You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tailscale/wgengine/netstack/netstack.go

1690 lines
55 KiB
Go

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
// Package netstack wires up gVisor's netstack into Tailscale.
package netstack
import (
"bytes"
"context"
"errors"
"expvar"
"fmt"
"io"
"log"
"math"
"net"
"net/netip"
"os"
"os/exec"
"runtime"
"strconv"
"sync"
"sync/atomic"
"time"
"gvisor.dev/gvisor/pkg/buffer"
"gvisor.dev/gvisor/pkg/refs"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/adapters/gonet"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/link/channel"
"gvisor.dev/gvisor/pkg/tcpip/network/ipv4"
"gvisor.dev/gvisor/pkg/tcpip/network/ipv6"
"gvisor.dev/gvisor/pkg/tcpip/stack"
"gvisor.dev/gvisor/pkg/tcpip/transport/icmp"
"gvisor.dev/gvisor/pkg/tcpip/transport/tcp"
"gvisor.dev/gvisor/pkg/tcpip/transport/udp"
"gvisor.dev/gvisor/pkg/waiter"
"tailscale.com/envknob"
"tailscale.com/ipn/ipnlocal"
"tailscale.com/metrics"
"tailscale.com/net/dns"
"tailscale.com/net/netaddr"
"tailscale.com/net/packet"
"tailscale.com/net/tsaddr"
"tailscale.com/net/tsdial"
"tailscale.com/net/tstun"
"tailscale.com/proxymap"
"tailscale.com/syncs"
"tailscale.com/tailcfg"
"tailscale.com/tailfs"
"tailscale.com/types/ipproto"
"tailscale.com/types/logger"
"tailscale.com/types/netmap"
"tailscale.com/types/nettype"
"tailscale.com/util/clientmetric"
"tailscale.com/version"
"tailscale.com/version/distro"
"tailscale.com/wgengine"
"tailscale.com/wgengine/filter"
"tailscale.com/wgengine/magicsock"
)
const debugPackets = false
// If non-zero, these override the values returned from the corresponding
// functions, below.
var (
maxInFlightConnectionAttemptsForTest int
maxInFlightConnectionAttemptsPerClientForTest int
)
// maxInFlightConnectionAttempts returns the global number of in-flight
// connection attempts that we allow for a single netstack Impl. Any new
// forwarded TCP connections that are opened after the limit has been hit are
// rejected until the number of in-flight connections drops below the limit
// again.
//
// Each in-flight connection attempt is a new goroutine and an open TCP
// connection, so we want to ensure that we don't allow an unbounded number of
// connections.
func maxInFlightConnectionAttempts() int {
if n := maxInFlightConnectionAttemptsForTest; n > 0 {
return n
}
if version.IsMobile() {
return 1024 // previous global value
}
switch version.OS() {
case "linux":
// On the assumption that most subnet routers deployed in
// production are running on Linux, we return a higher value.
//
// TODO(andrew-d): tune this based on the amount of system
// memory instead of a fixed limit.
return 8192
default:
// On all other platforms, return a reasonably high value that
// most users won't hit.
return 2048
}
}
// maxInFlightConnectionAttemptsPerClient is the same as
// maxInFlightConnectionAttempts, but applies on a per-client basis
// (i.e. keyed by the remote Tailscale IP).
func maxInFlightConnectionAttemptsPerClient() int {
if n := maxInFlightConnectionAttemptsPerClientForTest; n > 0 {
return n
}
// For now, allow each individual client at most 2/3rds of the global
// limit. On all platforms except mobile, this won't be a visible
// change for users since this limit was added at the same time as we
// bumped the global limit, above.
return maxInFlightConnectionAttempts() * 2 / 3
}
var debugNetstack = envknob.RegisterBool("TS_DEBUG_NETSTACK")
var (
serviceIP = tsaddr.TailscaleServiceIP()
serviceIPv6 = tsaddr.TailscaleServiceIPv6()
)
func init() {
mode := envknob.String("TS_DEBUG_NETSTACK_LEAK_MODE")
if mode == "" {
return
}
var lm refs.LeakMode
if err := lm.Set(mode); err != nil {
panic(err)
}
refs.SetLeakMode(lm)
}
// Impl contains the state for the netstack implementation,
// and implements wgengine.FakeImpl to act as a userspace network
// stack when Tailscale is running in fake mode.
type Impl struct {
// GetTCPHandlerForFlow conditionally handles an incoming TCP flow for the
// provided (src/port, dst/port) 4-tuple.
//
// A nil value is equivalent to a func returning (nil, false).
//
// If func returns intercept=false, the default forwarding behavior (if
// ProcessLocalIPs and/or ProcesssSubnetIPs) takes place.
//
// When intercept=true, the behavior depends on whether the returned handler
// is non-nil: if nil, the connection is rejected. If non-nil, handler takes
// over the TCP conn.
GetTCPHandlerForFlow func(src, dst netip.AddrPort) (handler func(net.Conn), intercept bool)
// GetUDPHandlerForFlow conditionally handles an incoming UDP flow for the
// provided (src/port, dst/port) 4-tuple.
//
// A nil value is equivalent to a func returning (nil, false).
//
// If func returns intercept=false, the default forwarding behavior (if
// ProcessLocalIPs and/or ProcesssSubnetIPs) takes place.
//
// When intercept=true, the behavior depends on whether the returned handler
// is non-nil: if nil, the connection is rejected. If non-nil, handler takes
// over the UDP flow.
GetUDPHandlerForFlow func(src, dst netip.AddrPort) (handler func(nettype.ConnPacketConn), intercept bool)
// ProcessLocalIPs is whether netstack should handle incoming
// traffic directed at the Node.Addresses (local IPs).
// It can only be set before calling Start.
ProcessLocalIPs bool
// ProcessSubnets is whether netstack should handle incoming
// traffic destined to non-local IPs (i.e. whether it should
// be a subnet router).
// It can only be set before calling Start.
ProcessSubnets bool
ipstack *stack.Stack
linkEP *channel.Endpoint
tundev *tstun.Wrapper
e wgengine.Engine
pm *proxymap.Mapper
mc *magicsock.Conn
logf logger.Logf
dialer *tsdial.Dialer
ctx context.Context // alive until Close
ctxCancel context.CancelFunc // called on Close
lb *ipnlocal.LocalBackend // or nil
dns *dns.Manager
tailFSForLocal tailfs.FileSystemForLocal // or nil
peerapiPort4Atomic atomic.Uint32 // uint16 port number for IPv4 peerapi
peerapiPort6Atomic atomic.Uint32 // uint16 port number for IPv6 peerapi
// atomicIsLocalIPFunc holds a func that reports whether an IP
// is a local (non-subnet) Tailscale IP address of this
// machine. It's always a non-nil func. It's changed on netmap
// updates.
atomicIsLocalIPFunc syncs.AtomicValue[func(netip.Addr) bool]
// forwardDialFunc, if non-nil, is the net.Dialer.DialContext-style
// function that is used to make outgoing connections when forwarding a
// TCP connection to another host (e.g. in subnet router mode).
