You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tailscale/util/deephash/deephash.go

1000 lines
27 KiB
Go

// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package deephash hashes a Go value recursively, in a predictable order,
// without looping. The hash is only valid within the lifetime of a program.
// Users should not store the hash on disk or send it over the network.
// The hash is sufficiently strong and unique such that
// Hash(x) == Hash(y) is an appropriate replacement for x == y.
//
// The definition of equality is identical to reflect.DeepEqual except:
// - Floating-point values are compared based on the raw bits,
// which means that NaNs (with the same bit pattern) are treated as equal.
// - Types which implement interface { AppendTo([]byte) []byte } use
// the AppendTo method to produce a textual representation of the value.
// Thus, two values are equal if AppendTo produces the same bytes.
//
// WARNING: This package, like most of the tailscale.com Go module,
// should be considered Tailscale-internal; we make no API promises.
package deephash
import (
"bufio"
"crypto/sha256"
"encoding/binary"
"encoding/hex"
"fmt"
"hash"
"log"
"math"
"reflect"
"sync"
"time"
"unsafe"
)
// There is much overlap between the theory of serialization and hashing.
// A hash (useful for determining equality) can be produced by printing a value
// and hashing the output. The format must:
// * be deterministic such that the same value hashes to the same output, and
// * be parsable such that the same value can be reproduced by the output.
//
// The logic below hashes a value by printing it to a hash.Hash.
// To be parsable, it assumes that we know the Go type of each value:
// * scalar types (e.g., bool or int32) are printed as fixed-width fields.
// * list types (e.g., strings, slices, and AppendTo buffers) are prefixed
// by a fixed-width length field, followed by the contents of the list.
// * slices, arrays, and structs print each element/field consecutively.
// * interfaces print with a 1-byte prefix indicating whether it is nil.
// If non-nil, it is followed by a fixed-width field of the type index,
// followed by the format of the underlying value.
// * pointers print with a 1-byte prefix indicating whether the pointer is
// 1) nil, 2) previously seen, or 3) newly seen. Previously seen pointers are
// followed by a fixed-width field with the index of the previous pointer.
// Newly seen pointers are followed by the format of the underlying value.
// * maps print with a 1-byte prefix indicating whether the map pointer is
// 1) nil, 2) previously seen, or 3) newly seen. Previously seen pointers
// are followed by a fixed-width field of the index of the previous pointer.
// Newly seen maps are printed as a fixed-width field with the XOR of the
// hash of every map entry. With a sufficiently strong hash, this value is
// theoretically "parsable" by looking up the hash in a magical map that
// returns the set of entries for that given hash.
const scratchSize = 128
// hasher is reusable state for hashing a value.
// Get one via hasherPool.
type hasher struct {
h hash.Hash
bw *bufio.Writer
scratch [scratchSize]byte
visitStack visitStack
}
func (h *hasher) reset() {
if h.h == nil {
h.h = sha256.New()
}
if h.bw == nil {
h.bw = bufio.NewWriterSize(h.h, h.h.BlockSize())
}
h.bw.Flush()
h.h.Reset()
}
// Sum is an opaque checksum type that is comparable.
type Sum struct {
sum [sha256.Size]byte
}
func (s1 *Sum) xor(s2 Sum) {
for i := 0; i < sha256.Size; i++ {
s1.sum[i] ^= s2.sum[i]
}
}
func (s Sum) String() string {
return hex.EncodeToString(s.sum[:])
}
var (
seedOnce sync.Once
seed uint64
)
func initSeed() {
seed = uint64(time.Now().UnixNano())
}
func (h *hasher) sum() (s Sum) {
h.bw.Flush()
// Sum into scratch & copy out, as hash.Hash is an interface
// so the slice necessarily escapes, and there's no sha256
// concrete type exported and we don't want the 'hash' result
// parameter to escape to the heap:
copy(s.sum[:], h.h.Sum(h.scratch[:0]))
return s
}
var hasherPool = &sync.Pool{
New: func() any { return new(hasher) },
}
// Hash returns the hash of v.
