mirror of https://github.com/tailscale/tailscale/
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1514 lines
45 KiB
Go
1514 lines
45 KiB
Go
// Copyright (c) Tailscale Inc & AUTHORS
|
|
// SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
package tstun
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"net/netip"
|
|
"os"
|
|
"reflect"
|
|
"runtime"
|
|
"slices"
|
|
"strings"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/gaissmai/bart"
|
|
"github.com/tailscale/wireguard-go/conn"
|
|
"github.com/tailscale/wireguard-go/device"
|
|
"github.com/tailscale/wireguard-go/tun"
|
|
"go4.org/mem"
|
|
"gvisor.dev/gvisor/pkg/tcpip/stack"
|
|
"tailscale.com/disco"
|
|
tsmetrics "tailscale.com/metrics"
|
|
"tailscale.com/net/connstats"
|
|
"tailscale.com/net/packet"
|
|
"tailscale.com/net/packet/checksum"
|
|
"tailscale.com/net/tsaddr"
|
|
"tailscale.com/syncs"
|
|
"tailscale.com/tstime/mono"
|
|
"tailscale.com/types/ipproto"
|
|
"tailscale.com/types/key"
|
|
"tailscale.com/types/logger"
|
|
"tailscale.com/util/clientmetric"
|
|
"tailscale.com/util/usermetric"
|
|
"tailscale.com/wgengine/capture"
|
|
"tailscale.com/wgengine/filter"
|
|
"tailscale.com/wgengine/netstack/gro"
|
|
"tailscale.com/wgengine/wgcfg"
|
|
)
|
|
|
|
const maxBufferSize = device.MaxMessageSize
|
|
|
|
// PacketStartOffset is the minimal amount of leading space that must exist
|
|
// before &packet[offset] in a packet passed to Read, Write, or InjectInboundDirect.
|
|
// This is necessary to avoid reallocation in wireguard-go internals.
|
|
const PacketStartOffset = device.MessageTransportHeaderSize
|
|
|
|
// MaxPacketSize is the maximum size (in bytes)
|
|
// of a packet that can be injected into a tstun.Wrapper.
|
|
const MaxPacketSize = device.MaxContentSize
|
|
|
|
const tapDebug = false // for super verbose TAP debugging
|
|
|
|
var (
|
|
// ErrClosed is returned when attempting an operation on a closed Wrapper.
|
|
ErrClosed = errors.New("device closed")
|
|
// ErrFiltered is returned when the acted-on packet is rejected by a filter.
|
|
ErrFiltered = errors.New("packet dropped by filter")
|
|
)
|
|
|
|
var (
|
|
errPacketTooBig = errors.New("packet too big")
|
|
errOffsetTooBig = errors.New("offset larger than buffer length")
|
|
errOffsetTooSmall = errors.New("offset smaller than PacketStartOffset")
|
|
)
|
|
|
|
// parsedPacketPool holds a pool of Parsed structs for use in filtering.
|
|
// This is needed because escape analysis cannot see that parsed packets
|
|
// do not escape through {Pre,Post}Filter{In,Out}.
|
|
var parsedPacketPool = sync.Pool{New: func() any { return new(packet.Parsed) }}
|
|
|
|
// FilterFunc is a packet-filtering function with access to the Wrapper device.
|
|
// It must not hold onto the packet struct, as its backing storage will be reused.
|
|
type FilterFunc func(*packet.Parsed, *Wrapper) filter.Response
|
|
|
|
// GROFilterFunc is a FilterFunc extended with a *gro.GRO, enabling increased
|
|
// throughput where GRO is supported by a packet.Parsed interceptor, e.g.
|
|
// netstack/gVisor, and we are handling a vector of packets. Callers must pass a
|
|
// nil g for the first packet in a given vector, and continue passing the
|
|
// returned *gro.GRO for all remaining packets in said vector. If the returned
|
|
// *gro.GRO is non-nil after the last packet for a given vector is passed
|
|
// through the GROFilterFunc, the caller must also call Flush() on it to deliver
|
|
// any previously Enqueue()'d packets.
|
|
type GROFilterFunc func(p *packet.Parsed, w *Wrapper, g *gro.GRO) (filter.Response, *gro.GRO)
|
|
|
|
// Wrapper augments a tun.Device with packet filtering and injection.
|
|
//
|
|
// A Wrapper starts in a "corked" mode where Read calls are blocked
|
|
// until the Wrapper's Start method is called.
|
|
type Wrapper struct {
|
|
logf logger.Logf
|
|
limitedLogf logger.Logf // aggressively rate-limited logf used for potentially high volume errors
|
|
// tdev is the underlying Wrapper device.
|
|
tdev tun.Device
|
|
isTAP bool // whether tdev is a TAP device
|
|
|
|
started atomic.Bool // whether Start has been called
|
|
startCh chan struct{} // closed in Start
|
|
|
|
closeOnce sync.Once
|
|
|
|
// lastActivityAtomic is read/written atomically.
|
|
// On 32 bit systems, if the fields above change,
|
|
// you might need to add an align64 field here.
|
|
lastActivityAtomic mono.Time // time of last send or receive
|
|
|
|
destIPActivity syncs.AtomicValue[map[netip.Addr]func()]
|
|
//lint:ignore U1000 used in tap_linux.go
|
|
destMACAtomic syncs.AtomicValue[[6]byte]
|
|
discoKey syncs.AtomicValue[key.DiscoPublic]
|
|
|
|
// timeNow, if non-nil, will be used to obtain the current time.
|
|
timeNow func() time.Time
|
|
|
|
// peerConfig stores the current NAT configuration.
