You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tailscale/util/deephash/deephash.go

366 lines
9.3 KiB
Go

// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package deephash hashes a Go value recursively, in a predictable order,
// without looping. The hash is only valid within the lifetime of a program.
// Users should not store the hash on disk or send it over the network.
// The hash is sufficiently strong and unique such that
// Hash(x) == Hash(y) is an appropriate replacement for x == y.
//
// This package, like most of the tailscale.com Go module, should be
// considered Tailscale-internal; we make no API promises.
package deephash
import (
"bufio"
"crypto/sha256"
"encoding/binary"
"encoding/hex"
"fmt"
"hash"
"math"
"reflect"
"strconv"
"sync"
"time"
"unsafe"
)
const scratchSize = 128
// hasher is reusable state for hashing a value.
// Get one via hasherPool.
type hasher struct {
h hash.Hash
bw *bufio.Writer
scratch [scratchSize]byte
visitStack visitStack
}
// newHasher initializes a new hasher, for use by hasherPool.
func newHasher() *hasher {
h := &hasher{h: sha256.New()}
h.bw = bufio.NewWriterSize(h.h, h.h.BlockSize())
return h
}
// setBufioWriter switches the bufio writer to w after flushing
// any output to the old one. It then also returns the old one, so
// the caller can switch back to it.
func (h *hasher) setBufioWriter(w *bufio.Writer) (old *bufio.Writer) {
old = h.bw
old.Flush()
h.bw = w
return old
}
// Sum is an opaque checksum type that is comparable.
type Sum struct {
sum [sha256.Size]byte
}
func (s Sum) String() string {
return hex.EncodeToString(s.sum[:])
}
var (
once sync.Once
seed uint64
)
// Hash returns the hash of v.
func (h *hasher) Hash(v interface{}) (hash Sum) {
h.bw.Flush()
h.h.Reset()
once.Do(func() {
seed = uint64(time.Now().UnixNano())
})
h.uint(seed)
h.print(reflect.ValueOf(v))
h.bw.Flush()
// Sum into scratch & copy out, as hash.Hash is an interface
// so the slice necessarily escapes, and there's no sha256
// concrete type exported and we don't want the 'hash' result
// parameter to escape to the heap:
h.h.Sum(h.scratch[:0])
copy(hash.sum[:], h.scratch[:])
return
}
var hasherPool = &sync.Pool{
New: func() interface{} { return newHasher() },
}
// Hash returns the hash of v.
func Hash(v interface{}) Sum {
h := hasherPool.Get().(*hasher)
defer hasherPool.Put(h)
return h.Hash(v)
}
// Update sets last to the hash of v and reports whether its value changed.
func Update(last *Sum, v ...interface{}) (changed bool) {
sum := Hash(v)
if sum == *last {
// unchanged.
return false
}
*last = sum
return true
}
var appenderToType = reflect.TypeOf((*appenderTo)(nil)).Elem()
type appenderTo interface {
AppendTo([]byte) []byte
}
func (h *hasher) uint(i uint64) {
binary.BigEndian.PutUint64(h.scratch[:8], i)
h.bw.Write(h.scratch[:8])
}
func (h *hasher) int(i int) {
binary.BigEndian.PutUint64(h.scratch[:8], uint64(i))
h.bw.Write(h.scratch[:8])
}
var uint8Type = reflect.TypeOf(byte(0))
func (h *hasher) print(v reflect.Value) {
if !v.IsValid() {
return
}
w := h.bw
if v.CanInterface() {
// Use AppendTo methods, if available and cheap.
if v.CanAddr() && v.Type().Implements(appenderToType) {
a := v.Addr().Interface().(appenderTo)
size := h.scratch[:8]
record := a.AppendTo(size)
binary.LittleEndian.PutUint64(record, uint64(len(record)-len(size)))
w.Write(record)
return
}
}
// TODO(dsnet): Avoid cycle detection for types that cannot have cycles.
// Generic handling.
switch v.Kind() {
default:
panic(fmt.Sprintf("unhandled kind %v for type %v", v.Kind(), v.Type()))
case reflect.Ptr:
if v.IsNil() {
w.WriteByte(0) // indicates nil
return
}
// Check for cycle.
ptr := pointerOf(v)
if idx, ok := h.visitStack.seen(ptr); ok {
w.WriteByte(2) // indicates cycle
h.uint(uint64(idx))
return
}
h.visitStack.push(ptr)
defer h.visitStack.pop(ptr)
w.WriteByte(1) // indicates visiting a pointer
h.print(v.Elem())
case reflect.Struct:
w.WriteString("struct")
h.int(v.NumField())
for i, n := 0, v.NumField(); i < n; i++ {
h.int(i)
h.print(v.Field(i))
}
case reflect.Slice, reflect.Array:
vLen := v.Len()
if v.Kind() == reflect.Slice {
h.int(vLen)
}
if v.Type().Elem() == uint8Type && v.CanInterface() {
if vLen > 0 && vLen <= scratchSize {
// If it fits in scratch, avoid the Interface allocation.
// It seems tempting to do this for all sizes, doing
// scratchSize bytes at a time, but reflect.Slice seems
// to allocate, so it's not a win.
n := reflect.Copy(reflect.ValueOf(&h.scratch).Elem(), v)
w.Write(h.scratch[:n])
return
}
fmt.Fprintf(w, "%s", v.Interface())
return
}
for i := 0; i < vLen; i++ {
// TODO(dsnet): Perform cycle detection for slices,
// which is functionally a list of pointers.