func Hash(v any) (s Sum) {
h := hasherPool.Get().(*hasher)
defer hasherPool.Put(h)
h.reset()
seedOnce.Do(initSeed)
h.hashUint64(seed)
rv := reflect.ValueOf(v)
if rv.IsValid() {
// Always treat the Hash input as an interface (it is), including hashing
// its type, otherwise two Hash calls of different types could hash to the
// same bytes off the different types and get equivalent Sum values. This is
// the same thing that we do for reflect.Kind Interface in hashValue, but
// the initial reflect.ValueOf from an interface value effectively strips
// the interface box off so we have to do it at the top level by hand.
h.hashType(rv.Type())
h.hashValue(rv, false)
}
return h.sum()
}
// HasherForType is like Hash, but it returns a Hash func that's specialized for
// the provided reflect type, avoiding a map lookup per value.
func HasherForType[T any]() func(T) Sum {
var zeroT T
ti := getTypeInfo(reflect.TypeOf(zeroT))
seedOnce.Do(initSeed)
return func(v T) Sum {
h := hasherPool.Get().(*hasher)
defer hasherPool.Put(h)
h.reset()
h.hashUint64(seed)
rv := reflect.ValueOf(v)
if rv.IsValid() {
// Always treat the Hash input as an interface (it is), including hashing
// its type, otherwise two Hash calls of different types could hash to the
// same bytes off the different types and get equivalent Sum values. This is
// the same thing that we do for reflect.Kind Interface in hashValue, but
// the initial reflect.ValueOf from an interface value effectively strips
// the interface box off so we have to do it at the top level by hand.
h.hashType(rv.Type())
h.hashValueWithType(rv, ti, false)
}
return h.sum()
}
}
// Update sets last to the hash of v and reports whether its value changed.
func Update(last *Sum, v ...any) (changed bool) {
sum := Hash(v)
if sum == *last {
// unchanged.
return false
}
*last = sum
return true
}
var appenderToType = reflect.TypeOf((*appenderTo)(nil)).Elem()
type appenderTo interface {
AppendTo([]byte) []byte
}
func (h *hasher) hashUint8(i uint8) {
h.bw.WriteByte(i)
}
func (h *hasher) hashUint16(i uint16) {
binary.LittleEndian.PutUint16(h.scratch[:2], i)
h.bw.Write(h.scratch[:2])
}
func (h *hasher) hashUint32(i uint32) {
binary.LittleEndian.PutUint32(h.scratch[:4], i)
h.bw.Write(h.scratch[:4])
}
func (h *hasher) hashLen(n int) {
binary.LittleEndian.PutUint64(h.scratch[:8], uint64(n))
h.bw.Write(h.scratch[:8])
}
func (h *hasher) hashUint64(i uint64) {
binary.LittleEndian.PutUint64(h.scratch[:8], i)
h.bw.Write(h.scratch[:8])
}
var (
uint8Type = reflect.TypeOf(byte(0))
timeTimeType = reflect.TypeOf(time.Time{})
)
// typeInfo describes properties of a type.
//
// A non-nil typeInfo is populated into the typeHasher map
// when its type is first requested, before its func is created.
// Its func field fn is only populated once the type has been created.
// This is used for recursive types.
type typeInfo struct {
rtype reflect.Type
canMemHash bool
isRecursive bool
// elemTypeInfo is the element type's typeInfo.
// It's set when rtype is of Kind Ptr, Slice, Array, Map.
elemTypeInfo *typeInfo
// keyTypeInfo is the map key type's typeInfo.