//
// This is currently only used in tests.
forwardDialFunc func(context.Context, string, string) (net.Conn, error)
// forwardInFlightPerClientDropped is a metric that tracks how many
// in-flight TCP forward requests were dropped due to the per-client
// limit.
forwardInFlightPerClientDropped expvar.Int
mu sync.Mutex
// connsOpenBySubnetIP keeps track of number of connections open
// for each subnet IP temporarily registered on netstack for active
// TCP connections, so they can be unregistered when connections are
// closed.
connsOpenBySubnetIP map[netip.Addr]int
// connsInFlightByClient keeps track of the number of in-flight
// connections by the client ("Tailscale") IP. This is used to apply a
// per-client limit on in-flight connections that's smaller than the
// global limit, preventing a misbehaving client from starving the
// global limit.
connsInFlightByClient map[netip.Addr]int
}
const nicID = 1
// maxUDPPacketSize is the maximum size of a UDP packet we copy in
// startPacketCopy when relaying UDP packets. The user can configure
// the tailscale MTU to anything up to this size so we can potentially
// have a UDP packet as big as the MTU.
const maxUDPPacketSize = tstun.MaxPacketSize
// Create creates and populates a new Impl.
func Create(logf logger.Logf, tundev *tstun.Wrapper, e wgengine.Engine, mc *magicsock.Conn, dialer *tsdial.Dialer, dns *dns.Manager, pm *proxymap.Mapper, tailFSForLocal tailfs.FileSystemForLocal) (*Impl, error) {
if mc == nil {
return nil, errors.New("nil magicsock.Conn")
}
if tundev == nil {
return nil, errors.New("nil tundev")
}
if logf == nil {
return nil, errors.New("nil logger")
}
if e == nil {
return nil, errors.New("nil Engine")
}
if pm == nil {
return nil, errors.New("nil proxymap.Mapper")
}
if dialer == nil {
return nil, errors.New("nil Dialer")
}
ipstack := stack.New(stack.Options{
NetworkProtocols: []stack.NetworkProtocolFactory{ipv4.NewProtocol, ipv6.NewProtocol},
TransportProtocols: []stack.TransportProtocolFactory{tcp.NewProtocol, udp.NewProtocol, icmp.NewProtocol4, icmp.NewProtocol6},
})
sackEnabledOpt := tcpip.TCPSACKEnabled(true) // TCP SACK is disabled by default
tcpipErr := ipstack.SetTransportProtocolOption(tcp.ProtocolNumber, &sackEnabledOpt)
if tcpipErr != nil {
return nil, fmt.Errorf("could not enable TCP SACK: %v", tcpipErr)
}
if runtime.GOOS == "windows" {
// See https://github.com/tailscale/tailscale/issues/9707
// Windows w/RACK performs poorly. ACKs do not appear to be handled in a
// timely manner, leading to spurious retransmissions and a reduced
// congestion window.
tcpRecoveryOpt := tcpip.TCPRecovery(0)
tcpipErr = ipstack.SetTransportProtocolOption(tcp.ProtocolNumber, &tcpRecoveryOpt)
if tcpipErr != nil {
return nil, fmt.Errorf("could not disable TCP RACK: %v", tcpipErr)
}
}
linkEP := channel.New(512, uint32(tstun.DefaultTUNMTU()), "")
if tcpipProblem := ipstack.CreateNIC(nicID, linkEP); tcpipProblem != nil {
return nil, fmt.Errorf("could not create netstack NIC: %v", tcpipProblem)
}
// By default the netstack NIC will only accept packets for the IPs
// registered to it. Since in some cases we dynamically register IPs
// based on the packets that arrive, the NIC needs to accept all
// incoming packets. The NIC won't receive anything it isn't meant to
// since WireGuard will only send us packets that are meant for us.
ipstack.SetPromiscuousMode(nicID, true)
// Add IPv4 and IPv6 default routes, so all incoming packets from the Tailscale side
// are handled by the one fake NIC we use.
ipv4Subnet, err := tcpip.NewSubnet(tcpip.AddrFromSlice(make([]byte, 4)), tcpip.MaskFromBytes(make([]byte, 4)))
if err != nil {
return nil, fmt.Errorf("could not create IPv4 subnet: %v", err)
}
ipv6Subnet, err := tcpip.NewSubnet(tcpip.AddrFromSlice(make([]byte, 16)), tcpip.MaskFromBytes(make([]byte, 16)))
if err != nil {
return nil, fmt.Errorf("could not create IPv6 subnet: %v", err)
}
ipstack.SetRouteTable([]tcpip.Route{
{
Destination: ipv4Subnet,
NIC: nicID,
},
{
Destination: ipv6Subnet,
NIC: nicID,
},
})
ns := &Impl{
logf: logf,
ipstack: ipstack,
linkEP: linkEP,
tundev: tundev,
e: e,
pm: pm,
mc: mc,
dialer: dialer,
connsOpenBySubnetIP: make(map[netip.Addr]int),
connsInFlightByClient: make(map[netip.Addr]int),
dns: dns,
tailFSForLocal: tailFSForLocal,
}
ns.ctx, ns.ctxCancel = context.WithCancel(context.Background())
ns.atomicIsLocalIPFunc.Store(tsaddr.FalseContainsIPFunc())
ns.tundev.PostFilterPacketInboundFromWireGaurd = ns.injectInbound
ns.tundev.PreFilterPacketOutboundToWireGuardNetstackIntercept = ns.handleLocalPackets
stacksForMetrics.Store(ns, struct{}{})
return ns, nil
}
func (ns *Impl) Close() error {
stacksForMetrics.Delete(ns)
ns.ctxCancel()
ns.ipstack.Close()
ns.ipstack.Wait()
return nil
}
// A single process might have several netstacks running at the same time.
// Exported clientmetric counters will have a sum of counters of all of them.
var stacksForMetrics syncs.Map[*Impl, struct{}]
func init() {
// Please take care to avoid exporting clientmetrics with the same metric
// names as the ones used by Impl.ExpVar. Both get exposed via the same HTTP
// endpoint, and name collisions will result in Prometheus scraping errors.
clientmetric.NewCounterFunc("netstack_tcp_forward_dropped_attempts", func() int64 {
var total uint64
stacksForMetrics.Range(func(ns *Impl, _ struct{}) bool {
delta := ns.ipstack.Stats().TCP.ForwardMaxInFlightDrop.Value()
if total+delta > math.MaxInt64 {
total = math.MaxInt64
return false
}
total += delta
return true
})
return int64(total)
})
}
type protocolHandlerFunc func(stack.TransportEndpointID, stack.PacketBufferPtr) bool
// wrapUDPProtocolHandler wraps the protocol handler we pass to netstack for UDP.
func (ns *Impl) wrapUDPProtocolHandler(h protocolHandlerFunc) protocolHandlerFunc {
return func(tei stack.TransportEndpointID, pb stack.PacketBufferPtr) bool {
addr := tei.LocalAddress
ip, ok := netip.AddrFromSlice(addr.AsSlice())
if !ok {
ns.logf("netstack: could not parse local address for incoming connection")
return false
}
// Dynamically reconfigure ns's subnet addresses as needed for
// outbound traffic.
ip = ip.Unmap()
if !ns.isLocalIP(ip) {
ns.addSubnetAddress(ip)
}
return h(tei, pb)
}
}
var (
metricPerClientForwardLimit = clientmetric.NewCounter("netstack_tcp_forward_dropped_attempts_per_client")
)
// wrapTCPProtocolHandler wraps the protocol handler we pass to netstack for TCP.
func (ns *Impl) wrapTCPProtocolHandler(h protocolHandlerFunc) protocolHandlerFunc {
// 'handled' is whether the packet should be accepted by netstack; if
// true, then the TCP connection is accepted by the transport layer and
// passes through our acceptTCP handler/etc. If false, then the packet
// is dropped and the TCP connection is rejected (typically with an
// ICMP Port Unreachable or ICMP Protocol Unreachable message).
return func(tei stack.TransportEndpointID, pb stack.PacketBufferPtr) (handled bool) {
localIP, ok := netip.AddrFromSlice(tei.LocalAddress.AsSlice())
if !ok {
ns.logf("netstack: could not parse local address for incoming connection")
return false
}
localIP = localIP.Unmap()
remoteIP, ok := netip.AddrFromSlice(tei.RemoteAddress.AsSlice())
if !ok {
ns.logf("netstack: could not parse remote address for incoming connection")
return false
}
// If we have too many in-flight connections for this client, abort
// early and don't open a new one.
