case <-c.donec():
}
return
}
}
func (c *Conn) ReceiveIPv4(b []byte) (n int, ep conn.Endpoint, addr *net.UDPAddr, err error) {
// First, process any buffered packet from earlier.
if addr := c.bufferedIPv4From; addr != nil {
c.bufferedIPv4From = nil
return copy(b, c.bufferedIPv4Packet), c.findEndpoint(addr), addr, nil
}
go c.awaitUDP4(b)
// Once the above goroutine has started, it owns b until it writes
// to udpRecvCh. The code below must not access b until it's
// completed a successful receive on udpRecvCh.
var addrSet *AddrSet
select {
case dm := <-c.derpRecvCh:
// Cancel the pconn read goroutine
c.pconn.SetReadDeadline(aLongTimeAgo)
// Wait for the UDP-reading goroutine to be done, since it's currently
// the owner of the b []byte buffer:
select {
case um := <-c.udpRecvCh:
if um.err != nil {
// The normal case. The SetReadDeadline interrupted
// the read and we get an error which we now ignore.
} else {
// The pconn.ReadFrom succeeded and was about to send,
// but DERP sent first. So now we have both ready.
// Save the UDP packet away for use by the next
// ReceiveIPv4 call.
c.bufferedIPv4From = um.addr
c.bufferedIPv4Packet = append(c.bufferedIPv4Packet[:0], b[:um.n]...)
}
c.pconn.SetReadDeadline(time.Time{})
case <-c.donec():
return 0, nil, nil, errors.New("Conn closed")
}
n, addr = dm.n, dm.derpAddr
ncopy := dm.copyBuf(b)
if ncopy != n {
err = fmt.Errorf("received DERP packet of length %d that's too big for WireGuard ReceiveIPv4 buf size %d", n, ncopy)
c.logf("magicsock: %v", err)
return 0, nil, nil, err
}
c.addrsMu.Lock()
addrSet = c.addrsByKey[dm.src]
c.addrsMu.Unlock()
if addrSet == nil {
key := wgcfg.Key(dm.src)
c.logf("magicsock: DERP packet from unknown key: %s", key.ShortString())
}
case um := <-c.udpRecvCh:
if um.err != nil {
return 0, nil, nil, err
}
n, addr = um.n, um.addr
case <-c.donec():
// Socket has been shut down. All the producers of packets
// respond to the context cancellation and go away, so we have
// to also unblock and return an error, to inform wireguard-go
// that this socket has gone away.
//
// Specifically, wireguard-go depends on its bind.Conn having
// the standard socket behavior, which is that a Close()
// unblocks any concurrent Read()s. wireguard-go itself calls
// Clos() on magicsock, and expects ReceiveIPv4 to unblock
// with an error so it can clean up.
return 0, nil, nil, errors.New("socket closed")
}
if addrSet != nil {
ep = addrSet
} else {
ep = c.findEndpoint(addr)
}
return n, ep, addr, nil
}
func (c *Conn) ReceiveIPv6(buff []byte) (int, conn.Endpoint, *net.UDPAddr, error) {
// TODO(crawshaw): IPv6 support
return 0, nil, nil, syscall.EAFNOSUPPORT
}
// SetPrivateKey sets the connection's private key.
//
// This is only used to be able prove our identity when connecting to
// DERP servers.
//
// If the private key changes, any DERP connections are torn down &
// recreated when needed.
func (c *Conn) SetPrivateKey(privateKey wgcfg.PrivateKey) error {
c.derpMu.Lock()
defer c.derpMu.Unlock()
oldKey, newKey := c.privateKey, key.Private(privateKey)
if newKey == oldKey {
return nil
}
c.privateKey = newKey
if oldKey.IsZero() {
// Initial configuration on start.
return nil
}
// Key changed. Close any DERP connections.
c.closeAllDerpLocked()
return nil
}
// SetDERPEnabled controls whether DERP is used.
// New connections have it enabled by default.
func (c *Conn) SetDERPEnabled(wantDerp bool) {
c.derpMu.Lock()
defer c.derpMu.Unlock()
c.wantDerp = wantDerp
if !wantDerp {
c.closeAllDerpLocked()
}
}
// c.derpMu must be held.
func (c *Conn) closeAllDerpLocked() {
for i := range c.activeDerp {
c.closeDerpLocked(i)
}
}
// c.derpMu must be held.