|
|
peerConfig atomic.Pointer[peerConfigTable]
|
|
|
|
// vectorBuffer stores the oldest unconsumed packet vector from tdev. It is
|
|
// allocated in wrap() and the underlying arrays should never grow.
|
|
vectorBuffer [][]byte
|
|
// bufferConsumedMu protects bufferConsumed from concurrent sends, closes,
|
|
// and send-after-close (by way of bufferConsumedClosed).
|
|
bufferConsumedMu sync.Mutex
|
|
// bufferConsumedClosed is true when bufferConsumed has been closed. This is
|
|
// read by bufferConsumed writers to prevent send-after-close.
|
|
bufferConsumedClosed bool
|
|
// bufferConsumed synchronizes access to vectorBuffer (shared by Read() and
|
|
// pollVector()).
|
|
//
|
|
// Close closes bufferConsumed and sets bufferConsumedClosed to true.
|
|
bufferConsumed chan struct{}
|
|
|
|
// closed signals poll (by closing) when the device is closed.
|
|
closed chan struct{}
|
|
// outboundMu protects outbound and vectorOutbound from concurrent sends,
|
|
// closes, and send-after-close (by way of outboundClosed).
|
|
outboundMu sync.Mutex
|
|
// outboundClosed is true when outbound or vectorOutbound have been closed.
|
|
// This is read by outbound and vectorOutbound writers to prevent
|
|
// send-after-close.
|
|
outboundClosed bool
|
|
// vectorOutbound is the queue by which packets leave the TUN device.
|
|
//
|
|
// The directions are relative to the network, not the device:
|
|
// inbound packets arrive via UDP and are written into the TUN device;
|
|
// outbound packets are read from the TUN device and sent out via UDP.
|
|
// This queue is needed because although inbound writes are synchronous,
|
|
// the other direction must wait on a WireGuard goroutine to poll it.
|
|
//
|
|
// Empty reads are skipped by WireGuard, so it is always legal
|
|
// to discard an empty packet instead of sending it through vectorOutbound.
|
|
//
|
|
// Close closes vectorOutbound and sets outboundClosed to true.
|
|
vectorOutbound chan tunVectorReadResult
|
|
|
|
// eventsUpDown yields up and down tun.Events that arrive on a Wrapper's events channel.
|
|
eventsUpDown chan tun.Event
|
|
// eventsOther yields non-up-and-down tun.Events that arrive on a Wrapper's events channel.
|
|
eventsOther chan tun.Event
|
|
|
|
// filter atomically stores the currently active packet filter
|
|
filter atomic.Pointer[filter.Filter]
|
|
// filterFlags control the verbosity of logging packet drops/accepts.
|
|
filterFlags filter.RunFlags
|
|
// jailedFilter is the packet filter for jailed nodes.
|
|
// Can be nil, which means drop all packets.
|
|
jailedFilter atomic.Pointer[filter.Filter]
|
|
|
|
// PreFilterPacketInboundFromWireGuard is the inbound filter function that runs before the main filter
|
|
// and therefore sees the packets that may be later dropped by it.
|
|
PreFilterPacketInboundFromWireGuard FilterFunc
|
|
// PostFilterPacketInboundFromWireGuard is the inbound filter function that runs after the main filter.
|
|
PostFilterPacketInboundFromWireGuard GROFilterFunc
|
|
// PreFilterPacketOutboundToWireGuardNetstackIntercept is a filter function that runs before the main filter
|
|
// for packets from the local system. This filter is populated by netstack to hook
|
|
// packets that should be handled by netstack. If set, this filter runs before
|
|
// PreFilterFromTunToEngine.
|
|
PreFilterPacketOutboundToWireGuardNetstackIntercept GROFilterFunc
|
|
// PreFilterPacketOutboundToWireGuardEngineIntercept is a filter function that runs before the main filter
|
|
// for packets from the local system. This filter is populated by wgengine to hook
|
|
// packets which it handles internally. If both this and PreFilterFromTunToNetstack
|
|
// filter functions are non-nil, this filter runs second.
|
|
PreFilterPacketOutboundToWireGuardEngineIntercept FilterFunc
|
|
// PostFilterPacketOutboundToWireGuard is the outbound filter function that runs after the main filter.
|
|
PostFilterPacketOutboundToWireGuard FilterFunc
|
|
|
|
// OnTSMPPongReceived, if non-nil, is called whenever a TSMP pong arrives.
|
|
OnTSMPPongReceived func(packet.TSMPPongReply)
|
|
|
|
// OnICMPEchoResponseReceived, if non-nil, is called whenever a ICMP echo response
|
|
// arrives. If the packet is to be handled internally this returns true,
|
|
// false otherwise.
|
|
OnICMPEchoResponseReceived func(*packet.Parsed) bool
|
|
|
|
// PeerAPIPort, if non-nil, returns the peerapi port that's
|
|
// running for the given IP address.
|
|
PeerAPIPort func(netip.Addr) (port uint16, ok bool)
|
|
|
|
// disableFilter disables all filtering when set. This should only be used in tests.
|
|
disableFilter bool
|
|
|
|
// disableTSMPRejected disables TSMP rejected responses. For tests.
|
|
disableTSMPRejected bool
|
|
|
|
// stats maintains per-connection counters.