//
// NOTE: the counter is decremented in
// decrementInFlightTCPForward, called from the acceptTCP
// function, below.
ns.mu.Lock()
inFlight := ns.connsInFlightByClient[remoteIP]
tooManyInFlight := inFlight >= maxInFlightConnectionAttemptsPerClient()
if !tooManyInFlight {
ns.connsInFlightByClient[remoteIP]++
}
ns.mu.Unlock()
if debugNetstack() {
ns.logf("[v2] netstack: in-flight connections for client %v: %d", remoteIP, inFlight)
}
if tooManyInFlight {
ns.logf("netstack: ignoring a new TCP connection from %v to %v because the client already has %d in-flight connections", localIP, remoteIP, inFlight)
metricPerClientForwardLimit.Add(1)
ns.forwardInFlightPerClientDropped.Add(1)
return false // unhandled
}
// On return, if this packet isn't handled by the inner handler
// we're wrapping (`h`), we need to decrement the per-client
// in-flight count. This can happen if the underlying
// forwarder's limit has been reached, at which point it will
// return false to indicate that it's not handling the packet,
// and it will not run acceptTCP. If we don't decrement here,
// then we would eventually increment the per-client counter up
// to the limit and never decrement because we'd never hit the
// codepath in acceptTCP, below.
defer func() {
if !handled {
ns.mu.Lock()
ns.connsInFlightByClient[remoteIP]--
ns.mu.Unlock()
}
}()
// Dynamically reconfigure ns's subnet addresses as needed for
// outbound traffic.
if !ns.isLocalIP(localIP) {
ns.addSubnetAddress(localIP)
}
return h(tei, pb)
}
}
func (ns *Impl) decrementInFlightTCPForward(remoteAddr netip.Addr) {
ns.mu.Lock()
defer ns.mu.Unlock()
was := ns.connsInFlightByClient[remoteAddr]
newVal := was - 1
if newVal == 0 {
delete(ns.connsInFlightByClient, remoteAddr) // free up space in the map
} else {
ns.connsInFlightByClient[remoteAddr] = newVal
}
}
// Start sets up all the handlers so netstack can start working. Implements
// wgengine.FakeImpl.
func (ns *Impl) Start(lb *ipnlocal.LocalBackend) error {
if lb == nil {
panic("nil LocalBackend")
}
ns.lb = lb
// size = 0 means use default buffer size
const tcpReceiveBufferSize = 0
tcpFwd := tcp.NewForwarder(ns.ipstack, tcpReceiveBufferSize, maxInFlightConnectionAttempts(), ns.acceptTCP)
udpFwd := udp.NewForwarder(ns.ipstack, ns.acceptUDP)
ns.ipstack.SetTransportProtocolHandler(tcp.ProtocolNumber, ns.wrapTCPProtocolHandler(tcpFwd.HandlePacket))
ns.ipstack.SetTransportProtocolHandler(udp.ProtocolNumber, ns.wrapUDPProtocolHandler(udpFwd.HandlePacket))
go ns.inject()
return nil
}
func (ns *Impl) addSubnetAddress(ip netip.Addr) {
ns.mu.Lock()
ns.connsOpenBySubnetIP[ip]++
needAdd := ns.connsOpenBySubnetIP[ip] == 1
ns.mu.Unlock()
// Only register address into netstack for first concurrent connection.
if needAdd {
pa := tcpip.ProtocolAddress{
AddressWithPrefix: tcpip.AddrFromSlice(ip.AsSlice()).WithPrefix(),
}
if ip.Is4() {
pa.Protocol = ipv4.ProtocolNumber
} else if ip.Is6() {
pa.Protocol = ipv6.ProtocolNumber
}
ns.ipstack.AddProtocolAddress(nicID, pa, stack.AddressProperties{
PEB: stack.CanBePrimaryEndpoint, // zero value default
ConfigType: stack.AddressConfigStatic, // zero value default
})
}
}
func (ns *Impl) removeSubnetAddress(ip netip.Addr) {
ns.mu.Lock()
defer ns.mu.Unlock()
ns.connsOpenBySubnetIP[ip]--
// Only unregister address from netstack after last concurrent connection.
if ns.connsOpenBySubnetIP[ip] == 0 {
ns.ipstack.RemoveAddress(nicID, tcpip.AddrFromSlice(ip.AsSlice()))
delete(ns.connsOpenBySubnetIP, ip)
}
}
func ipPrefixToAddressWithPrefix(ipp netip.Prefix) tcpip.AddressWithPrefix {
return tcpip.AddressWithPrefix{
Address: tcpip.AddrFromSlice(ipp.Addr().AsSlice()),
PrefixLen: int(ipp.Bits()),
}
}
var v4broadcast = netaddr.IPv4(255, 255, 255, 255)
// UpdateNetstackIPs updates the set of local IPs that netstack should handle
// from nm.
//
// TODO(bradfitz): don't pass the whole netmap here; just pass the two
// address slice views.
func (ns *Impl) UpdateNetstackIPs(nm *netmap.NetworkMap) {
var selfNode tailcfg.NodeView
if nm != nil {
ns.atomicIsLocalIPFunc.Store(tsaddr.NewContainsIPFunc(nm.GetAddresses()))
selfNode = nm.SelfNode
} else {
ns.atomicIsLocalIPFunc.Store(tsaddr.FalseContainsIPFunc())
}
oldPfx := make(map[netip.Prefix]bool)
for _, protocolAddr := range ns.ipstack.AllAddresses()[nicID] {
ap := protocolAddr.AddressWithPrefix
ip := netaddrIPFromNetstackIP(ap.Address)
if ip == v4broadcast && ap.PrefixLen == 32 {
// Don't add 255.255.255.255/32 to oldIPs so we don't
// delete it later. We didn't install it, so it's not
// ours to delete.
continue
}
p := netip.PrefixFrom(ip, ap.PrefixLen)
oldPfx[p] = true
}
newPfx := make(map[netip.Prefix]bool)
if selfNode.Valid() {
for i := range selfNode.Addresses().Len() {
p := selfNode.Addresses().At(i)
newPfx[p] = true
}
if ns.ProcessSubnets {
for i := range selfNode.AllowedIPs().Len() {
p := selfNode.AllowedIPs().At(i)
newPfx[p] = true
}
}
}
pfxToAdd := make(map[netip.Prefix]bool)
for p := range newPfx {
if !oldPfx[p] {
pfxToAdd[p] = true
}
}
pfxToRemove := make(map[netip.Prefix]bool)
for p := range oldPfx {
if !newPfx[p] {
pfxToRemove[p] = true
}
}
ns.mu.Lock()
for ip := range ns.connsOpenBySubnetIP {
// TODO(maisem): this looks like a bug, remove or document. It seems as
// though we might end up either leaking the address on the netstack
// NIC, or where we do accounting for connsOpenBySubnetIP from 1 to 0,
// we might end up removing the address from the netstack NIC that was
// still being advertised.
delete(pfxToRemove, netip.PrefixFrom(ip, ip.BitLen()))
}
ns.mu.Unlock()
for p := range pfxToRemove {
err := ns.ipstack.RemoveAddress(nicID, tcpip.AddrFromSlice(p.Addr().AsSlice()))
if err != nil {
ns.logf("netstack: could not deregister IP %s: %v", p, err)
} else {
ns.logf("[v2] netstack: deregistered IP %s", p)
}
}
for p := range pfxToAdd {
if !p.IsValid() {
ns.logf("netstack: [unexpected] skipping invalid IP (%v/%v)", p.Addr(), p.Bits())
continue
}
tcpAddr := tcpip.ProtocolAddress{
AddressWithPrefix: ipPrefixToAddressWithPrefix(p),
}
if p.Addr().Is6() {
tcpAddr.Protocol = ipv6.ProtocolNumber
} else {
tcpAddr.Protocol = ipv4.ProtocolNumber
}
var tcpErr tcpip.Error // not error
tcpErr = ns.ipstack.AddProtocolAddress(nicID, tcpAddr, stack.AddressProperties{
PEB: stack.CanBePrimaryEndpoint, // zero value default
ConfigType: stack.AddressConfigStatic, // zero value default
})
if tcpErr != nil {
ns.logf("netstack: could not register IP %s: %v", p, tcpErr)
} else {
ns.logf("[v2] netstack: registered IP %s", p)
}
}
}
// handleLocalPackets is hooked into the tun datapath for packets leaving
// the host and arriving at tailscaled. This method returns filter.DropSilently
// to intercept a packet for handling, for instance traffic to quad-100.
