You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tailscale/wgengine/filter/filter.go

600 lines
17 KiB
Go

// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package filter is a stateful packet filter.
package filter
import (
"fmt"
"net/netip"
"sync"
"time"
"go4.org/netipx"
"tailscale.com/envknob"
"tailscale.com/net/flowtrack"
"tailscale.com/net/netaddr"
"tailscale.com/net/packet"
"tailscale.com/tstime/rate"
"tailscale.com/types/ipproto"
"tailscale.com/types/logger"
)
// Filter is a stateful packet filter.
type Filter struct {
logf logger.Logf
// local is the set of IPs prefixes that we know to be "local" to
// this node. All packets coming in over tailscale must have a
// destination within local, regardless of the policy filter
// below.
local *netipx.IPSet
// logIPs is the set of IPs that are allowed to appear in flow
// logs. If a packet is to or from an IP not in logIPs, it will
// never be logged.
logIPs *netipx.IPSet
// matches4 and matches6 are lists of match->action rules
// applied to all packets arriving over tailscale
// tunnels. Matches are checked in order, and processing stops
// at the first matching rule. The default policy if no rules
// match is to drop the packet.
matches4 matches
matches6 matches
// cap4 and cap6 are the subsets of the matches that are about
// capability grants, partitioned by source IP address family.
cap4, cap6 matches
// state is the connection tracking state attached to this
// filter. It is used to allow incoming traffic that is a response
// to an outbound connection that this node made, even if those
// incoming packets don't get accepted by matches above.
state *filterState
shieldsUp bool
}
// filterState is a state cache of past seen packets.
type filterState struct {
mu sync.Mutex
lru *flowtrack.Cache // from flowtrack.Tuple -> nil
}
// lruMax is the size of the LRU cache in filterState.
const lruMax = 512
// Response is a verdict from the packet filter.
type Response int
const (
Drop Response = iota // do not continue processing packet.
DropSilently // do not continue processing packet, but also don't log
Accept // continue processing packet.
noVerdict // no verdict yet, continue running filter
)
func (r Response) String() string {
switch r {
case Drop:
return "Drop"
case DropSilently:
return "DropSilently"
case Accept:
return "Accept"
case noVerdict:
return "noVerdict"
default:
return "???"
}
}
func (r Response) IsDrop() bool {
return r == Drop || r == DropSilently
}
// RunFlags controls the filter's debug log verbosity at runtime.
type RunFlags int
const (
LogDrops RunFlags = 1 << iota // write dropped packet info to logf
LogAccepts // write accepted packet info to logf
HexdumpDrops // print packet hexdump when logging drops
HexdumpAccepts // print packet hexdump when logging accepts
)
// NewAllowAllForTest returns a packet filter that accepts
// everything. Use in tests only, as it permits some kinds of spoofing
// attacks to reach the OS network stack.
func NewAllowAllForTest(logf logger.Logf) *Filter {
any4 := netip.PrefixFrom(netaddr.IPv4(0, 0, 0, 0), 0)
any6 := netip.PrefixFrom(netip.AddrFrom16([16]byte{}), 0)
ms := []Match{
{
IPProto: []ipproto.Proto{ipproto.TCP, ipproto.UDP, ipproto.ICMPv4},
Srcs: []netip.Prefix{any4},
Dsts: []NetPortRange{
{
Net: any4,
Ports: PortRange{
First: 0,
Last: 65535,
},
},
},
},
{
IPProto: []ipproto.Proto{ipproto.TCP, ipproto.UDP, ipproto.ICMPv6},
Srcs: []netip.Prefix{any6},
Dsts: []NetPortRange{
{
Net: any6,
Ports: PortRange{
First: 0,
Last: 65535,
},
},
},
},
}
var sb netipx.IPSetBuilder
sb.AddPrefix(any4)
sb.AddPrefix(any6)
ipSet, _ := sb.IPSet()
return New(ms, ipSet, ipSet, nil, logf)
}
// NewAllowNone returns a packet filter that rejects everything.
func NewAllowNone(logf logger.Logf, logIPs *netipx.IPSet) *Filter {
return New(nil, &netipx.IPSet{}, logIPs, nil, logf)
}
// NewShieldsUpFilter returns a packet filter that rejects incoming connections.