func (c *Conn) closeDerpLocked(node int) {
if ad, ok := c.activeDerp[node]; ok {
c.logf("closing connection to derp%v", node)
go ad.c.Close()
ad.cancel()
delete(c.activeDerp, node)
}
}
func (c *Conn) cleanStaleDerp() {
c.derpMu.Lock()
defer c.derpMu.Unlock()
const inactivityTime = 60 * time.Second
tooOld := time.Now().Add(-inactivityTime)
for i, ad := range c.activeDerp {
if i == c.myDerp {
continue
}
if ad.lastWrite.Before(tooOld) {
c.logf("closing stale DERP connection to derp%v", i)
c.closeDerpLocked(i)
}
}
}
func (c *Conn) SetMark(value uint32) error { return nil }
func (c *Conn) LastMark() uint32 { return 0 }
func (c *Conn) Close() error {
// TODO: make this safe for concurrent Close? it's safe now only if Close calls are serialized.
select {
case <-c.donec():
return nil
default:
}
c.connCtxCancel()
c.derpMu.Lock()
c.closeAllDerpLocked()
c.derpMu.Unlock()
err := c.pconn.Close()
c.goroutines.Wait()
return err
}
func (c *Conn) reSTUN() {
select {
case c.startEpUpdate <- struct{}{}:
case <-c.donec():
}
}
// LinkChange should be called whenever something changed with the
// network, no matter how minor. The LinkChange method then looks
// at the state of the network and decides whether the change from
// before is interesting enough to warrant taking action on.
func (c *Conn) LinkChange() {
defer c.reSTUN()
c.linkChangeMu.Lock()
defer c.linkChangeMu.Unlock()
cur, err := getLinkState()
if err != nil {
return
}
if c.linkState != nil && !cur.Equal(c.linkState) {
c.linkState = cur
c.rebind()
}
}
func getLinkState() (*interfaces.State, error) {
s, err := interfaces.GetState()
if s != nil {
s.RemoveTailscaleInterfaces()
}
return s, err
}
func (c *Conn) rebind() {
if c.pconnPort != 0 {
c.pconn.mu.Lock()
if err := c.pconn.pconn.Close(); err != nil {
c.logf("magicsock: link change close failed: %v", err)
}
packetConn, err := net.ListenPacket("udp4", fmt.Sprintf(":%d", c.pconnPort))
if err == nil {
c.logf("magicsock: link change rebound port: %d", c.pconnPort)
c.pconn.pconn = packetConn.(*net.UDPConn)
c.pconn.mu.Unlock()
return
}
c.logf("magicsock: link change unable to bind fixed port %d: %v, falling back to random port", c.pconnPort, err)
c.pconn.mu.Unlock()
}
c.logf("magicsock: link change, binding new port")
packetConn, err := net.ListenPacket("udp4", ":0")
if err != nil {
c.logf("magicsock: link change failed to bind new port: %v", err)
return
}
c.pconn.Reset(packetConn.(*net.UDPConn))
}
// AddrSet is a set of UDP addresses that implements wireguard/conn.Endpoint.
type AddrSet struct {
publicKey key.Public // peer public key used for DERP communication
// addrs is an ordered priority list provided by wgengine,
// sorted from expensive+slow+reliable at the begnining to
// fast+cheap at the end. More concretely, it's typically:
//
// [DERP fakeip:node, Global IP:port, LAN ip:port]
//
// But there could be multiple or none of each.
addrs []net.UDPAddr
// clock, if non-nil, is used in tests instead of time.Now.
clock func() time.Time
Logf logger.Logf // Logf, if non-nil, is used instead of log.Printf
mu sync.Mutex // guards following fields
// roamAddr is non-nil if/when we receive a correctly signed
// WireGuard packet from an unexpected address. If so, we
// remember it and send responses there in the future, but
// this should hopefully never be used (or at least used
// rarely) in the case that all the components of Tailscale
// are correctly learning/sharing the network map details.
roamAddr *net.UDPAddr
// curAddr is an index into addrs of the highest-priority
// address a valid packet has been received from so far.
// If no valid packet from addrs has been received, curAddr is -1.
curAddr int
// stopSpray is the time after which we stop spraying packets.
stopSpray time.Time
// lastSpray is the lsat time we sprayed a packet.
lastSpray time.Time
}
func (as *AddrSet) timeNow() time.Time {
if as.clock != nil {
return as.clock()
}
return time.Now()
}
func (as *AddrSet) logf(format string, args ...interface{}) {
if as.Logf != nil {
as.Logf(format, args...)
} else {
log.Printf(format, args...)