// It's set when rtype is of Kind Map.
keyTypeInfo *typeInfo
hashFuncOnce sync.Once
hashFuncLazy typeHasherFunc // nil until created
}
// returns ok if it was handled; else slow path runs
type typeHasherFunc func(h *hasher, v reflect.Value) (ok bool)
var typeInfoMap sync.Map // map[reflect.Type]*typeInfo
var typeInfoMapPopulate sync.Mutex // just for adding to typeInfoMap
func (ti *typeInfo) hasher() typeHasherFunc {
ti.hashFuncOnce.Do(ti.buildHashFuncOnce)
return ti.hashFuncLazy
}
func (ti *typeInfo) buildHashFuncOnce() {
ti.hashFuncLazy = genTypeHasher(ti.rtype)
}
func (h *hasher) hashBoolv(v reflect.Value) bool {
var b byte
if v.Bool() {
b = 1
}
h.hashUint8(b)
return true
}
func (h *hasher) hashUint8v(v reflect.Value) bool {
h.hashUint8(uint8(v.Uint()))
return true
}
func (h *hasher) hashInt8v(v reflect.Value) bool {
h.hashUint8(uint8(v.Int()))
return true
}
func (h *hasher) hashUint16v(v reflect.Value) bool {
h.hashUint16(uint16(v.Uint()))
return true
}
func (h *hasher) hashInt16v(v reflect.Value) bool {
h.hashUint16(uint16(v.Int()))
return true
}
func (h *hasher) hashUint32v(v reflect.Value) bool {
h.hashUint32(uint32(v.Uint()))
return true
}
func (h *hasher) hashInt32v(v reflect.Value) bool {
h.hashUint32(uint32(v.Int()))
return true
}
func (h *hasher) hashUint64v(v reflect.Value) bool {
h.hashUint64(v.Uint())
return true
}
func (h *hasher) hashInt64v(v reflect.Value) bool {
h.hashUint64(uint64(v.Int()))
return true
}
func hashStructAppenderTo(h *hasher, v reflect.Value) bool {
if !v.CanInterface() {
return false // slow path
}
var a appenderTo
if v.CanAddr() {
a = v.Addr().Interface().(appenderTo)
} else {
a = v.Interface().(appenderTo)
}
size := h.scratch[:8]
record := a.AppendTo(size)
binary.LittleEndian.PutUint64(record, uint64(len(record)-len(size)))
h.bw.Write(record)
return true
}
// hashPointerAppenderTo hashes v, a reflect.Ptr, that implements appenderTo.
func hashPointerAppenderTo(h *hasher, v reflect.Value) bool {
if !v.CanInterface() {
return false // slow path
}
if v.IsNil() {
h.hashUint8(0) // indicates nil
return true
}
h.hashUint8(1) // indicates visiting a pointer
a := v.Interface().(appenderTo)
size := h.scratch[:8]
record := a.AppendTo(size)
binary.LittleEndian.PutUint64(record, uint64(len(record)-len(size)))
h.bw.Write(record)
return true
}
// fieldInfo describes a struct field.
type fieldInfo struct {
index int // index of field for reflect.Value.Field(n)
typeInfo *typeInfo
canMemHash bool
offset uintptr // when we can memhash the field
size uintptr // when we can memhash the field
}
// mergeContiguousFieldsCopy returns a copy of f with contiguous memhashable fields
// merged together. Such fields get a bogus index and fu value.
func mergeContiguousFieldsCopy(in []fieldInfo) []fieldInfo {
ret := make([]fieldInfo, 0, len(in))
var last *fieldInfo
for _, f := range in {
// Combine two fields if they're both contiguous & memhash-able.
if f.canMemHash && last != nil && last.canMemHash && last.offset+last.size == f.offset {
last.size += f.size
last.index = -1
last.typeInfo = nil
} else {
ret = append(ret, f)
last = &ret[len(ret)-1]
}
}
return ret
}
// genHashStructFields generates a typeHasherFunc for t, which must be of kind Struct.