func (ns *Impl) handleLocalPackets(p *packet.Parsed, t *tstun.Wrapper) filter.Response {
if ns.ctx.Err() != nil {
return filter.DropSilently
}
// If it's not traffic to the service IP (e.g. magicDNS or TailFS) we don't
// care; resume processing.
if dst := p.Dst.Addr(); dst != serviceIP && dst != serviceIPv6 {
return filter.Accept
}
// Of traffic to the service IP, we only care about UDP 53, and TCP
// on port 53, 80, and 8080.
switch p.IPProto {
case ipproto.TCP:
if port := p.Dst.Port(); port != 53 && port != 80 && port != 8080 {
return filter.Accept
}
case ipproto.UDP:
if port := p.Dst.Port(); port != 53 {
return filter.Accept
}
}
var pn tcpip.NetworkProtocolNumber
switch p.IPVersion {
case 4:
pn = header.IPv4ProtocolNumber
case 6:
pn = header.IPv6ProtocolNumber
}
if debugPackets {
ns.logf("[v2] service packet in (from %v): % x", p.Src, p.Buffer())
}
packetBuf := stack.NewPacketBuffer(stack.PacketBufferOptions{
Payload: buffer.MakeWithData(bytes.Clone(p.Buffer())),
})
ns.linkEP.InjectInbound(pn, packetBuf)
packetBuf.DecRef()
return filter.DropSilently
}
func (ns *Impl) DialContextTCP(ctx context.Context, ipp netip.AddrPort) (*gonet.TCPConn, error) {
remoteAddress := tcpip.FullAddress{
NIC: nicID,
Addr: tcpip.AddrFromSlice(ipp.Addr().AsSlice()),
Port: ipp.Port(),
}
var ipType tcpip.NetworkProtocolNumber
if ipp.Addr().Is4() {
ipType = ipv4.ProtocolNumber
} else {
ipType = ipv6.ProtocolNumber
}
return gonet.DialContextTCP(ctx, ns.ipstack, remoteAddress, ipType)
}
func (ns *Impl) DialContextUDP(ctx context.Context, ipp netip.AddrPort) (*gonet.UDPConn, error) {
remoteAddress := &tcpip.FullAddress{
NIC: nicID,
Addr: tcpip.AddrFromSlice(ipp.Addr().AsSlice()),
Port: ipp.Port(),
}
var ipType tcpip.NetworkProtocolNumber
if ipp.Addr().Is4() {
ipType = ipv4.ProtocolNumber
} else {
ipType = ipv6.ProtocolNumber
}
return gonet.DialUDP(ns.ipstack, nil, remoteAddress, ipType)
}
// The inject goroutine reads in packets that netstack generated, and delivers
// them to the correct path.
func (ns *Impl) inject() {
for {
pkt := ns.linkEP.ReadContext(ns.ctx)
if pkt.IsNil() {
if ns.ctx.Err() != nil {
// Return without logging.
return
}
ns.logf("[v2] ReadContext-for-write = ok=false")
continue
}
if debugPackets {
ns.logf("[v2] packet Write out: % x", stack.PayloadSince(pkt.NetworkHeader()))
}
// In the normal case, netstack synthesizes the bytes for
// traffic which should transit back into WG and go to peers.
// However, some uses of netstack (presently, magic DNS)
// send traffic destined for the local device, hence must
// be injected 'inbound'.
sendToHost := false
// Determine if the packet is from a service IP, in which case it
// needs to go back into the machines network (inbound) instead of
// out.
// TODO(tom): Work out a way to avoid parsing packets to determine if
// its from the service IP. Maybe gvisor netstack magic. I
// went through the fields of PacketBuffer, and nop :/
// TODO(tom): Figure out if its safe to modify packet.Parsed to fill in
// the IP src/dest even if its missing the rest of the pkt.
// That way we dont have to do this twitchy-af byte-yeeting.
if b := pkt.NetworkHeader().Slice(); len(b) >= 20 { // min ipv4 header
switch b[0] >> 4 { // ip proto field
case 4:
if srcIP := netaddr.IPv4(b[12], b[13], b[14], b[15]); serviceIP == srcIP {
sendToHost = true
}
case 6:
if len(b) >= 40 { // min ipv6 header
if srcIP, ok := netip.AddrFromSlice(net.IP(b[8:24])); ok && serviceIPv6 == srcIP {
sendToHost = true
}
}
}
}
// pkt has a non-zero refcount, so injection methods takes
// ownership of one count and will decrement on completion.
if sendToHost {
if err := ns.tundev.InjectInboundPacketBuffer(pkt); err != nil {
log.Printf("netstack inject inbound: %v", err)
return
}
} else {
if err := ns.tundev.InjectOutboundPacketBuffer(pkt); err != nil {
log.Printf("netstack inject outbound: %v", err)
return
}
}
}
}
// isLocalIP reports whether ip is a Tailscale IP assigned to this
// node directly (but not a subnet-routed IP).
func (ns *Impl) isLocalIP(ip netip.Addr) bool {
return ns.atomicIsLocalIPFunc.Load()(ip)
}
func (ns *Impl) peerAPIPortAtomic(ip netip.Addr) *atomic.Uint32 {
if ip.Is4() {
return &ns.peerapiPort4Atomic
} else {
return &ns.peerapiPort6Atomic
}
}
var viaRange = tsaddr.TailscaleViaRange()
// shouldProcessInbound reports whether an inbound packet (a packet from a
// WireGuard peer) should be handled by netstack.
func (ns *Impl) shouldProcessInbound(p *packet.Parsed, t *tstun.Wrapper) bool {
// Handle incoming peerapi connections in netstack.
dstIP := p.Dst.Addr()
isLocal := ns.isLocalIP(dstIP)
// Handle TCP connection to the Tailscale IP(s) in some cases:
if ns.lb != nil && p.IPProto == ipproto.TCP && isLocal {
var peerAPIPort uint16
if p.TCPFlags&packet.TCPSynAck == packet.TCPSyn {
if port, ok := ns.lb.GetPeerAPIPort(dstIP); ok {
peerAPIPort = port
ns.peerAPIPortAtomic(dstIP).Store(uint32(port))
}
} else {
peerAPIPort = uint16(ns.peerAPIPortAtomic(dstIP).Load())
}
dport := p.Dst.Port()
if dport == peerAPIPort {
return true
}
// Also handle SSH connections, webserver, etc, if enabled:
if ns.lb.ShouldInterceptTCPPort(dport) {
return true
}
}
if p.IPVersion == 6 && !isLocal && viaRange.Contains(dstIP) {
return ns.lb != nil && ns.lb.ShouldHandleViaIP(dstIP)
}
if ns.ProcessLocalIPs && isLocal {
return true
}
if ns.ProcessSubnets && !isLocal {
return true
}
return false
}
// setAmbientCapsRaw is non-nil on Linux for Synology, to run ping with
// CAP_NET_RAW from tailscaled's binary.
var setAmbientCapsRaw func(*exec.Cmd)
var userPingSem = syncs.NewSemaphore(20) // 20 child ping processes at once
var isSynology = runtime.GOOS == "linux" && distro.Get() == distro.Synology
// userPing tried to ping dstIP and if it succeeds, injects pingResPkt
// into the tundev.
//
// It's used in userspace/netstack mode when we don't have kernel
// support or raw socket access. As such, this does the dumbest thing
// that can work: runs the ping command. It's not super efficient, so
// it bounds the number of pings going on at once. The idea is that
// people only use ping occasionally to see if their internet's working
// so this doesn't need to be great.