}
}
var noAddr = &net.UDPAddr{
IP: net.ParseIP("127.127.127.127"),
Port: 127,
}
func (a *AddrSet) dst() *net.UDPAddr {
a.mu.Lock()
defer a.mu.Unlock()
if a.roamAddr != nil {
return a.roamAddr
}
if len(a.addrs) == 0 {
return noAddr
}
i := a.curAddr
if i == -1 {
i = 0
}
return &a.addrs[i]
}
// packUDPAddr packs a UDPAddr in the form wanted by WireGuard.
func packUDPAddr(ua *net.UDPAddr) []byte {
ip := ua.IP.To4()
if ip == nil {
ip = ua.IP
}
b := make([]byte, 0, len(ip)+2)
b = append(b, ip...)
b = append(b, byte(ua.Port))
b = append(b, byte(ua.Port>>8))
return b
}
func (a *AddrSet) DstToBytes() []byte {
return packUDPAddr(a.dst())
}
func (a *AddrSet) DstToString() string {
dst := a.dst()
return dst.String()
}
func (a *AddrSet) DstIP() net.IP {
return a.dst().IP
}
func (a *AddrSet) SrcIP() net.IP { return nil }
func (a *AddrSet) SrcToString() string { return "" }
func (a *AddrSet) ClearSrc() {}
func (a *AddrSet) UpdateDst(new *net.UDPAddr) error {
if new.IP.Equal(derpMagicIP) {
// Never consider DERP addresses as a viable candidate for
// either curAddr or roamAddr. It's only ever a last resort
// choice, never a preferred choice.
// This is a hot path for established connections.
return nil
}
a.mu.Lock()
defer a.mu.Unlock()
if a.roamAddr != nil && equalUDPAddr(new, a.roamAddr) {
// Packet from the current roaming address, no logging.
// This is a hot path for established connections.
return nil
}
if a.roamAddr == nil && a.curAddr >= 0 && equalUDPAddr(new, &a.addrs[a.curAddr]) {
// Packet from current-priority address, no logging.
// This is a hot path for established connections.
return nil
}
index := -1
for i := range a.addrs {
if equalUDPAddr(new, &a.addrs[i]) {
index = i
break
}
}
publicKey := wgcfg.Key(a.publicKey)
pk := publicKey.ShortString()
old := "<none>"
if a.curAddr >= 0 {
old = a.addrs[a.curAddr].String()
}
switch {
case index == -1:
if a.roamAddr == nil {
a.logf("magicsock: rx %s from roaming address %s, set as new priority", pk, new)
} else {
a.logf("magicsock: rx %s from roaming address %s, replaces roaming address %s", pk, new, a.roamAddr)
}
a.roamAddr = new
case a.roamAddr != nil:
a.logf("magicsock: rx %s from known %s (%d), replaces roaming address %s", pk, new, index, a.roamAddr)
a.roamAddr = nil
a.curAddr = index
case a.curAddr == -1:
a.logf("magicsock: rx %s from %s (%d/%d), set as new priority", pk, new, index, len(a.addrs))
a.curAddr = index
case index < a.curAddr:
a.logf("magicsock: rx %s from low-pri %s (%d), keeping current %s (%d)", pk, new, index, old, a.curAddr)
default: // index > a.curAddr
a.logf("magicsock: rx %s from %s (%d/%d), replaces old priority %s", pk, new, index, len(a.addrs), old)
a.curAddr = index
}
return nil
}
func equalUDPAddr(x, y *net.UDPAddr) bool {
return x.Port == y.Port && x.IP.Equal(y.IP)
}
func (a *AddrSet) String() string {
a.mu.Lock()
defer a.mu.Unlock()
buf := new(strings.Builder)
buf.WriteByte('[')
if a.roamAddr != nil {
fmt.Fprintf(buf, "roam:%s:%d", a.roamAddr.IP, a.roamAddr.Port)
}
for i, addr := range a.addrs {
if i > 0 || a.roamAddr != nil {
buf.WriteString(", ")
}
fmt.Fprintf(buf, "%s:%d", addr.IP, addr.Port)
if a.curAddr == i {
buf.WriteByte('*')
}
}
buf.WriteByte(']')
return buf.String()
}
func (a *AddrSet) Addrs() []wgcfg.Endpoint {
var eps []wgcfg.Endpoint
for _, addr := range a.addrs {
eps = append(eps, wgcfg.Endpoint{
Host: addr.IP.String(),
Port: uint16(addr.Port),
})
}
a.mu.Lock()
defer a.mu.Unlock()
if a.roamAddr != nil {
eps = append(eps, wgcfg.Endpoint{
Host: a.roamAddr.IP.String(),
Port: uint16(a.roamAddr.Port),
})
}
return eps
}
// CreateBind is called by WireGuard to create a UDP binding.
func (c *Conn) CreateBind(uint16) (conn.Bind, uint16, error) {
return c, c.LocalPort(), nil
}
// CreateEndpoint is called by WireGuard to connect to an endpoint.