func genHashStructFields(t reflect.Type) typeHasherFunc {
fields := make([]fieldInfo, 0, t.NumField())
for i, n := 0, t.NumField(); i < n; i++ {
sf := t.Field(i)
if sf.Type.Size() == 0 {
continue
}
fields = append(fields, fieldInfo{
index: i,
typeInfo: getTypeInfo(sf.Type),
canMemHash: canMemHash(sf.Type),
offset: sf.Offset,
size: sf.Type.Size(),
})
}
fieldsIfCanAddr := mergeContiguousFieldsCopy(fields)
return structHasher{fields, fieldsIfCanAddr}.hash
}
type structHasher struct {
fields, fieldsIfCanAddr []fieldInfo
}
func (sh structHasher) hash(h *hasher, v reflect.Value) bool {
var base unsafe.Pointer
if v.CanAddr() {
base = v.Addr().UnsafePointer()
for _, f := range sh.fieldsIfCanAddr {
if f.canMemHash {
h.bw.Write(unsafe.Slice((*byte)(unsafe.Pointer(uintptr(base)+f.offset)), f.size))
} else if !f.typeInfo.hasher()(h, v.Field(f.index)) {
return false
}
}
} else {
for _, f := range sh.fields {
if !f.typeInfo.hasher()(h, v.Field(f.index)) {
return false
}
}
}
return true
}
// genHashPtrToMemoryRange returns a hasher where the reflect.Value is a Ptr to
// the provided eleType.
func genHashPtrToMemoryRange(eleType reflect.Type) typeHasherFunc {
size := eleType.Size()
return func(h *hasher, v reflect.Value) bool {
if v.IsNil() {
h.hashUint8(0) // indicates nil
} else {
h.hashUint8(1) // indicates visiting a pointer
h.bw.Write(unsafe.Slice((*byte)(v.UnsafePointer()), size))
}
return true
}
}
const debug = false
func genTypeHasher(t reflect.Type) typeHasherFunc {
if debug {
log.Printf("generating func for %v", t)
}
switch t.Kind() {
case reflect.Bool:
return (*hasher).hashBoolv
case reflect.Int8:
return (*hasher).hashInt8v
case reflect.Int16:
return (*hasher).hashInt16v
case reflect.Int32:
return (*hasher).hashInt32v
case reflect.Int, reflect.Int64:
return (*hasher).hashInt64v
case reflect.Uint8:
return (*hasher).hashUint8v
case reflect.Uint16:
return (*hasher).hashUint16v
case reflect.Uint32:
return (*hasher).hashUint32v
case reflect.Uint, reflect.Uintptr, reflect.Uint64:
return (*hasher).hashUint64v
case reflect.Float32:
return (*hasher).hashFloat32v
case reflect.Float64:
return (*hasher).hashFloat64v
case reflect.Complex64:
return (*hasher).hashComplex64v
case reflect.Complex128:
return (*hasher).hashComplex128v
case reflect.String:
return (*hasher).hashString
case reflect.Slice:
et := t.Elem()
if canMemHash(et) {
return (*hasher).hashSliceMem
}
eti := getTypeInfo(et)
return genHashSliceElements(eti)
case reflect.Array:
et := t.Elem()
eti := getTypeInfo(et)
return genHashArray(t, eti)
case reflect.Struct:
if t == timeTimeType {
return (*hasher).hashTimev
}
if t.Implements(appenderToType) {
return hashStructAppenderTo
}
return genHashStructFields(t)
case reflect.Pointer:
et := t.Elem()
if canMemHash(et) {
return genHashPtrToMemoryRange(et)
}
if t.Implements(appenderToType) {
return hashPointerAppenderTo
}
if !typeIsRecursive(t) {
eti := getTypeInfo(et)
return func(h *hasher, v reflect.Value) bool {
if v.IsNil() {
h.hashUint8(0) // indicates nil
return true
}
h.hashUint8(1) // indicates visiting a pointer
return eti.hasher()(h, v.Elem())
}
}
}
return func(h *hasher, v reflect.Value) bool {
if debug {
log.Printf("unhandled type %v", v.Type())
}
return false
}
}
// hashString hashes v, of kind String.