//
// TODO(bradfitz): when we're running on Windows as the system user, use
// raw socket APIs instead of ping child processes.
func (ns *Impl) userPing(dstIP netip.Addr, pingResPkt []byte) {
if !userPingSem.TryAcquire() {
return
}
defer userPingSem.Release()
t0 := time.Now()
var err error
switch runtime.GOOS {
case "windows":
err = exec.Command("ping", "-n", "1", "-w", "3000", dstIP.String()).Run()
case "darwin", "freebsd":
// Note: 2000 ms is actually 1 second + 2,000
// milliseconds extra for 3 seconds total.
// See https://github.com/tailscale/tailscale/pull/3753 for details.
ping := "ping"
if dstIP.Is6() {
ping = "ping6"
}
err = exec.Command(ping, "-c", "1", "-W", "2000", dstIP.String()).Run()
case "openbsd":
ping := "ping"
if dstIP.Is6() {
ping = "ping6"
}
err = exec.Command(ping, "-c", "1", "-w", "3", dstIP.String()).Run()
case "android":
ping := "/system/bin/ping"
if dstIP.Is6() {
ping = "/system/bin/ping6"
}
err = exec.Command(ping, "-c", "1", "-w", "3", dstIP.String()).Run()
default:
ping := "ping"
if isSynology {
ping = "/bin/ping"
}
cmd := exec.Command(ping, "-c", "1", "-W", "3", dstIP.String())
if isSynology && os.Getuid() != 0 {
// On DSM7 we run as non-root and need to pass
// CAP_NET_RAW if our binary has it.
setAmbientCapsRaw(cmd)
}
err = cmd.Run()
}
d := time.Since(t0)
if err != nil {
if d < time.Second/2 {
// If it failed quicker than the 3 second
// timeout we gave above (500 ms is a
// reasonable threshold), then assume the ping
// failed for problems finding/running
// ping. We don't want to log if the host is
// just down.
ns.logf("exec ping of %v failed in %v: %v", dstIP, d, err)
}
return
}
if debugNetstack() {
ns.logf("exec pinged %v in %v", dstIP, time.Since(t0))
}
if err := ns.tundev.InjectOutbound(pingResPkt); err != nil {
ns.logf("InjectOutbound ping response: %v", err)
}
}
// injectInbound is installed as a packet hook on the 'inbound' (from a
// WireGuard peer) path. Returning filter.Accept releases the packet to
// continue normally (typically being delivered to the host networking stack),
// whereas returning filter.DropSilently is done when netstack intercepts the
// packet and no further processing towards to host should be done.
func (ns *Impl) injectInbound(p *packet.Parsed, t *tstun.Wrapper) filter.Response {
if ns.ctx.Err() != nil {
return filter.DropSilently
}
if !ns.shouldProcessInbound(p, t) {
// Let the host network stack (if any) deal with it.
return filter.Accept
}
destIP := p.Dst.Addr()
// If this is an echo request and we're a subnet router, handle pings
// ourselves instead of forwarding the packet on.
pingIP, handlePing := ns.shouldHandlePing(p)
if handlePing {
var pong []byte // the reply to the ping, if our relayed ping works
if destIP.Is4() {
h := p.ICMP4Header()
h.ToResponse()
pong = packet.Generate(&h, p.Payload())
} else if destIP.Is6() {
h := p.ICMP6Header()
h.ToResponse()
pong = packet.Generate(&h, p.Payload())
}
go ns.userPing(pingIP, pong)
return filter.DropSilently
}
var pn tcpip.NetworkProtocolNumber
switch p.IPVersion {
case 4:
pn = header.IPv4ProtocolNumber
case 6:
pn = header.IPv6ProtocolNumber
}
if debugPackets {
ns.logf("[v2] packet in (from %v): % x", p.Src, p.Buffer())
}
packetBuf := stack.NewPacketBuffer(stack.PacketBufferOptions{
Payload: buffer.MakeWithData(bytes.Clone(p.Buffer())),
})
ns.linkEP.InjectInbound(pn, packetBuf)
packetBuf.DecRef()
// We've now delivered this to netstack, so we're done.
// Instead of returning a filter.Accept here (which would also
// potentially deliver it to the host OS), and instead of
// filter.Drop (which would log about rejected traffic),
// instead return filter.DropSilently which just quietly stops
// processing it in the tstun TUN wrapper.
return filter.DropSilently
}
// shouldHandlePing returns whether or not netstack should handle an incoming
// ICMP echo request packet, and the IP address that should be pinged from this
// process. The IP address can be different from the destination in the packet
// if the destination is a 4via6 address.
func (ns *Impl) shouldHandlePing(p *packet.Parsed) (_ netip.Addr, ok bool) {
if !p.IsEchoRequest() {
return netip.Addr{}, false
}
destIP := p.Dst.Addr()
// We need to handle pings for all 4via6 addresses, even if this
// netstack instance normally isn't responsible for processing subnets.
//
// For example, on Linux, subnet router traffic could be handled via
// tun+iptables rules for most packets, but we still need to handle
// ICMP echo requests over 4via6 since the host networking stack
// doesn't know what to do with a 4via6 address.
//
// shouldProcessInbound returns 'true' to say that we should process
// all IPv6 packets with a destination address in the 'via' range, so
// check before we check the "ProcessSubnets" boolean below.
if viaRange.Contains(destIP) {
// The input echo request was to a 4via6 address, which we cannot
// simply ping as-is from this process. Translate the destination to an
// IPv4 address, so that our relayed ping (in userPing) is pinging the
// underlying destination IP.
//
// ICMPv4 and ICMPv6 are different protocols with different on-the-wire
// representations, so normally you can't send an ICMPv6 message over
// IPv4 and expect to get a useful result. However, in this specific
// case things are safe because the 'userPing' function doesn't make
// use of the input packet.
return tsaddr.UnmapVia(destIP), true
}
// If we get here, we don't do anything unless this netstack instance
// is responsible for processing subnet traffic.
if !ns.ProcessSubnets {
return netip.Addr{}, false
}
// For non-4via6 addresses, we don't handle pings if they're destined
// for a Tailscale IP.
if tsaddr.IsTailscaleIP(destIP) {
return netip.Addr{}, false
}
// This netstack instance is processing subnet traffic, so handle the
// ping ourselves.
return destIP, true
}
func netaddrIPFromNetstackIP(s tcpip.Address) netip.Addr {
switch s.Len() {
case 4:
s := s.As4()
return netaddr.IPv4(s[0], s[1], s[2], s[3])
case 16:
s := s.As16()
return netip.AddrFrom16(s).Unmap()
}
return netip.Addr{}
}
func (ns *Impl) acceptTCP(r *tcp.ForwarderRequest) {
reqDetails := r.ID()
if debugNetstack() {
ns.logf("[v2] TCP ForwarderRequest: %s", stringifyTEI(reqDetails))
}
clientRemoteIP := netaddrIPFromNetstackIP(reqDetails.RemoteAddress)
if !clientRemoteIP.IsValid() {
ns.logf("invalid RemoteAddress in TCP ForwarderRequest: %s", stringifyTEI(reqDetails))
r.Complete(true) // sends a RST
return
}
// After we've returned from this function or have otherwise reached a
// non-pending state, decrement the per-client in-flight count so
// future TCP connections aren't dropped.
inFlightCompleted := false
defer func() {
if !inFlightCompleted {
ns.decrementInFlightTCPForward(clientRemoteIP)
}
}()
clientRemotePort := reqDetails.RemotePort
clientRemoteAddrPort := netip.AddrPortFrom(clientRemoteIP, clientRemotePort)
dialIP := netaddrIPFromNetstackIP(reqDetails.LocalAddress)
isTailscaleIP := tsaddr.IsTailscaleIP(dialIP)
dstAddrPort := netip.AddrPortFrom(dialIP, reqDetails.LocalPort)
if viaRange.Contains(dialIP) {
isTailscaleIP = false
dialIP = tsaddr.UnmapVia(dialIP)
}
defer func() {
if !isTailscaleIP {
// if this is a subnet IP, we added this in before the TCP handshake
// so netstack is happy TCP-handshaking as a subnet IP
ns.removeSubnetAddress(dialIP)
}
}()
var wq waiter.Queue
// We can't actually create the endpoint or complete the inbound
// request until we're sure that the connection can be handled by this
// endpoint. This function sets up the TCP connection and should be
// called immediately before a connection is handled.
getConnOrReset := func(opts ...tcpip.SettableSocketOption) *gonet.TCPConn {
ep, err := r.CreateEndpoint(&wq)
if err != nil {
ns.logf("CreateEndpoint error for %s: %v", stringifyTEI(reqDetails), err)
r.Complete(true) // sends a RST
return nil
}
r.Complete(false)
for _, opt := range opts {
ep.SetSockOpt(opt)
}
// SetKeepAlive so that idle connections to peers that have forgotten about
// the connection or gone completely offline eventually time out.