|
|
stats atomic.Pointer[connstats.Statistics]
|
|
|
|
captureHook syncs.AtomicValue[capture.Callback]
|
|
|
|
metrics *metrics
|
|
}
|
|
|
|
type metrics struct {
|
|
inboundDroppedPacketsTotal *tsmetrics.MultiLabelMap[dropPacketLabel]
|
|
outboundDroppedPacketsTotal *tsmetrics.MultiLabelMap[dropPacketLabel]
|
|
}
|
|
|
|
func registerMetrics(reg *usermetric.Registry) *metrics {
|
|
return &metrics{
|
|
inboundDroppedPacketsTotal: usermetric.NewMultiLabelMapWithRegistry[dropPacketLabel](
|
|
reg,
|
|
"tailscaled_inbound_dropped_packets_total",
|
|
"counter",
|
|
"Counts the number of dropped packets received by the node from other peers",
|
|
),
|
|
outboundDroppedPacketsTotal: usermetric.NewMultiLabelMapWithRegistry[dropPacketLabel](
|
|
reg,
|
|
"tailscaled_outbound_dropped_packets_total",
|
|
"counter",
|
|
"Counts the number of packets dropped while being sent to other peers",
|
|
),
|
|
}
|
|
}
|
|
|
|
// tunInjectedRead is an injected packet pretending to be a tun.Read().
|
|
type tunInjectedRead struct {
|
|
// Only one of packet or data should be set, and are read in that order of
|
|
// precedence.
|
|
packet *stack.PacketBuffer
|
|
data []byte
|
|
}
|
|
|
|
// tunVectorReadResult is the result of a tun.Read(), or an injected packet
|
|
// pretending to be a tun.Read().
|
|
type tunVectorReadResult struct {
|
|
// When err AND data are nil, injected will be set with meaningful data
|
|
// (injected packet). If either err OR data is non-nil, injected should be
|
|
// ignored (a "real" tun.Read).
|
|
err error
|
|
data [][]byte
|
|
injected tunInjectedRead
|
|
|
|
dataOffset int
|
|
}
|
|
|
|
type setWrapperer interface {
|
|
// setWrapper enables the underlying TUN/TAP to have access to the Wrapper.
|
|
// It MUST be called only once during initialization, other usage is unsafe.
|
|
setWrapper(*Wrapper)
|
|
}
|
|
|
|
// Start unblocks any Wrapper.Read calls that have already started
|
|
// and makes the Wrapper functional.
|
|
//
|
|
// Start must be called exactly once after the various Tailscale
|
|
// subsystems have been wired up to each other.
|
|
func (w *Wrapper) Start() {
|
|
w.started.Store(true)
|
|
close(w.startCh)
|
|
}
|
|
|
|
func WrapTAP(logf logger.Logf, tdev tun.Device, m *usermetric.Registry) *Wrapper {
|
|
return wrap(logf, tdev, true, m)
|
|
}
|
|
|
|
func Wrap(logf logger.Logf, tdev tun.Device, m *usermetric.Registry) *Wrapper {
|
|
return wrap(logf, tdev, false, m)
|
|
}
|
|
|
|
func wrap(logf logger.Logf, tdev tun.Device, isTAP bool, m *usermetric.Registry) *Wrapper {
|
|
logf = logger.WithPrefix(logf, "tstun: ")
|
|
w := &Wrapper{
|
|
logf: logf,
|
|
limitedLogf: logger.RateLimitedFn(logf, 1*time.Minute, 2, 10),
|
|
isTAP: isTAP,
|
|
tdev: tdev,
|
|
// bufferConsumed is conceptually a condition variable:
|
|
// a goroutine should not block when setting it, even with no listeners.
|
|
bufferConsumed: make(chan struct{}, 1),
|
|
closed: make(chan struct{}),
|
|
// vectorOutbound can be unbuffered; the buffer is an optimization.
|
|
vectorOutbound: make(chan tunVectorReadResult, 1),
|
|
eventsUpDown: make(chan tun.Event),
|
|
eventsOther: make(chan tun.Event),
|
|
// TODO(dmytro): (highly rate-limited) hexdumps should happen on unknown packets.
|
|
filterFlags: filter.LogAccepts | filter.LogDrops,
|
|
startCh: make(chan struct{}),
|
|
metrics: registerMetrics(m),
|
|
}
|
|
|
|
w.vectorBuffer = make([][]byte, tdev.BatchSize())
|
|
for i := range w.vectorBuffer {
|
|
w.vectorBuffer[i] = make([]byte, maxBufferSize)
|
|
}
|
|
go w.pollVector()
|
|
|
|
go w.pumpEvents()
|
|
// The buffer starts out consumed.
|
|
w.bufferConsumed <- struct{}{}
|
|
w.noteActivity()
|
|
|
|
if sw, ok := w.tdev.(setWrapperer); ok {
|
|
sw.setWrapper(w)
|
|
}
|
|
|
|
return w
|
|
}
|
|
|
|
// now returns the current time, either by calling t.timeNow if set or time.Now
|
|
// if not.
|
|
func (t *Wrapper) now() time.Time {
|
|
if t.timeNow != nil {
|
|
return t.timeNow()
|
|
}
|
|
return time.Now()
|
|
}
|
|
|
|
// SetDestIPActivityFuncs sets a map of funcs to run per packet
|
|
// destination (the map keys).
|
|
//
|
|
// The map ownership passes to the Wrapper. It must be non-nil.
|
|
func (t *Wrapper) SetDestIPActivityFuncs(m map[netip.Addr]func()) {
|
|
t.destIPActivity.Store(m)
|
|
}
|
|
|
|
// SetDiscoKey sets the current discovery key.
|
|
//
|
|
// It is only used for filtering out bogus traffic when network
|
|
// stack(s) get confused; see Issue 1526.