func (h *hasher) hashString(v reflect.Value) bool {
s := v.String()
h.hashLen(len(s))
h.bw.WriteString(s)
return true
}
func (h *hasher) hashFloat32v(v reflect.Value) bool {
h.hashUint32(math.Float32bits(float32(v.Float())))
return true
}
func (h *hasher) hashFloat64v(v reflect.Value) bool {
h.hashUint64(math.Float64bits(v.Float()))
return true
}
func (h *hasher) hashComplex64v(v reflect.Value) bool {
c := complex64(v.Complex())
h.hashUint32(math.Float32bits(real(c)))
h.hashUint32(math.Float32bits(imag(c)))
return true
}
func (h *hasher) hashComplex128v(v reflect.Value) bool {
c := v.Complex()
h.hashUint64(math.Float64bits(real(c)))
h.hashUint64(math.Float64bits(imag(c)))
return true
}
// hashString hashes v, of kind time.Time.
func (h *hasher) hashTimev(v reflect.Value) bool {
var t time.Time
if v.CanAddr() {
t = *(*time.Time)(v.Addr().UnsafePointer())
} else if v.CanInterface() {
t = v.Interface().(time.Time)
} else {
return false
}
b := t.AppendFormat(h.scratch[:1], time.RFC3339Nano)
b[0] = byte(len(b) - 1) // more than sufficient width; if not, good enough.
h.bw.Write(b)
return true
}
// hashSliceMem hashes v, of kind Slice, with a memhash-able element type.
func (h *hasher) hashSliceMem(v reflect.Value) bool {
vLen := v.Len()
h.hashUint64(uint64(vLen))
if vLen == 0 {
return true
}
h.bw.Write(unsafe.Slice((*byte)(v.UnsafePointer()), v.Type().Elem().Size()*uintptr(vLen)))
return true
}
func genHashArrayMem(n int, arraySize uintptr, efu *typeInfo) typeHasherFunc {
byElement := genHashArrayElements(n, efu)
return func(h *hasher, v reflect.Value) bool {
if v.CanAddr() {
h.bw.Write(unsafe.Slice((*byte)(v.Addr().UnsafePointer()), arraySize))
return true
}
return byElement(h, v)
}
}
func genHashArrayElements(n int, eti *typeInfo) typeHasherFunc {
return func(h *hasher, v reflect.Value) bool {
for i := 0; i < n; i++ {
if !eti.hasher()(h, v.Index(i)) {
return false
}
}
return true
}
}
func noopHasherFunc(h *hasher, v reflect.Value) bool { return true }
func genHashArray(t reflect.Type, eti *typeInfo) typeHasherFunc {
if t.Size() == 0 {
return noopHasherFunc
}
et := t.Elem()
if canMemHash(et) {
return genHashArrayMem(t.Len(), t.Size(), eti)
}
n := t.Len()
return genHashArrayElements(n, eti)
}
func genHashSliceElements(eti *typeInfo) typeHasherFunc {
return sliceElementHasher{eti}.hash
}
type sliceElementHasher struct {
eti *typeInfo
}
func (seh sliceElementHasher) hash(h *hasher, v reflect.Value) bool {
vLen := v.Len()
h.hashUint64(uint64(vLen))
for i := 0; i < vLen; i++ {
if !seh.eti.hasher()(h, v.Index(i)) {
return false
}
}
return true
}
func getTypeInfo(t reflect.Type) *typeInfo {
if f, ok := typeInfoMap.Load(t); ok {
return f.(*typeInfo)
}
typeInfoMapPopulate.Lock()
defer typeInfoMapPopulate.Unlock()
newTypes := map[reflect.Type]*typeInfo{}
ti := getTypeInfoLocked(t, newTypes)
for t, ti := range newTypes {
typeInfoMap.Store(t, ti)
}
return ti
}
func getTypeInfoLocked(t reflect.Type, incomplete map[reflect.Type]*typeInfo) *typeInfo {
if v, ok := typeInfoMap.Load(t); ok {
return v.(*typeInfo)
}
if ti, ok := incomplete[t]; ok {
return ti
}
ti := &typeInfo{
rtype: t,
isRecursive: typeIsRecursive(t),
canMemHash: canMemHash(t),
}
incomplete[t] = ti
switch t.Kind() {
case reflect.Map:
ti.keyTypeInfo = getTypeInfoLocked(t.Key(), incomplete)
fallthrough
case reflect.Ptr, reflect.Slice, reflect.Array:
ti.elemTypeInfo = getTypeInfoLocked(t.Elem(), incomplete)
}
return ti
}
// typeIsRecursive reports whether t has a path back to itself.