//
// If shareStateWith is non-nil, the returned filter shares state with the previous one,
// as long as the previous one was also a shields up filter.
func NewShieldsUpFilter(localNets *netipx.IPSet, logIPs *netipx.IPSet, shareStateWith *Filter, logf logger.Logf) *Filter {
// Don't permit sharing state with a prior filter that wasn't a shields-up filter.
if shareStateWith != nil && !shareStateWith.shieldsUp {
shareStateWith = nil
}
f := New(nil, localNets, logIPs, shareStateWith, logf)
f.shieldsUp = true
return f
}
// New creates a new packet filter. The filter enforces that incoming
// packets must be destined to an IP in localNets, and must be allowed
// by matches. If shareStateWith is non-nil, the returned filter
// shares state with the previous one, to enable changing rules at
// runtime without breaking existing stateful flows.
func New(matches []Match, localNets *netipx.IPSet, logIPs *netipx.IPSet, shareStateWith *Filter, logf logger.Logf) *Filter {
var state *filterState
if shareStateWith != nil {
state = shareStateWith.state
} else {
state = &filterState{
lru: &flowtrack.Cache{MaxEntries: lruMax},
}
}
f := &Filter{
logf: logf,
matches4: matchesFamily(matches, netip.Addr.Is4),
matches6: matchesFamily(matches, netip.Addr.Is6),
cap4: capMatchesFunc(matches, netip.Addr.Is4),
cap6: capMatchesFunc(matches, netip.Addr.Is6),
local: localNets,
logIPs: logIPs,
state: state,
}
return f
}
// matchesFamily returns the subset of ms for which keep(srcNet.IP)
// and keep(dstNet.IP) are both true.
func matchesFamily(ms matches, keep func(netip.Addr) bool) matches {
var ret matches
for _, m := range ms {
var retm Match
retm.IPProto = m.IPProto
for _, src := range m.Srcs {
if keep(src.Addr()) {
retm.Srcs = append(retm.Srcs, src)
}
}
for _, dst := range m.Dsts {
if keep(dst.Net.Addr()) {
retm.Dsts = append(retm.Dsts, dst)
}
}
if len(retm.Srcs) > 0 && len(retm.Dsts) > 0 {
ret = append(ret, retm)
}
}
return ret
}
// capMatchesFunc returns a copy of the subset of ms for which keep(srcNet.IP)
// and the match is a capability grant.
func capMatchesFunc(ms matches, keep func(netip.Addr) bool) matches {
var ret matches
for _, m := range ms {
if len(m.Caps) == 0 {
continue
}
retm := Match{Caps: m.Caps}
for _, src := range m.Srcs {
if keep(src.Addr()) {
retm.Srcs = append(retm.Srcs, src)
}
}
if len(retm.Srcs) > 0 {
ret = append(ret, retm)
}
}
return ret
}
func maybeHexdump(flag RunFlags, b []byte) string {
if flag == 0 {
return ""
}
return packet.Hexdump(b) + "\n"
}
// TODO(apenwarr): use a bigger bucket for specifically TCP SYN accept logging?
// Logging is a quick way to record every newly opened TCP connection, but
// we have to be cautious about flooding the logs vs letting people use
// flood protection to hide their traffic. We could use a rate limiter in
// the actual *filter* for SYN accepts, perhaps.
var acceptBucket = rate.NewLimiter(rate.Every(10*time.Second), 3)
var dropBucket = rate.NewLimiter(rate.Every(5*time.Second), 10)
// NOTE(Xe): This func init is used to detect
// TS_DEBUG_FILTER_RATE_LIMIT_LOGS=all, and if it matches, to
// effectively disable the limits on the log rate by setting the limit
// to 1 millisecond. This should capture everything.
func init() {
if envknob.String("TS_DEBUG_FILTER_RATE_LIMIT_LOGS") != "all" {
return
}
acceptBucket = rate.NewLimiter(rate.Every(time.Millisecond), 10)
dropBucket = rate.NewLimiter(rate.Every(time.Millisecond), 10)
}
func (f *Filter) logRateLimit(runflags RunFlags, q *packet.Parsed, dir direction, r Response, why string) {
if !f.loggingAllowed(q) {
return
}
if r == Drop && omitDropLogging(q, dir) {
return
}
var verdict string
if r == Drop && (runflags&LogDrops) != 0 && dropBucket.Allow() {
verdict = "Drop"
runflags &= HexdumpDrops
} else if r == Accept && (runflags&LogAccepts) != 0 && acceptBucket.Allow() {
verdict = "Accept"
runflags &= HexdumpAccepts
}
// Note: it is crucial that q.String() be called only if {accept,drop}Bucket.Allow() passes,
// since it causes an allocation.
if verdict != "" {
b := q.Buffer()
f.logf("%s: %s %d %s\n%s", verdict, q.String(), len(b), why, maybeHexdump(runflags, b))
}
}
// dummyPacket is a 20-byte slice of garbage, to pass the filter
// pre-check when evaluating synthesized packets.
var dummyPacket = []byte{
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
}
// CheckTCP determines whether TCP traffic from srcIP to dstIP:dstPort
// is allowed.