|
|
func (t *Wrapper) SetDiscoKey(k key.DiscoPublic) {
|
|
t.discoKey.Store(k)
|
|
}
|
|
|
|
// isSelfDisco reports whether packet p
|
|
// looks like a Disco packet from ourselves.
|
|
// See Issue 1526.
|
|
func (t *Wrapper) isSelfDisco(p *packet.Parsed) bool {
|
|
if p.IPProto != ipproto.UDP {
|
|
return false
|
|
}
|
|
pkt := p.Payload()
|
|
discobs, ok := disco.Source(pkt)
|
|
if !ok {
|
|
return false
|
|
}
|
|
discoSrc := key.DiscoPublicFromRaw32(mem.B(discobs))
|
|
selfDiscoPub := t.discoKey.Load()
|
|
return selfDiscoPub == discoSrc
|
|
}
|
|
|
|
func (t *Wrapper) Close() error {
|
|
var err error
|
|
t.closeOnce.Do(func() {
|
|
if t.started.CompareAndSwap(false, true) {
|
|
close(t.startCh)
|
|
}
|
|
close(t.closed)
|
|
t.bufferConsumedMu.Lock()
|
|
t.bufferConsumedClosed = true
|
|
close(t.bufferConsumed)
|
|
t.bufferConsumedMu.Unlock()
|
|
t.outboundMu.Lock()
|
|
t.outboundClosed = true
|
|
close(t.vectorOutbound)
|
|
t.outboundMu.Unlock()
|
|
err = t.tdev.Close()
|
|
})
|
|
return err
|
|
}
|
|
|
|
// isClosed reports whether t is closed.
|
|
func (t *Wrapper) isClosed() bool {
|
|
select {
|
|
case <-t.closed:
|
|
return true
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// pumpEvents copies events from t.tdev to t.eventsUpDown and t.eventsOther.
|
|
// pumpEvents exits when t.tdev.events or t.closed is closed.
|
|
// pumpEvents closes t.eventsUpDown and t.eventsOther when it exits.
|
|
func (t *Wrapper) pumpEvents() {
|
|
defer close(t.eventsUpDown)
|
|
defer close(t.eventsOther)
|
|
src := t.tdev.Events()
|
|
for {
|
|
// Retrieve an event from the TUN device.
|
|
var event tun.Event
|
|
var ok bool
|
|
select {
|
|
case <-t.closed:
|
|
return
|
|
case event, ok = <-src:
|
|
if !ok {
|
|
return
|
|
}
|
|
}
|
|
|
|
// Pass along event to the correct recipient.
|
|
// Though event is a bitmask, in practice there is only ever one bit set at a time.
|
|
dst := t.eventsOther
|
|
if event&(tun.EventUp|tun.EventDown) != 0 {
|
|
dst = t.eventsUpDown
|
|
}
|
|
select {
|
|
case <-t.closed:
|
|
return
|
|
case dst <- event:
|
|
}
|
|
}
|
|
}
|
|
|
|
// EventsUpDown returns a TUN event channel that contains all Up and Down events.
|
|
func (t *Wrapper) EventsUpDown() chan tun.Event {
|
|
return t.eventsUpDown
|
|
}
|
|
|
|
// Events returns a TUN event channel that contains all non-Up, non-Down events.
|
|
// It is named Events because it is the set of events that we want to expose to wireguard-go,
|
|
// and Events is the name specified by the wireguard-go tun.Device interface.
|
|
func (t *Wrapper) Events() <-chan tun.Event {
|
|
return t.eventsOther
|
|
}
|
|
|
|
func (t *Wrapper) File() *os.File {
|
|
return t.tdev.File()
|
|
}
|
|
|
|
func (t *Wrapper) MTU() (int, error) {
|
|
return t.tdev.MTU()
|
|
}
|
|
|
|
func (t *Wrapper) Name() (string, error) {
|
|
return t.tdev.Name()
|
|
}
|
|
|
|
const ethernetFrameSize = 14 // 2 six byte MACs, 2 bytes ethertype
|
|
|
|
// pollVector polls t.tdev.Read(), placing the oldest unconsumed packet vector
|
|
// into t.vectorBuffer. This is needed because t.tdev.Read() in general may
|
|
// block (it does on Windows), so packets may be stuck in t.vectorOutbound if
|
|
// t.Read() called t.tdev.Read() directly.
|
|
func (t *Wrapper) pollVector() {
|
|
sizes := make([]int, len(t.vectorBuffer))
|
|
readOffset := PacketStartOffset
|
|
if t.isTAP {
|
|
readOffset = PacketStartOffset - ethernetFrameSize
|
|
}
|
|
|
|
for range t.bufferConsumed {
|
|
DoRead:
|
|
for i := range t.vectorBuffer {
|
|
t.vectorBuffer[i] = t.vectorBuffer[i][:cap(t.vectorBuffer[i])]
|
|
}
|
|
var n int
|
|
var err error
|
|
for n == 0 && err == nil {
|
|
if t.isClosed() {
|
|
return
|
|
}
|
|
n, err = t.tdev.Read(t.vectorBuffer[:], sizes, readOffset)
|
|
if t.isTAP && tapDebug {
|
|
s := fmt.Sprintf("% x", t.vectorBuffer[0][:])
|
|
for strings.HasSuffix(s, " 00") {
|
|
s = strings.TrimSuffix(s, " 00")
|
|
}
|
|
t.logf("TAP read %v, %v: %s", n, err, s)
|
|
}
|
|
}
|
|
for i := range sizes[:n] {
|
|
t.vectorBuffer[i] = t.vectorBuffer[i][:readOffset+sizes[i]]
|
|
}
|
|
if t.isTAP {
|
|
if err == nil {
|
|
ethernetFrame := t.vectorBuffer[0][readOffset:]
|
|
if t.handleTAPFrame(ethernetFrame) {
|
|
goto DoRead
|
|
}
|
|
}
|
|
// Fall through. We got an IP packet.