//
// For interfaces, it currently always reports true.
func typeIsRecursive(t reflect.Type) bool {
inStack := map[reflect.Type]bool{}
var stack []reflect.Type
var visitType func(t reflect.Type) (isRecursiveSoFar bool)
visitType = func(t reflect.Type) (isRecursiveSoFar bool) {
switch t.Kind() {
case reflect.Bool,
reflect.Int,
reflect.Int8,
reflect.Int16,
reflect.Int32,
reflect.Int64,
reflect.Uint,
reflect.Uint8,
reflect.Uint16,
reflect.Uint32,
reflect.Uint64,
reflect.Uintptr,
reflect.Float32,
reflect.Float64,
reflect.Complex64,
reflect.Complex128,
reflect.String,
reflect.UnsafePointer,
reflect.Func:
return false
}
if t.Size() == 0 {
return false
}
if inStack[t] {
return true
}
stack = append(stack, t)
inStack[t] = true
defer func() {
delete(inStack, t)
stack = stack[:len(stack)-1]
}()
switch t.Kind() {
default:
panic("unhandled kind " + t.Kind().String())
case reflect.Interface:
// Assume the worst for now. TODO(bradfitz): in some cases
// we should be able to prove that it's not recursive. Not worth
// it for now.
return true
case reflect.Array, reflect.Chan, reflect.Pointer, reflect.Slice:
return visitType(t.Elem())
case reflect.Map:
if visitType(t.Key()) {
return true
}
if visitType(t.Elem()) {
return true
}
case reflect.Struct:
if t.String() == "intern.Value" {
// Otherwise its interface{} makes this return true.
return false
}
for i, numField := 0, t.NumField(); i < numField; i++ {
if visitType(t.Field(i).Type) {
return true
}
}
return false
}
return false
}
return visitType(t)
}
// canMemHash reports whether a slice of t can be hashed by looking at its
// contiguous bytes in memory alone. (e.g. structs with gaps aren't memhashable)
func canMemHash(t reflect.Type) bool {
switch t.Kind() {
case reflect.Bool, reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uintptr, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64,
reflect.Float64, reflect.Float32, reflect.Complex128, reflect.Complex64:
return true
case reflect.Array:
return canMemHash(t.Elem())
case reflect.Struct:
var sumFieldSize uintptr
for i, numField := 0, t.NumField(); i < numField; i++ {
sf := t.Field(i)
if !canMemHash(sf.Type) {
// Special case for 0-width fields that aren't at the end.
if sf.Type.Size() == 0 && i < numField-1 {
continue
}
return false
}
sumFieldSize += sf.Type.Size()
}
return sumFieldSize == t.Size() // else there are gaps
}
return false
}
func (h *hasher) hashValue(v reflect.Value, forceCycleChecking bool) {
if !v.IsValid() {
return
}
ti := getTypeInfo(v.Type())
h.hashValueWithType(v, ti, forceCycleChecking)
}
func (h *hasher) hashValueWithType(v reflect.Value, ti *typeInfo, forceCycleChecking bool) {
w := h.bw
doCheckCycles := forceCycleChecking || ti.isRecursive
if !doCheckCycles {
hf := ti.hasher()
if hf(h, v) {
return
}
}
// Generic handling.