// See https://github.com/google/go-cmp/blob/402949e8139bb890c71a707b6faf6dd05c92f4e5/cmp/compare.go#L438-L450
h.int(i)
h.print(v.Index(i))
}
case reflect.Interface:
if v.IsNil() {
w.WriteByte(0) // indicates nil
return
}
v = v.Elem()
w.WriteByte(1) // indicates visiting interface value
h.hashType(v.Type())
h.print(v)
case reflect.Map:
// Check for cycle.
ptr := pointerOf(v)
if idx, ok := h.visitStack.seen(ptr); ok {
w.WriteByte(2) // indicates cycle
h.uint(uint64(idx))
return
}
h.visitStack.push(ptr)
defer h.visitStack.pop(ptr)
w.WriteByte(1) // indicates visiting a map
h.hashMap(v)
case reflect.String:
h.int(v.Len())
w.WriteString(v.String())
case reflect.Bool:
w.Write(strconv.AppendBool(h.scratch[:0], v.Bool()))
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
w.Write(strconv.AppendInt(h.scratch[:0], v.Int(), 10))
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
h.uint(v.Uint())
case reflect.Float32, reflect.Float64:
w.Write(strconv.AppendUint(h.scratch[:0], math.Float64bits(v.Float()), 10))
case reflect.Complex64, reflect.Complex128:
fmt.Fprintf(w, "%v", v.Complex())
}
}
type mapHasher struct {
xbuf [sha256.Size]byte // XOR'ed accumulated buffer
ebuf [sha256.Size]byte // scratch buffer
s256 hash.Hash // sha256 hash.Hash
bw *bufio.Writer // to hasher into ebuf
val valueCache // re-usable values for map iteration
iter *reflect.MapIter // re-usable map iterator
}
func (mh *mapHasher) Reset() {
for i := range mh.xbuf {
mh.xbuf[i] = 0
}
}
func (mh *mapHasher) startEntry() {
for i := range mh.ebuf {
mh.ebuf[i] = 0
}
mh.bw.Flush()
mh.s256.Reset()
}
func (mh *mapHasher) endEntry() {
mh.bw.Flush()
for i, b := range mh.s256.Sum(mh.ebuf[:0]) {
mh.xbuf[i] ^= b
}
}
var mapHasherPool = &sync.Pool{
New: func() interface{} {
mh := new(mapHasher)
mh.s256 = sha256.New()
mh.bw = bufio.NewWriter(mh.s256)
mh.val = make(valueCache)
mh.iter = new(reflect.MapIter)
return mh
},
}
type valueCache map[reflect.Type]reflect.Value
func (c valueCache) get(t reflect.Type) reflect.Value {
v, ok := c[t]
if !ok {
v = reflect.New(t).Elem()
c[t] = v
}
return v
}
// hashMap hashes a map in a sort-free manner.
// It relies on a map being a functionally an unordered set of KV entries.
// So long as we hash each KV entry together, we can XOR all
// of the individual hashes to produce a unique hash for the entire map.
func (h *hasher) hashMap(v reflect.Value) {
mh := mapHasherPool.Get().(*mapHasher)
defer mapHasherPool.Put(mh)
mh.Reset()
iter := mapIter(mh.iter, v)
defer mapIter(mh.iter, reflect.Value{}) // avoid pinning v from mh.iter when we return
// Temporarily switch to the map hasher's bufio.Writer.
oldw := h.setBufioWriter(mh.bw)
defer h.setBufioWriter(oldw)
k := mh.val.get(v.Type().Key())
e := mh.val.get(v.Type().Elem())
for iter.Next() {
key := iterKey(iter, k)
val := iterVal(iter, e)
mh.startEntry()
h.print(key)
h.print(val)
mh.endEntry()
}
oldw.Write(mh.xbuf[:])
}
// visitStack is a stack of pointers visited.
// Pointers are pushed onto the stack when visited, and popped when leaving.
// The integer value is the depth at which the pointer was visited.
// The length of this stack should be zero after every hashing operation.
type visitStack map[pointer]int
func (v visitStack) seen(p pointer) (int, bool) {
idx, ok := v[p]
return idx, ok
}
func (v *visitStack) push(p pointer) {
if *v == nil {
*v = make(map[pointer]int)
}
(*v)[p] = len(*v)
}
func (v visitStack) pop(p pointer) {
delete(v, p)
}
// pointer is a thin wrapper over unsafe.Pointer.
// We only rely on comparability of pointers; we cannot rely on uintptr since
// that would break if Go ever switched to a moving GC.
type pointer struct{ p unsafe.Pointer }
func pointerOf(v reflect.Value) pointer {
return pointer{unsafe.Pointer(v.Pointer())}
}
// hashType hashes a reflect.Type.
// The hash is only consistent within the lifetime of a program.
func (h *hasher) hashType(t reflect.Type) {
// This approach relies on reflect.Type always being backed by a unique
// *reflect.rtype pointer. A safer approach is to use a global sync.Map
// that maps reflect.Type to some arbitrary and unique index.
// While safer, it requires global state with memory that can never be GC'd.
rtypeAddr := reflect.ValueOf(t).Pointer() // address of *reflect.rtype
h.uint(uint64(rtypeAddr))
}