|
|
if sizes[0] >= ethernetFrameSize {
|
|
t.vectorBuffer[0] = t.vectorBuffer[0][:readOffset+sizes[0]-ethernetFrameSize]
|
|
}
|
|
if tapDebug {
|
|
t.logf("tap regular frame: %x", t.vectorBuffer[0][PacketStartOffset:PacketStartOffset+sizes[0]])
|
|
}
|
|
}
|
|
t.sendVectorOutbound(tunVectorReadResult{
|
|
data: t.vectorBuffer[:n],
|
|
dataOffset: PacketStartOffset,
|
|
err: err,
|
|
})
|
|
}
|
|
}
|
|
|
|
// sendBufferConsumed does t.bufferConsumed <- struct{}{}.
|
|
func (t *Wrapper) sendBufferConsumed() {
|
|
t.bufferConsumedMu.Lock()
|
|
defer t.bufferConsumedMu.Unlock()
|
|
if t.bufferConsumedClosed {
|
|
return
|
|
}
|
|
t.bufferConsumed <- struct{}{}
|
|
}
|
|
|
|
// injectOutbound does t.vectorOutbound <- r
|
|
func (t *Wrapper) injectOutbound(r tunInjectedRead) {
|
|
t.outboundMu.Lock()
|
|
defer t.outboundMu.Unlock()
|
|
if t.outboundClosed {
|
|
return
|
|
}
|
|
t.vectorOutbound <- tunVectorReadResult{
|
|
injected: r,
|
|
}
|
|
}
|
|
|
|
// sendVectorOutbound does t.vectorOutbound <- r.
|
|
func (t *Wrapper) sendVectorOutbound(r tunVectorReadResult) {
|
|
t.outboundMu.Lock()
|
|
defer t.outboundMu.Unlock()
|
|
if t.outboundClosed {
|
|
return
|
|
}
|
|
t.vectorOutbound <- r
|
|
}
|
|
|
|
// snat does SNAT on p if the destination address requires a different source address.
|
|
func (pc *peerConfigTable) snat(p *packet.Parsed) {
|
|
oldSrc := p.Src.Addr()
|
|
newSrc := pc.selectSrcIP(oldSrc, p.Dst.Addr())
|
|
if oldSrc != newSrc {
|
|
checksum.UpdateSrcAddr(p, newSrc)
|
|
}
|
|
}
|
|
|
|
// dnat does destination NAT on p.
|
|
func (pc *peerConfigTable) dnat(p *packet.Parsed) {
|
|
oldDst := p.Dst.Addr()
|
|
newDst := pc.mapDstIP(p.Src.Addr(), oldDst)
|
|
if newDst != oldDst {
|
|
checksum.UpdateDstAddr(p, newDst)
|
|
}
|
|
}
|
|
|
|
// findV4 returns the first Tailscale IPv4 address in addrs.
|
|
func findV4(addrs []netip.Prefix) netip.Addr {
|
|
for _, ap := range addrs {
|
|
a := ap.Addr()
|
|
if a.Is4() && tsaddr.IsTailscaleIP(a) {
|
|
return a
|
|
}
|
|
}
|
|
return netip.Addr{}
|
|
}
|
|
|
|
// findV6 returns the first Tailscale IPv6 address in addrs.
|
|
func findV6(addrs []netip.Prefix) netip.Addr {
|
|
for _, ap := range addrs {
|
|
a := ap.Addr()
|
|
if a.Is6() && tsaddr.IsTailscaleIP(a) {
|
|
return a
|
|
}
|
|
}
|
|
return netip.Addr{}
|
|
}
|
|
|
|
// peerConfigTable contains configuration for individual peers and related
|
|
// information necessary to perform peer-specific operations. It should be
|
|
// treated as immutable.
|
|
//
|
|
// The nil value is a valid configuration.
|
|
type peerConfigTable struct {
|
|
// nativeAddr4 and nativeAddr6 are the IPv4/IPv6 Tailscale Addresses of
|
|
// the current node.
|
|
//
|
|
// These are implicitly used as the address to rewrite to in the DNAT
|
|
// path (as configured by listenAddrs, below). The IPv4 address will be
|
|
// used if the inbound packet is IPv4, and the IPv6 address if the
|
|
// inbound packet is IPv6.
|
|
nativeAddr4, nativeAddr6 netip.Addr
|
|
|
|
// byIP contains configuration for each peer, indexed by a peer's IP
|
|
// address(es).
|
|
byIP bart.Table[*peerConfig]
|
|
|
|
// masqAddrCounts is a count of peers by MasqueradeAsIP.
|
|
// TODO? for logging
|
|
masqAddrCounts map[netip.Addr]int
|
|
}
|
|
|
|
// peerConfig is the configuration for a single peer.
|
|
type peerConfig struct {
|
|
// dstMasqAddr{4,6} are the addresses that should be used as the
|
|
// source address when masquerading packets to this peer (i.e.
|
|
// SNAT). If an address is not valid, the packet should not be
|
|
// masqueraded for that address family.
|
|
dstMasqAddr4 netip.Addr
|
|
dstMasqAddr6 netip.Addr
|
|
|
|
// jailed is whether this peer is "jailed" (i.e. is restricted from being
|
|
// able to initiate connections to this node). This is the case for shared
|
|
// nodes.