switch v.Kind() {
default:
panic(fmt.Sprintf("unhandled kind %v for type %v", v.Kind(), v.Type()))
case reflect.Ptr:
if v.IsNil() {
h.hashUint8(0) // indicates nil
return
}
if doCheckCycles {
ptr := pointerOf(v)
if idx, ok := h.visitStack.seen(ptr); ok {
h.hashUint8(2) // indicates cycle
h.hashUint64(uint64(idx))
return
}
h.visitStack.push(ptr)
defer h.visitStack.pop(ptr)
}
h.hashUint8(1) // indicates visiting a pointer
h.hashValueWithType(v.Elem(), ti.elemTypeInfo, doCheckCycles)
case reflect.Struct:
for i, n := 0, v.NumField(); i < n; i++ {
h.hashValue(v.Field(i), doCheckCycles)
}
case reflect.Slice, reflect.Array:
vLen := v.Len()
if v.Kind() == reflect.Slice {
h.hashUint64(uint64(vLen))
}
if v.Type().Elem() == uint8Type && v.CanInterface() {
if vLen > 0 && vLen <= scratchSize {
// If it fits in scratch, avoid the Interface allocation.
// It seems tempting to do this for all sizes, doing
// scratchSize bytes at a time, but reflect.Slice seems
// to allocate, so it's not a win.
n := reflect.Copy(reflect.ValueOf(&h.scratch).Elem(), v)
w.Write(h.scratch[:n])
return
}
fmt.Fprintf(w, "%s", v.Interface())
return
}
for i := 0; i < vLen; i++ {
// TODO(dsnet): Perform cycle detection for slices,
// which is functionally a list of pointers.
// See https://github.com/google/go-cmp/blob/402949e8139bb890c71a707b6faf6dd05c92f4e5/cmp/compare.go#L438-L450
h.hashValueWithType(v.Index(i), ti.elemTypeInfo, doCheckCycles)
}
case reflect.Interface:
if v.IsNil() {
h.hashUint8(0) // indicates nil
return
}
v = v.Elem()
h.hashUint8(1) // indicates visiting interface value
h.hashType(v.Type())
h.hashValue(v, doCheckCycles)
case reflect.Map:
// Check for cycle.
if doCheckCycles {
ptr := pointerOf(v)
if idx, ok := h.visitStack.seen(ptr); ok {
h.hashUint8(2) // indicates cycle
h.hashUint64(uint64(idx))
return
}
h.visitStack.push(ptr)
defer h.visitStack.pop(ptr)
}
h.hashUint8(1) // indicates visiting a map
h.hashMap(v, ti, doCheckCycles)
case reflect.String:
s := v.String()
h.hashUint64(uint64(len(s)))
w.WriteString(s)
case reflect.Bool:
if v.Bool() {
h.hashUint8(1)
} else {
h.hashUint8(0)
}
case reflect.Int8:
h.hashUint8(uint8(v.Int()))
case reflect.Int16:
h.hashUint16(uint16(v.Int()))
case reflect.Int32:
h.hashUint32(uint32(v.Int()))
case reflect.Int64, reflect.Int:
h.hashUint64(uint64(v.Int()))
case reflect.Uint8:
h.hashUint8(uint8(v.Uint()))
case reflect.Uint16:
h.hashUint16(uint16(v.Uint()))
case reflect.Uint32:
h.hashUint32(uint32(v.Uint()))
case reflect.Uint64, reflect.Uint, reflect.Uintptr:
h.hashUint64(uint64(v.Uint()))
case reflect.Float32:
h.hashUint32(math.Float32bits(float32(v.Float())))
case reflect.Float64:
h.hashUint64(math.Float64bits(float64(v.Float())))
case reflect.Complex64:
h.hashUint32(math.Float32bits(real(complex64(v.Complex()))))
h.hashUint32(math.Float32bits(imag(complex64(v.Complex()))))
case reflect.Complex128:
h.hashUint64(math.Float64bits(real(complex128(v.Complex()))))