// Applications might be setting this on a forwarded connection, but from
// userspace we can not see those, so the best we can do is to always
// perform them with conservative timing.
// TODO(tailscale/tailscale#4522): Netstack defaults match the Linux
// defaults, and results in a little over two hours before the socket would
// be closed due to keepalive. A shorter default might be better, or seeking
// a default from the host IP stack. This also might be a useful
// user-tunable, as in userspace mode this can have broad implications such
// as lingering connections to fork style daemons. On the other side of the
// fence, the long duration timers are low impact values for battery powered
// peers.
ep.SocketOptions().SetKeepAlive(true)
// This function is called when we're ready to use the
// underlying connection, and thus it's no longer in a
// "in-flight" state; decrement our per-client limit right now,
// and tell the defer in acceptTCP that it doesn't need to do
// so upon return.
ns.decrementInFlightTCPForward(clientRemoteIP)
inFlightCompleted = true
// The ForwarderRequest.CreateEndpoint above asynchronously
// starts the TCP handshake. Note that the gonet.TCPConn
// methods c.RemoteAddr() and c.LocalAddr() will return nil
// until the handshake actually completes. But we have the
// remote address in reqDetails instead, so we don't use
// gonet.TCPConn.RemoteAddr. The byte copies in both
// directions to/from the gonet.TCPConn in forwardTCP will
// block until the TCP handshake is complete.
return gonet.NewTCPConn(&wq, ep)
}
// Local Services (DNS and WebDAV)
hittingServiceIP := dialIP == serviceIP || dialIP == serviceIPv6
hittingDNS := hittingServiceIP && reqDetails.LocalPort == 53
hittingTailFS := hittingServiceIP && ns.tailFSForLocal != nil && reqDetails.LocalPort == ipnlocal.TailFSLocalPort
if hittingDNS || hittingTailFS {
c := getConnOrReset()
if c == nil {
return
}
addrPort := netip.AddrPortFrom(clientRemoteIP, reqDetails.RemotePort)
if hittingDNS {
go ns.dns.HandleTCPConn(c, addrPort)
} else if hittingTailFS {
if !ns.lb.TailFSAccessEnabled() {
c.Close()
return
}
err := ns.tailFSForLocal.HandleConn(c, net.TCPAddrFromAddrPort(addrPort))
if err != nil {
ns.logf("netstack: tailfs.HandleConn: %v", err)
}
}
return
}
if ns.lb != nil {
handler, opts := ns.lb.TCPHandlerForDst(clientRemoteAddrPort, dstAddrPort)
if handler != nil {
c := getConnOrReset(opts...) // will send a RST if it fails
if c == nil {
return
}
handler(c)
return
}
}
if ns.GetTCPHandlerForFlow != nil {
handler, ok := ns.GetTCPHandlerForFlow(clientRemoteAddrPort, dstAddrPort)
if ok {
if handler == nil {
r.Complete(true)
return
}
c := getConnOrReset() // will send a RST if it fails
if c == nil {
return
}
handler(c)
return
}
}
if isTailscaleIP {
dialIP = netaddr.IPv4(127, 0, 0, 1)
}
dialAddr := netip.AddrPortFrom(dialIP, uint16(reqDetails.LocalPort))
if !ns.forwardTCP(getConnOrReset, clientRemoteIP, &wq, dialAddr) {
r.Complete(true) // sends a RST
}
}
func (ns *Impl) forwardTCP(getClient func(...tcpip.SettableSocketOption) *gonet.TCPConn, clientRemoteIP netip.Addr, wq *waiter.Queue, dialAddr netip.AddrPort) (handled bool) {
dialAddrStr := dialAddr.String()
if debugNetstack() {
ns.logf("[v2] netstack: forwarding incoming connection to %s", dialAddrStr)
}
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
waitEntry, notifyCh := waiter.NewChannelEntry(waiter.EventHUp) // TODO(bradfitz): right EventMask?
wq.EventRegister(&waitEntry)
defer wq.EventUnregister(&waitEntry)
done := make(chan bool)
// netstack doesn't close the notification channel automatically if there was no
// hup signal, so we close done after we're done to not leak the goroutine below.
defer close(done)
go func() {
select {
case <-notifyCh:
if debugNetstack() {
ns.logf("[v2] netstack: forwardTCP notifyCh fired; canceling context for %s", dialAddrStr)
}
case <-done:
}
cancel()
}()
// Attempt to dial the outbound connection before we accept the inbound one.
var dialFunc func(context.Context, string, string) (net.Conn, error)
if ns.forwardDialFunc != nil {
dialFunc = ns.forwardDialFunc
} else {
var stdDialer net.Dialer
dialFunc = stdDialer.DialContext
}
server, err := dialFunc(ctx, "tcp", dialAddrStr)
if err != nil {
ns.logf("netstack: could not connect to local server at %s: %v", dialAddr.String(), err)
return
}
defer server.Close()
// If we get here, either the getClient call below will succeed and
// return something we can Close, or it will fail and will properly
// respond to the client with a RST. Either way, the caller no longer
// needs to clean up the client connection.
handled = true
// We dialed the connection; we can complete the client's TCP handshake.
client := getClient()
if client == nil {
return
}
defer client.Close()
backendLocalAddr := server.LocalAddr().(*net.TCPAddr)
backendLocalIPPort := netaddr.Unmap(backendLocalAddr.AddrPort())
ns.pm.RegisterIPPortIdentity(backendLocalIPPort, clientRemoteIP)
defer ns.pm.UnregisterIPPortIdentity(backendLocalIPPort)
connClosed := make(chan error, 2)
go func() {
_, err := io.Copy(server, client)
connClosed <- err
}()
go func() {
_, err := io.Copy(client, server)
connClosed <- err
}()
err = <-connClosed
if err != nil {
ns.logf("proxy connection closed with error: %v", err)
}
ns.logf("[v2] netstack: forwarder connection to %s closed", dialAddrStr)
return
}
func (ns *Impl) acceptUDP(r *udp.ForwarderRequest) {
sess := r.ID()
if debugNetstack() {
ns.logf("[v2] UDP ForwarderRequest: %v", stringifyTEI(sess))
}
var wq waiter.Queue
ep, err := r.CreateEndpoint(&wq)
if err != nil {
ns.logf("acceptUDP: could not create endpoint: %v", err)
return
}
dstAddr, ok := ipPortOfNetstackAddr(sess.LocalAddress, sess.LocalPort)
if !ok {
ep.Close()
return
}
srcAddr, ok := ipPortOfNetstackAddr(sess.RemoteAddress, sess.RemotePort)
if !ok {
ep.Close()
return
}
// Handle magicDNS traffic (via UDP) here.
if dst := dstAddr.Addr(); dst == serviceIP || dst == serviceIPv6 {
if dstAddr.Port() != 53 {
ep.Close()
return // Only MagicDNS traffic runs on the service IPs for now.