|
|
jailed bool
|
|
}
|
|
|
|
func (c *peerConfigTable) String() string {
|
|
if c == nil {
|
|
return "peerConfigTable(nil)"
|
|
}
|
|
var b strings.Builder
|
|
b.WriteString("peerConfigTable{")
|
|
fmt.Fprintf(&b, "nativeAddr4: %v, ", c.nativeAddr4)
|
|
fmt.Fprintf(&b, "nativeAddr6: %v, ", c.nativeAddr6)
|
|
|
|
// TODO: figure out how to iterate/debug/print c.byIP
|
|
|
|
b.WriteString("}")
|
|
|
|
return b.String()
|
|
}
|
|
|
|
func (c *peerConfig) String() string {
|
|
if c == nil {
|
|
return "peerConfig(nil)"
|
|
}
|
|
var b strings.Builder
|
|
b.WriteString("peerConfig{")
|
|
fmt.Fprintf(&b, "dstMasqAddr4: %v, ", c.dstMasqAddr4)
|
|
fmt.Fprintf(&b, "dstMasqAddr6: %v, ", c.dstMasqAddr6)
|
|
fmt.Fprintf(&b, "jailed: %v}", c.jailed)
|
|
|
|
return b.String()
|
|
}
|
|
|
|
// mapDstIP returns the destination IP to use for a packet to dst.
|
|
// If dst is not one of the listen addresses, it is returned as-is,
|
|
// otherwise the native address is returned.
|
|
func (pc *peerConfigTable) mapDstIP(src, oldDst netip.Addr) netip.Addr {
|
|
if pc == nil {
|
|
return oldDst
|
|
}
|
|
|
|
// The packet we're processing is inbound from WireGuard, received from
|
|
// a peer. The 'src' of the packet is the remote peer's IP address,
|
|
// possibly the masqueraded address (if the peer is shared/etc.).
|
|
//
|
|
// The 'dst' of the packet is the address for this local node. It could
|
|
// be a masquerade address that we told other nodes to use, or one of
|
|
// our local node's Addresses.
|
|
c, ok := pc.byIP.Lookup(src)
|
|
if !ok {
|
|
return oldDst
|
|
}
|
|
|
|
if oldDst.Is4() && pc.nativeAddr4.IsValid() && c.dstMasqAddr4 == oldDst {
|
|
return pc.nativeAddr4
|
|
}
|
|
if oldDst.Is6() && pc.nativeAddr6.IsValid() && c.dstMasqAddr6 == oldDst {
|
|
return pc.nativeAddr6
|
|
}
|
|
return oldDst
|
|
}
|
|
|
|
// selectSrcIP returns the source IP to use for a packet to dst.
|
|
// If the packet is not from the native address, it is returned as-is.
|
|
func (pc *peerConfigTable) selectSrcIP(oldSrc, dst netip.Addr) netip.Addr {
|
|
if pc == nil {
|
|
return oldSrc
|
|
}
|
|
|
|
// If this packet doesn't originate from this Tailscale node, don't
|
|
// SNAT it (e.g. if we're a subnet router).
|
|
if oldSrc.Is4() && oldSrc != pc.nativeAddr4 {
|
|
return oldSrc
|
|
}
|
|
if oldSrc.Is6() && oldSrc != pc.nativeAddr6 {
|
|
return oldSrc
|
|
}
|
|
|
|
// Look up the configuration for the destination
|
|
c, ok := pc.byIP.Lookup(dst)
|
|
if !ok {
|
|
return oldSrc
|
|
}
|
|
|
|
// Perform SNAT based on the address family and whether we have a valid
|
|
// addr.
|
|
if oldSrc.Is4() && c.dstMasqAddr4.IsValid() {
|
|
return c.dstMasqAddr4
|
|
}
|
|
if oldSrc.Is6() && c.dstMasqAddr6.IsValid() {
|
|
return c.dstMasqAddr6
|
|
}
|
|
|
|
// No SNAT; use old src
|
|
return oldSrc
|
|
}
|
|
|
|
// peerConfigTableFromWGConfig generates a peerConfigTable from nm. If NAT is
|
|
// not required, and no additional configuration is present, it returns nil.
|
|
func peerConfigTableFromWGConfig(wcfg *wgcfg.Config) *peerConfigTable {
|
|
if wcfg == nil {
|
|
return nil
|
|
}
|
|
|
|
nativeAddr4 := findV4(wcfg.Addresses)
|
|
nativeAddr6 := findV6(wcfg.Addresses)
|
|
if !nativeAddr4.IsValid() && !nativeAddr6.IsValid() {
|
|
return nil
|
|
}
|
|
|
|
ret := &peerConfigTable{
|
|
nativeAddr4: nativeAddr4,
|
|
nativeAddr6: nativeAddr6,
|
|
masqAddrCounts: make(map[netip.Addr]int),
|
|
}
|
|
|
|
// When using an exit node that requires masquerading, we need to
|
|
// fill out the routing table with all peers not just the ones that
|
|
// require masquerading.
|
|
exitNodeRequiresMasq := false // true if using an exit node and it requires masquerading
|
|
for _, p := range wcfg.Peers {
|
|
isExitNode := slices.Contains(p.AllowedIPs, tsaddr.AllIPv4()) || slices.Contains(p.AllowedIPs, tsaddr.AllIPv6())
|
|
if isExitNode {
|
|
hasMasqAddr := false ||
|
|
(p.V4MasqAddr != nil && p.V4MasqAddr.IsValid()) ||
|
|
(p.V6MasqAddr != nil && p.V6MasqAddr.IsValid())
|
|
if hasMasqAddr {
|
|
exitNodeRequiresMasq = true
|
|
}
|
|
break
|
|
}
|
|
}
|
|
|
|
byIPSize := 0
|
|
for i := range wcfg.Peers {
|
|
p := &wcfg.Peers[i]
|
|
|
|
// Build a routing table that configures DNAT (i.e. changing
|
|
// the V4MasqAddr/V6MasqAddr for a given peer to the current
|
|
// peer's v4/v6 IP).