// The key is the public key of the peer and addrs is a
// comma-separated list of UDP ip:ports.
func (c *Conn) CreateEndpoint(key [32]byte, addrs string) (conn.Endpoint, error) {
pk := wgcfg.Key(key)
c.logf("magicsock: CreateEndpoint: key=%s: %s", pk.ShortString(), addrs)
a := &AddrSet{
publicKey: key,
curAddr: -1,
}
if addrs != "" {
for _, ep := range strings.Split(addrs, ",") {
addr, err := net.ResolveUDPAddr("udp", ep)
if err != nil {
return nil, err
}
if ip4 := addr.IP.To4(); ip4 != nil {
addr.IP = ip4
}
a.addrs = append(a.addrs, *addr)
}
}
c.addrsMu.Lock()
for _, addr := range a.addrs {
if addr.IP.Equal(derpMagicIP) {
continue
}
var epAddr udpAddr
copy(epAddr.ip.Addr[:], addr.IP.To16())
epAddr.port = uint16(addr.Port)
c.addrsByUDP[epAddr] = a
}
c.addrsByKey[key] = a
c.addrsMu.Unlock()
return a, nil
}
type singleEndpoint net.UDPAddr
func (e *singleEndpoint) ClearSrc() {}
func (e *singleEndpoint) DstIP() net.IP { return (*net.UDPAddr)(e).IP }
func (e *singleEndpoint) SrcIP() net.IP { return nil }
func (e *singleEndpoint) SrcToString() string { return "" }
func (e *singleEndpoint) DstToString() string { return (*net.UDPAddr)(e).String() }
func (e *singleEndpoint) DstToBytes() []byte { return packUDPAddr((*net.UDPAddr)(e)) }
func (e *singleEndpoint) UpdateDst(dst *net.UDPAddr) error {
return fmt.Errorf("magicsock.singleEndpoint(%s).UpdateDst(%s): should never be called", (*net.UDPAddr)(e), dst)
}
func (e *singleEndpoint) Addrs() []wgcfg.Endpoint {
return []wgcfg.Endpoint{{
Host: e.IP.String(),
Port: uint16(e.Port),
}}
}
// RebindingUDPConn is a UDP socket that can be re-bound.
// Unix has no notion of re-binding a socket, so we swap it out for a new one.
type RebindingUDPConn struct {
mu sync.Mutex
pconn *net.UDPConn
}
func (c *RebindingUDPConn) Reset(pconn *net.UDPConn) {
c.mu.Lock()
old := c.pconn
c.pconn = pconn
c.mu.Unlock()
if old != nil {
old.Close()
}
}
func (c *RebindingUDPConn) ReadFrom(b []byte) (int, net.Addr, error) {
for {
c.mu.Lock()
pconn := c.pconn
c.mu.Unlock()
n, addr, err := pconn.ReadFrom(b)
if err != nil {
c.mu.Lock()
pconn2 := c.pconn
c.mu.Unlock()
if pconn != pconn2 {
continue
}
}
return n, addr, err
}
}
func (c *RebindingUDPConn) LocalAddr() *net.UDPAddr {
c.mu.Lock()
defer c.mu.Unlock()
return c.pconn.LocalAddr().(*net.UDPAddr)
}
func (c *RebindingUDPConn) Close() error {
c.mu.Lock()
defer c.mu.Unlock()
return c.pconn.Close()
}
func (c *RebindingUDPConn) SetReadDeadline(t time.Time) {
c.mu.Lock()
defer c.mu.Unlock()
c.pconn.SetReadDeadline(t)
}
func (c *RebindingUDPConn) WriteToUDP(b []byte, addr *net.UDPAddr) (int, error) {
for {
c.mu.Lock()
pconn := c.pconn
c.mu.Unlock()
n, err := pconn.WriteToUDP(b, addr)
if err != nil {
c.mu.Lock()
pconn2 := c.pconn
c.mu.Unlock()
if pconn != pconn2 {
continue
}
}
return n, err
}
}
func (c *RebindingUDPConn) WriteTo(b []byte, addr net.Addr) (int, error) {
for {
c.mu.Lock()
pconn := c.pconn
c.mu.Unlock()
n, err := pconn.WriteTo(b, addr)
if err != nil {
c.mu.Lock()
pconn2 := c.pconn
c.mu.Unlock()
if pconn != pconn2 {
continue
}
}
return n, err
}
}