}
c := gonet.NewUDPConn(&wq, ep)
go ns.handleMagicDNSUDP(srcAddr, c)
return
}
if get := ns.GetUDPHandlerForFlow; get != nil {
h, intercept := get(srcAddr, dstAddr)
if intercept {
if h == nil {
ep.Close()
return
}
go h(gonet.NewUDPConn(&wq, ep))
return
}
}
c := gonet.NewUDPConn(&wq, ep)
go ns.forwardUDP(c, srcAddr, dstAddr)
}
// Buffer pool for forwarding UDP packets. Implementations are advised not to
// exceed 512 bytes per DNS request due to fragmenting but in reality can and do
// send much larger packets, so use the maximum possible UDP packet size.
var udpBufPool = &sync.Pool{
New: func() any {
b := make([]byte, maxUDPPacketSize)
return &b
},
}
func (ns *Impl) handleMagicDNSUDP(srcAddr netip.AddrPort, c *gonet.UDPConn) {
// Packets are being generated by the local host, so there should be
// very, very little latency. 150ms was chosen as something of an upper
// bound on resource usage, while hopefully still being long enough for
// a heavily loaded system.
const readDeadline = 150 * time.Millisecond
defer c.Close()
bufp := udpBufPool.Get().(*[]byte)
defer udpBufPool.Put(bufp)
q := *bufp
// libresolv from glibc is quite adamant that transmitting multiple DNS
// requests down the same UDP socket is valid. To support this, we read
// in a loop (with a tight deadline so we don't chew too many resources).
//
// See: https://github.com/bminor/glibc/blob/f7fbb99652eceb1b6b55e4be931649df5946497c/resolv/res_send.c#L995
for {
c.SetReadDeadline(time.Now().Add(readDeadline))
n, _, err := c.ReadFrom(q)
if err != nil {
if oe, ok := err.(*net.OpError); !(ok && oe.Timeout()) {
ns.logf("dns udp read: %v", err) // log non-timeout errors
}
return
}
resp, err := ns.dns.Query(context.Background(), q[:n], "udp", srcAddr)
if err != nil {
ns.logf("dns udp query: %v", err)
return
}
c.Write(resp)
}
}
// forwardUDP proxies between client (with addr clientAddr) and dstAddr.
//
// dstAddr may be either a local Tailscale IP, in which we case we proxy to
// 127.0.0.1, or any other IP (from an advertised subnet), in which case we
// proxy to it directly.
func (ns *Impl) forwardUDP(client *gonet.UDPConn, clientAddr, dstAddr netip.AddrPort) {
port, srcPort := dstAddr.Port(), clientAddr.Port()
if debugNetstack() {
ns.logf("[v2] netstack: forwarding incoming UDP connection on port %v", port)
}
var backendListenAddr *net.UDPAddr
var backendRemoteAddr *net.UDPAddr
isLocal := ns.isLocalIP(dstAddr.Addr())
if isLocal {
backendRemoteAddr = &net.UDPAddr{IP: net.ParseIP("127.0.0.1"), Port: int(port)}
backendListenAddr = &net.UDPAddr{IP: net.ParseIP("127.0.0.1"), Port: int(srcPort)}
} else {
if dstIP := dstAddr.Addr(); viaRange.Contains(dstIP) {
dstAddr = netip.AddrPortFrom(tsaddr.UnmapVia(dstIP), dstAddr.Port())
}
backendRemoteAddr = net.UDPAddrFromAddrPort(dstAddr)
if dstAddr.Addr().Is4() {
backendListenAddr = &net.UDPAddr{IP: net.ParseIP("0.0.0.0"), Port: int(srcPort)}
} else {
backendListenAddr = &net.UDPAddr{IP: net.ParseIP("::"), Port: int(srcPort)}
}
}
backendConn, err := net.ListenUDP("udp", backendListenAddr)
if err != nil {
ns.logf("netstack: could not bind local port %v: %v, trying again with random port", backendListenAddr.Port, err)
backendListenAddr.Port = 0
backendConn, err = net.ListenUDP("udp", backendListenAddr)
if err != nil {
ns.logf("netstack: could not create UDP socket, preventing forwarding to %v: %v", dstAddr, err)
return
}
}
backendLocalAddr := backendConn.LocalAddr().(*net.UDPAddr)
backendLocalIPPort := netip.AddrPortFrom(backendListenAddr.AddrPort().Addr().Unmap().WithZone(backendLocalAddr.Zone), backendLocalAddr.AddrPort().Port())
if !backendLocalIPPort.IsValid() {
ns.logf("could not get backend local IP:port from %v:%v", backendLocalAddr.IP, backendLocalAddr.Port)
}
if isLocal {
ns.pm.RegisterIPPortIdentity(backendLocalIPPort, dstAddr.Addr())
}
ctx, cancel := context.WithCancel(context.Background())
idleTimeout := 2 * time.Minute
if port == 53 {
// Make DNS packet copies time out much sooner.
//
// TODO(bradfitz): make DNS queries over UDP forwarding even
// cheaper by adding an additional idleTimeout post-DNS-reply.
// For instance, after the DNS response goes back out, then only
// wait a few seconds (or zero, really)
idleTimeout = 30 * time.Second
}
timer := time.AfterFunc(idleTimeout, func() {
if isLocal {
ns.pm.UnregisterIPPortIdentity(backendLocalIPPort)
}
ns.logf("netstack: UDP session between %s and %s timed out", backendListenAddr, backendRemoteAddr)
cancel()
client.Close()
backendConn.Close()
})
extend := func() {
timer.Reset(idleTimeout)
}
startPacketCopy(ctx, cancel, client, net.UDPAddrFromAddrPort(clientAddr), backendConn, ns.logf, extend)
startPacketCopy(ctx, cancel, backendConn, backendRemoteAddr, client, ns.logf, extend)
if isLocal {
// Wait for the copies to be done before decrementing the
// subnet address count to potentially remove the route.
<-ctx.Done()
ns.removeSubnetAddress(dstAddr.Addr())
}
}
func startPacketCopy(ctx context.Context, cancel context.CancelFunc, dst net.PacketConn, dstAddr net.Addr, src net.PacketConn, logf logger.Logf, extend func()) {
if debugNetstack() {
logf("[v2] netstack: startPacketCopy to %v (%T) from %T", dstAddr, dst, src)
}
go func() {
defer cancel() // tear down the other direction's copy
bufp := udpBufPool.Get().(*[]byte)
defer udpBufPool.Put(bufp)
pkt := *bufp
for {
select {
case <-ctx.Done():
return
default:
n, srcAddr, err := src.ReadFrom(pkt)
if err != nil {
if ctx.Err() == nil {
logf("read packet from %s failed: %v", srcAddr, err)
}
return
}
_, err = dst.WriteTo(pkt[:n], dstAddr)
if err != nil {
if ctx.Err() == nil {
logf("write packet to %s failed: %v", dstAddr, err)
}
return
}
if debugNetstack() {
logf("[v2] wrote UDP packet %s -> %s", srcAddr, dstAddr)
}
extend()
}
}
}()
}
func stringifyTEI(tei stack.TransportEndpointID) string {
localHostPort := net.JoinHostPort(tei.LocalAddress.String(), strconv.Itoa(int(tei.LocalPort)))
remoteHostPort := net.JoinHostPort(tei.RemoteAddress.String(), strconv.Itoa(int(tei.RemotePort)))
return fmt.Sprintf("%s -> %s", remoteHostPort, localHostPort)
}
func ipPortOfNetstackAddr(a tcpip.Address, port uint16) (ipp netip.AddrPort, ok bool) {
if addr, ok := netip.AddrFromSlice(a.AsSlice()); ok {
return netip.AddrPortFrom(addr, port), true
}
return netip.AddrPort{}, false
}
func readStatCounter(sc *tcpip.StatCounter) int64 {
vv := sc.Value()
if vv > math.MaxInt64 {
return int64(math.MaxInt64)
}
return int64(vv)
}
// ExpVar returns an expvar variable suitable for registering with expvar.Publish.