|
|
var addrToUse4, addrToUse6 netip.Addr
|
|
if p.V4MasqAddr != nil && p.V4MasqAddr.IsValid() {
|
|
addrToUse4 = *p.V4MasqAddr
|
|
ret.masqAddrCounts[addrToUse4]++
|
|
}
|
|
if p.V6MasqAddr != nil && p.V6MasqAddr.IsValid() {
|
|
addrToUse6 = *p.V6MasqAddr
|
|
ret.masqAddrCounts[addrToUse6]++
|
|
}
|
|
|
|
// If the exit node requires masquerading, set the masquerade
|
|
// addresses to our native addresses.
|
|
if exitNodeRequiresMasq {
|
|
if !addrToUse4.IsValid() && nativeAddr4.IsValid() {
|
|
addrToUse4 = nativeAddr4
|
|
}
|
|
if !addrToUse6.IsValid() && nativeAddr6.IsValid() {
|
|
addrToUse6 = nativeAddr6
|
|
}
|
|
}
|
|
|
|
if !addrToUse4.IsValid() && !addrToUse6.IsValid() && !p.IsJailed {
|
|
// NAT not required for this peer.
|
|
continue
|
|
}
|
|
|
|
// Use the same peer configuration for each address of the peer.
|
|
pc := &peerConfig{
|
|
dstMasqAddr4: addrToUse4,
|
|
dstMasqAddr6: addrToUse6,
|
|
jailed: p.IsJailed,
|
|
}
|
|
|
|
// Insert an entry into our routing table for each allowed IP.
|
|
for _, ip := range p.AllowedIPs {
|
|
ret.byIP.Insert(ip, pc)
|
|
byIPSize++
|
|
}
|
|
}
|
|
if byIPSize == 0 && len(ret.masqAddrCounts) == 0 {
|
|
return nil
|
|
}
|
|
return ret
|
|
}
|
|
|
|
func (pc *peerConfigTable) inboundPacketIsJailed(p *packet.Parsed) bool {
|
|
if pc == nil {
|
|
return false
|
|
}
|
|
c, ok := pc.byIP.Lookup(p.Src.Addr())
|
|
if !ok {
|
|
return false
|
|
}
|
|
return c.jailed
|
|
}
|
|
|
|
func (pc *peerConfigTable) outboundPacketIsJailed(p *packet.Parsed) bool {
|
|
if pc == nil {
|
|
return false
|
|
}
|
|
c, ok := pc.byIP.Lookup(p.Dst.Addr())
|
|
if !ok {
|
|
return false
|
|
}
|
|
return c.jailed
|
|
}
|
|
|
|
// SetWGConfig is called when a new NetworkMap is received.
|
|
func (t *Wrapper) SetWGConfig(wcfg *wgcfg.Config) {
|
|
cfg := peerConfigTableFromWGConfig(wcfg)
|
|
|
|
old := t.peerConfig.Swap(cfg)
|
|
if !reflect.DeepEqual(old, cfg) {
|
|
t.logf("peer config: %v", cfg)
|
|
}
|
|
}
|
|
|
|
var (
|
|
magicDNSIPPort = netip.AddrPortFrom(tsaddr.TailscaleServiceIP(), 0) // 100.100.100.100:0
|
|
magicDNSIPPortv6 = netip.AddrPortFrom(tsaddr.TailscaleServiceIPv6(), 0)
|
|
)
|
|
|
|
func (t *Wrapper) filterPacketOutboundToWireGuard(p *packet.Parsed, pc *peerConfigTable, gro *gro.GRO) (filter.Response, *gro.GRO) {
|
|
// Fake ICMP echo responses to MagicDNS (100.100.100.100).
|
|
if p.IsEchoRequest() {
|
|
switch p.Dst {
|
|
case magicDNSIPPort:
|
|
header := p.ICMP4Header()
|
|
header.ToResponse()
|
|
outp := packet.Generate(&header, p.Payload())
|
|
t.InjectInboundCopy(outp)
|
|
return filter.DropSilently, gro // don't pass on to OS; already handled
|
|
case magicDNSIPPortv6:
|
|
header := p.ICMP6Header()
|
|
header.ToResponse()
|
|
outp := packet.Generate(&header, p.Payload())
|
|
t.InjectInboundCopy(outp)
|
|
return filter.DropSilently, gro // don't pass on to OS; already handled
|
|
}
|
|
}
|
|
|
|
// Issue 1526 workaround: if we sent disco packets over
|
|
// Tailscale from ourselves, then drop them, as that shouldn't
|
|
// happen unless a networking stack is confused, as it seems
|
|
// macOS in Network Extension mode might be.
|
|
if p.IPProto == ipproto.UDP && // disco is over UDP; avoid isSelfDisco call for TCP/etc
|
|
t.isSelfDisco(p) {
|
|
t.limitedLogf("[unexpected] received self disco out packet over tstun; dropping")
|
|
metricPacketOutDropSelfDisco.Add(1)
|
|
return filter.DropSilently, gro
|
|
}
|
|
|
|
if t.PreFilterPacketOutboundToWireGuardNetstackIntercept != nil {
|
|
var res filter.Response
|
|
res, gro = t.PreFilterPacketOutboundToWireGuardNetstackIntercept(p, t, gro)
|
|
if res.IsDrop() {
|
|
// Handled by netstack.Impl.handleLocalPackets (quad-100 DNS primarily)
|
|
return res, gro
|
|
}
|
|
}
|
|
if t.PreFilterPacketOutboundToWireGuardEngineIntercept != nil {
|
|
if res := t.PreFilterPacketOutboundToWireGuardEngineIntercept(p, t); res.IsDrop() {
|
|
// Handled by userspaceEngine.handleLocalPackets (primarily handles
|
|
// quad-100 if netstack is not installed).