h.hashUint64(math.Float64bits(imag(complex128(v.Complex()))))
}
}
type mapHasher struct {
h hasher
valKey, valElem valueCache // re-usable values for map iteration
iter reflect.MapIter // re-usable map iterator
}
var mapHasherPool = &sync.Pool{
New: func() any { return new(mapHasher) },
}
type valueCache map[reflect.Type]reflect.Value
func (c *valueCache) get(t reflect.Type) reflect.Value {
v, ok := (*c)[t]
if !ok {
v = reflect.New(t).Elem()
if *c == nil {
*c = make(valueCache)
}
(*c)[t] = v
}
return v
}
// hashMap hashes a map in a sort-free manner.
// It relies on a map being a functionally an unordered set of KV entries.
// So long as we hash each KV entry together, we can XOR all
// of the individual hashes to produce a unique hash for the entire map.
func (h *hasher) hashMap(v reflect.Value, ti *typeInfo, checkCycles bool) {
mh := mapHasherPool.Get().(*mapHasher)
defer mapHasherPool.Put(mh)
iter := &mh.iter
iter.Reset(v)
defer iter.Reset(reflect.Value{}) // avoid pinning v from mh.iter when we return
var sum Sum
if v.IsNil() {
sum.sum[0] = 1 // something non-zero
}
k := mh.valKey.get(v.Type().Key())
e := mh.valElem.get(v.Type().Elem())
mh.h.visitStack = h.visitStack // always use the parent's visit stack to avoid cycles
for iter.Next() {
k.SetIterKey(iter)
e.SetIterValue(iter)
mh.h.reset()
mh.h.hashValueWithType(k, ti.keyTypeInfo, checkCycles)
mh.h.hashValueWithType(e, ti.elemTypeInfo, checkCycles)
sum.xor(mh.h.sum())
}
h.bw.Write(append(h.scratch[:0], sum.sum[:]...)) // append into scratch to avoid heap allocation
}
// visitStack is a stack of pointers visited.
// Pointers are pushed onto the stack when visited, and popped when leaving.
// The integer value is the depth at which the pointer was visited.
// The length of this stack should be zero after every hashing operation.
type visitStack map[pointer]int
func (v visitStack) seen(p pointer) (int, bool) {
idx, ok := v[p]
return idx, ok
}
func (v *visitStack) push(p pointer) {
if *v == nil {
*v = make(map[pointer]int)
}
(*v)[p] = len(*v)
}
func (v visitStack) pop(p pointer) {
delete(v, p)
}
// pointer is a thin wrapper over unsafe.Pointer.
// We only rely on comparability of pointers; we cannot rely on uintptr since
// that would break if Go ever switched to a moving GC.
type pointer struct{ p unsafe.Pointer }
func pointerOf(v reflect.Value) pointer {
return pointer{unsafe.Pointer(v.Pointer())}
}
// hashType hashes a reflect.Type.
// The hash is only consistent within the lifetime of a program.
func (h *hasher) hashType(t reflect.Type) {
// This approach relies on reflect.Type always being backed by a unique
// *reflect.rtype pointer. A safer approach is to use a global sync.Map
// that maps reflect.Type to some arbitrary and unique index.
// While safer, it requires global state with memory that can never be GC'd.
rtypeAddr := reflect.ValueOf(t).Pointer() // address of *reflect.rtype
h.hashUint64(uint64(rtypeAddr))
}