func (ns *Impl) ExpVar() expvar.Var {
m := new(metrics.Set)
// Global metrics
stats := ns.ipstack.Stats()
m.Set("counter_dropped_packets", expvar.Func(func() any {
return readStatCounter(stats.DroppedPackets)
}))
// IP statistics
ipStats := ns.ipstack.Stats().IP
ipMetrics := []struct {
name string
field *tcpip.StatCounter
}{
{"packets_received", ipStats.PacketsReceived},
{"valid_packets_received", ipStats.ValidPacketsReceived},
{"disabled_packets_received", ipStats.DisabledPacketsReceived},
{"invalid_destination_addresses_received", ipStats.InvalidDestinationAddressesReceived},
{"invalid_source_addresses_received", ipStats.InvalidSourceAddressesReceived},
{"packets_delivered", ipStats.PacketsDelivered},
{"packets_sent", ipStats.PacketsSent},
{"outgoing_packet_errors", ipStats.OutgoingPacketErrors},
{"malformed_packets_received", ipStats.MalformedPacketsReceived},
{"malformed_fragments_received", ipStats.MalformedFragmentsReceived},
{"iptables_prerouting_dropped", ipStats.IPTablesPreroutingDropped},
{"iptables_input_dropped", ipStats.IPTablesInputDropped},
{"iptables_forward_dropped", ipStats.IPTablesForwardDropped},
{"iptables_output_dropped", ipStats.IPTablesOutputDropped},
{"iptables_postrouting_dropped", ipStats.IPTablesPostroutingDropped},
{"option_timestamp_received", ipStats.OptionTimestampReceived},
{"option_record_route_received", ipStats.OptionRecordRouteReceived},
{"option_router_alert_received", ipStats.OptionRouterAlertReceived},
{"option_unknown_received", ipStats.OptionUnknownReceived},
}
for _, metric := range ipMetrics {
metric := metric
m.Set("counter_ip_"+metric.name, expvar.Func(func() any {
return readStatCounter(metric.field)
}))
}
// IP forwarding statistics
fwdStats := ipStats.Forwarding
fwdMetrics := []struct {
name string
field *tcpip.StatCounter
}{
{"unrouteable", fwdStats.Unrouteable},
{"exhausted_ttl", fwdStats.ExhaustedTTL},
{"initializing_source", fwdStats.InitializingSource},
{"link_local_source", fwdStats.LinkLocalSource},
{"link_local_destination", fwdStats.LinkLocalDestination},
{"packet_too_big", fwdStats.PacketTooBig},
{"host_unreachable", fwdStats.HostUnreachable},
{"extension_header_problem", fwdStats.ExtensionHeaderProblem},
{"unexpected_multicast_input_interface", fwdStats.UnexpectedMulticastInputInterface},
{"unknown_output_endpoint", fwdStats.UnknownOutputEndpoint},
{"no_multicast_pending_queue_buffer_space", fwdStats.NoMulticastPendingQueueBufferSpace},
{"outgoing_device_no_buffer_space", fwdStats.OutgoingDeviceNoBufferSpace},
{"errors", fwdStats.Errors},
}
for _, metric := range fwdMetrics {
metric := metric
m.Set("counter_ip_forward_"+metric.name, expvar.Func(func() any {
return readStatCounter(metric.field)
}))
}
// TCP metrics
tcpStats := ns.ipstack.Stats().TCP
tcpMetrics := []struct {
name string
field *tcpip.StatCounter
}{
{"active_connection_openings", tcpStats.ActiveConnectionOpenings},
{"passive_connection_openings", tcpStats.PassiveConnectionOpenings},
{"established_resets", tcpStats.EstablishedResets},
{"established_closed", tcpStats.EstablishedClosed},
{"established_timeout", tcpStats.EstablishedTimedout},
{"listen_overflow_syn_drop", tcpStats.ListenOverflowSynDrop},
{"listen_overflow_ack_drop", tcpStats.ListenOverflowAckDrop},
{"listen_overflow_syn_cookie_sent", tcpStats.ListenOverflowSynCookieSent},
{"listen_overflow_syn_cookie_rcvd", tcpStats.ListenOverflowSynCookieRcvd},
{"listen_overflow_invalid_syn_cookie_rcvd", tcpStats.ListenOverflowInvalidSynCookieRcvd},
{"failed_connection_attempts", tcpStats.FailedConnectionAttempts},
{"valid_segments_received", tcpStats.ValidSegmentsReceived},
{"invalid_segments_received", tcpStats.InvalidSegmentsReceived},
{"segments_sent", tcpStats.SegmentsSent},
{"segment_send_errors", tcpStats.SegmentSendErrors},
{"resets_sent", tcpStats.ResetsSent},
{"resets_received", tcpStats.ResetsReceived},
{"retransmits", tcpStats.Retransmits},
{"fast_recovery", tcpStats.FastRecovery},
{"sack_recovery", tcpStats.SACKRecovery},
{"tlp_recovery", tcpStats.TLPRecovery},
{"slow_start_retransmits", tcpStats.SlowStartRetransmits},
{"fast_retransmit", tcpStats.FastRetransmit},
{"timeouts", tcpStats.Timeouts},
{"checksum_errors", tcpStats.ChecksumErrors},
{"failed_port_reservations", tcpStats.FailedPortReservations},
{"segments_acked_with_dsack", tcpStats.SegmentsAckedWithDSACK},
{"spurious_recovery", tcpStats.SpuriousRecovery},
{"spurious_rto_recovery", tcpStats.SpuriousRTORecovery},
{"forward_max_in_flight_drop", tcpStats.ForwardMaxInFlightDrop},
}
for _, metric := range tcpMetrics {
metric := metric
m.Set("counter_tcp_"+metric.name, expvar.Func(func() any {
return readStatCounter(metric.field)
}))
}
m.Set("gauge_tcp_current_established", expvar.Func(func() any {
return readStatCounter(tcpStats.CurrentEstablished)
}))
m.Set("gauge_tcp_current_connected", expvar.Func(func() any {
return readStatCounter(tcpStats.CurrentConnected)
}))
// UDP metrics
udpStats := ns.ipstack.Stats().UDP
udpMetrics := []struct {
name string
field *tcpip.StatCounter
}{
{"packets_received", udpStats.PacketsReceived},
{"unknown_port_errors", udpStats.UnknownPortErrors},
{"receive_buffer_errors", udpStats.ReceiveBufferErrors},
{"malformed_packets_received", udpStats.MalformedPacketsReceived},
{"packets_sent", udpStats.PacketsSent},
{"packet_send_errors", udpStats.PacketSendErrors},
{"checksum_errors", udpStats.ChecksumErrors},
}
for _, metric := range udpMetrics {
metric := metric
m.Set("counter_udp_"+metric.name, expvar.Func(func() any {
return readStatCounter(metric.field)
}))
}
// Export gauges that show the current TCP forwarding limits.
m.Set("gauge_tcp_forward_in_flight_limit", expvar.Func(func() any {
return maxInFlightConnectionAttempts()
}))
m.Set("gauge_tcp_forward_in_flight_per_client_limit", expvar.Func(func() any {
return maxInFlightConnectionAttemptsPerClient()
}))
// This metric tracks the number of in-flight TCP forwarding
// connections that are "in-flight"i.e. waiting to complete.
m.Set("gauge_tcp_forward_in_flight", expvar.Func(func() any {
ns.mu.Lock()
defer ns.mu.Unlock()
var sum int64
for _, n := range ns.connsInFlightByClient {
sum += int64(n)
}
return sum
}))
m.Set("counter_tcp_forward_max_in_flight_per_client_drop", &ns.forwardInFlightPerClientDropped)
// This metric tracks how many (if any) of the per-client limit on
// in-flight TCP forwarding requests have been reached.
m.Set("gauge_tcp_forward_in_flight_per_client_limit_reached", expvar.Func(func() any {
ns.mu.Lock()
defer ns.mu.Unlock()
limit := maxInFlightConnectionAttemptsPerClient()
var count int64
for _, n := range ns.connsInFlightByClient {
if n == limit {
count++
}
}
return count
}))
return m
}