func (f *Filter) CheckTCP(srcIP, dstIP netip.Addr, dstPort uint16) Response {
pkt := &packet.Parsed{}
pkt.Decode(dummyPacket) // initialize private fields
switch {
case (srcIP.Is4() && dstIP.Is6()) || (srcIP.Is6() && srcIP.Is4()):
// Mismatched address families, no filters will
// match.
return Drop
case srcIP.Is4():
pkt.IPVersion = 4
case srcIP.Is6():
pkt.IPVersion = 6
default:
panic("unreachable")
}
pkt.Src = netip.AddrPortFrom(srcIP, 0)
pkt.Dst = netip.AddrPortFrom(dstIP, dstPort)
pkt.IPProto = ipproto.TCP
pkt.TCPFlags = packet.TCPSyn
return f.RunIn(pkt, 0)
}
// AppendCaps appends to base the capabilities that srcIP has talking
// to dstIP.
func (f *Filter) AppendCaps(base []string, srcIP, dstIP netip.Addr) []string {
ret := base
var mm matches
switch {
case srcIP.Is4():
mm = f.cap4
case srcIP.Is6():
mm = f.cap6
}
for _, m := range mm {
if !ipInList(srcIP, m.Srcs) {
continue
}
for _, cm := range m.Caps {
if cm.Cap != "" && cm.Dst.Contains(dstIP) {
ret = append(ret, cm.Cap)
}
}
}
return ret
}
// ShieldsUp reports whether this is a "shields up" (block everything
// incoming) filter.
func (f *Filter) ShieldsUp() bool { return f.shieldsUp }
// RunIn determines whether this node is allowed to receive q from a
// Tailscale peer.
func (f *Filter) RunIn(q *packet.Parsed, rf RunFlags) Response {
dir := in
r := f.pre(q, rf, dir)
if r == Accept || r == Drop {
// already logged
return r
}
var why string
switch q.IPVersion {
case 4:
r, why = f.runIn4(q)
case 6:
r, why = f.runIn6(q)
default:
r, why = Drop, "not-ip"
}
f.logRateLimit(rf, q, dir, r, why)
return r
}
// RunOut determines whether this node is allowed to send q to a
// Tailscale peer.
func (f *Filter) RunOut(q *packet.Parsed, rf RunFlags) Response {
dir := out
r := f.pre(q, rf, dir)
if r == Drop || r == Accept {
// already logged
return r
}
r, why := f.runOut(q)
f.logRateLimit(rf, q, dir, r, why)
return r
}
func (f *Filter) runIn4(q *packet.Parsed) (r Response, why string) {
// A compromised peer could try to send us packets for
// destinations we didn't explicitly advertise. This check is to
// prevent that.
if !f.local.Contains(q.Dst.Addr()) {
return Drop, "destination not allowed"
}
switch q.IPProto {
case ipproto.ICMPv4:
if q.IsEchoResponse() || q.IsError() {
// ICMP responses are allowed.
// TODO(apenwarr): consider using conntrack state.
// We could choose to reject all packets that aren't
// related to an existing ICMP-Echo, TCP, or UDP
// session.
return Accept, "icmp response ok"
} else if f.matches4.matchIPsOnly(q) {
// If any port is open to an IP, allow ICMP to it.
return Accept, "icmp ok"
}
case ipproto.TCP:
// For TCP, we want to allow *outgoing* connections,
// which means we want to allow return packets on those
// connections. To make this restriction work, we need to
// allow non-SYN packets (continuation of an existing session)
// to arrive. This should be okay since a new incoming session
// can't be initiated without first sending a SYN.
// It happens to also be much faster.
// TODO(apenwarr): Skip the rest of decoding in this path?
if !q.IsTCPSyn() {
return Accept, "tcp non-syn"
}
if f.matches4.match(q) {
return Accept, "tcp ok"
}
case ipproto.UDP, ipproto.SCTP:
t := flowtrack.Tuple{Proto: q.IPProto, Src: q.Src, Dst: q.Dst}
f.state.mu.Lock()
_, ok := f.state.lru.Get(t)
f.state.mu.Unlock()
if ok {
return Accept, "cached"
}
if f.matches4.match(q) {
return Accept, "ok"
}
case ipproto.TSMP:
return Accept, "tsmp ok"
default:
if f.matches4.matchProtoAndIPsOnlyIfAllPorts(q) {
return Accept, "otherproto ok"
}
return Drop, "Unknown proto"
}
return Drop, "no rules matched"
}
func (f *Filter) runIn6(q *packet.Parsed) (r Response, why string) {
// A compromised peer could try to send us packets for
// destinations we didn't explicitly advertise. This check is to
// prevent that.
if !f.local.Contains(q.Dst.Addr()) {
return Drop, "destination not allowed"
}
switch q.IPProto {
case ipproto.ICMPv6:
if q.IsEchoResponse() || q.IsError() {
// ICMP responses are allowed.
// TODO(apenwarr): consider using conntrack state.
// We could choose to reject all packets that aren't
// related to an existing ICMP-Echo, TCP, or UDP
// session.
return Accept, "icmp response ok"
} else if f.matches6.matchIPsOnly(q) {
// If any port is open to an IP, allow ICMP to it.
return Accept, "icmp ok"
}
case ipproto.TCP:
// For TCP, we want to allow *outgoing* connections,
// which means we want to allow return packets on those
// connections. To make this restriction work, we need to
// allow non-SYN packets (continuation of an existing session)
// to arrive. This should be okay since a new incoming session
// can't be initiated without first sending a SYN.
// It happens to also be much faster.
// TODO(apenwarr): Skip the rest of decoding in this path?
if q.IPProto == ipproto.TCP && !q.IsTCPSyn() {
return Accept, "tcp non-syn"
}
if f.matches6.match(q) {
return Accept, "tcp ok"
}
case ipproto.UDP, ipproto.SCTP:
t := flowtrack.Tuple{Proto: q.IPProto, Src: q.Src, Dst: q.Dst}
f.state.mu.Lock()
_, ok := f.state.lru.Get(t)
f.state.mu.Unlock()
if ok {
return Accept, "cached"
}
if f.matches6.match(q) {
return Accept, "ok"
}
case ipproto.TSMP:
return Accept, "tsmp ok"
default:
if f.matches6.matchProtoAndIPsOnlyIfAllPorts(q) {
return Accept, "otherproto ok"
}
return Drop, "Unknown proto"
}
return Drop, "no rules matched"
}
// runIn runs the output-specific part of the filter logic.
func (f *Filter) runOut(q *packet.Parsed) (r Response, why string) {
switch q.IPProto {
case ipproto.UDP, ipproto.SCTP:
tuple := flowtrack.Tuple{
Proto: q.IPProto,
Src: q.Dst, Dst: q.Src, // src/dst reversed
}
f.state.mu.Lock()
f.state.lru.Add(tuple, nil)
f.state.mu.Unlock()
}
return Accept, "ok out"
}
// direction is whether a packet was flowing into this machine, or
// flowing out.
type direction int
const (
in direction = iota // from Tailscale peer to local machine
out // from local machine to Tailscale peer
)
func (d direction) String() string {
switch d {
case in:
return "in"
case out:
return "out"
default:
return fmt.Sprintf("[??dir=%d]", int(d))
}
}
var gcpDNSAddr = netaddr.IPv4(169, 254, 169, 254)
// pre runs the direction-agnostic filter logic. dir is only used for
// logging.
func (f *Filter) pre(q *packet.Parsed, rf RunFlags, dir direction) Response {
if len(q.Buffer()) == 0 {
// wireguard keepalive packet, always permit.
return Accept
}
if len(q.Buffer()) < 20 {
f.logRateLimit(rf, q, dir, Drop, "too short")
return Drop
}
if q.Dst.Addr().IsMulticast() {
f.logRateLimit(rf, q, dir, Drop, "multicast")
return Drop
}
if q.Dst.Addr().IsLinkLocalUnicast() && q.Dst.Addr() != gcpDNSAddr {
f.logRateLimit(rf, q, dir, Drop, "link-local-unicast")
return Drop
}
switch q.IPProto {
case ipproto.Unknown:
// Unknown packets are dangerous; always drop them.
f.logRateLimit(rf, q, dir, Drop, "unknown")
return Drop
case ipproto.Fragment:
// Fragments after the first always need to be passed through.
// Very small fragments are considered Junk by Parsed.
f.logRateLimit(rf, q, dir, Accept, "fragment")
return Accept
}
return noVerdict
}
// loggingAllowed reports whether p can appear in logs at all.
func (f *Filter) loggingAllowed(p *packet.Parsed) bool {
return f.logIPs.Contains(p.Src.Addr()) && f.logIPs.Contains(p.Dst.Addr())
}
// omitDropLogging reports whether packet p, which has already been
// deemed a packet to Drop, should bypass the [rate-limited] logging.
// We don't want to log scary & spammy reject warnings for packets
// that are totally normal, like IPv6 route announcements.
func omitDropLogging(p *packet.Parsed, dir direction) bool {
if dir != out {
return false
}
return p.Dst.Addr().IsMulticast() || (p.Dst.Addr().IsLinkLocalUnicast() && p.Dst.Addr() != gcpDNSAddr) || p.IPProto == ipproto.IGMP
}