|
|
return res, gro
|
|
}
|
|
}
|
|
|
|
// If the outbound packet is to a jailed peer, use our jailed peer
|
|
// packet filter.
|
|
var filt *filter.Filter
|
|
if pc.outboundPacketIsJailed(p) {
|
|
filt = t.jailedFilter.Load()
|
|
} else {
|
|
filt = t.filter.Load()
|
|
}
|
|
if filt == nil {
|
|
return filter.Drop, gro
|
|
}
|
|
|
|
if filt.RunOut(p, t.filterFlags) != filter.Accept {
|
|
metricPacketOutDropFilter.Add(1)
|
|
t.metrics.outboundDroppedPacketsTotal.Add(dropPacketLabel{
|
|
Reason: DropReasonACL,
|
|
}, 1)
|
|
return filter.Drop, gro
|
|
}
|
|
|
|
if t.PostFilterPacketOutboundToWireGuard != nil {
|
|
if res := t.PostFilterPacketOutboundToWireGuard(p, t); res.IsDrop() {
|
|
return res, gro
|
|
}
|
|
}
|
|
return filter.Accept, gro
|
|
}
|
|
|
|
// noteActivity records that there was a read or write at the current time.
|
|
func (t *Wrapper) noteActivity() {
|
|
t.lastActivityAtomic.StoreAtomic(mono.Now())
|
|
}
|
|
|
|
// IdleDuration reports how long it's been since the last read or write to this device.
|
|
//
|
|
// Its value should only be presumed accurate to roughly 10ms granularity.
|
|
// If there's never been activity, the duration is since the wrapper was created.
|
|
func (t *Wrapper) IdleDuration() time.Duration {
|
|
return mono.Since(t.lastActivityAtomic.LoadAtomic())
|
|
}
|
|
|
|
func (t *Wrapper) Read(buffs [][]byte, sizes []int, offset int) (int, error) {
|
|
if !t.started.Load() {
|
|
<-t.startCh
|
|
}
|
|
// packet from OS read and sent to WG
|
|
res, ok := <-t.vectorOutbound
|
|
if !ok {
|
|
return 0, io.EOF
|
|
}
|
|
if res.err != nil && len(res.data) == 0 {
|
|
return 0, res.err
|
|
}
|
|
if res.data == nil {
|
|
return t.injectedRead(res.injected, buffs, sizes, offset)
|
|
}
|
|
|
|
metricPacketOut.Add(int64(len(res.data)))
|
|
|
|
var buffsPos int
|
|
p := parsedPacketPool.Get().(*packet.Parsed)
|
|
defer parsedPacketPool.Put(p)
|
|
captHook := t.captureHook.Load()
|
|
pc := t.peerConfig.Load()
|
|
var buffsGRO *gro.GRO
|
|
for _, data := range res.data {
|
|
p.Decode(data[res.dataOffset:])
|
|
|
|
if m := t.destIPActivity.Load(); m != nil {
|
|
if fn := m[p.Dst.Addr()]; fn != nil {
|
|
fn()
|
|
}
|
|
}
|
|
if captHook != nil {
|
|
captHook(capture.FromLocal, t.now(), p.Buffer(), p.CaptureMeta)
|
|
}
|
|
if !t.disableFilter {
|
|
var response filter.Response
|
|
response, buffsGRO = t.filterPacketOutboundToWireGuard(p, pc, buffsGRO)
|
|
if response != filter.Accept {
|
|
metricPacketOutDrop.Add(1)
|
|
continue
|
|
}
|
|
}
|
|
|
|
// Make sure to do SNAT after filtering, so that any flow tracking in
|
|
// the filter sees the original source address. See #12133.
|
|
pc.snat(p)
|
|
n := copy(buffs[buffsPos][offset:], p.Buffer())
|
|
if n != len(data)-res.dataOffset {
|
|
panic(fmt.Sprintf("short copy: %d != %d", n, len(data)-res.dataOffset))
|
|
}
|
|
sizes[buffsPos] = n
|
|
if stats := t.stats.Load(); stats != nil {
|
|
stats.UpdateTxVirtual(p.Buffer())
|
|
}
|
|
buffsPos++
|
|
}
|
|
if buffsGRO != nil {
|
|
buffsGRO.Flush()
|
|
}
|
|
|
|
// t.vectorBuffer has a fixed location in memory.
|
|
// TODO(raggi): add an explicit field and possibly method to the tunVectorReadResult
|
|
// to signal when sendBufferConsumed should be called.
|
|
if &res.data[0] == &t.vectorBuffer[0] {
|
|
// We are done with t.buffer. Let poll() re-use it.
|
|
t.sendBufferConsumed()
|
|
}
|
|
|
|
t.noteActivity()
|
|
return buffsPos, res.err
|
|
}
|
|
|
|
const (
|
|
minTCPHeaderSize = 20
|
|
)
|
|
|
|
func stackGSOToTunGSO(pkt []byte, gso stack.GSO) (tun.GSOOptions, error) {
|
|
options := tun.GSOOptions{
|
|
CsumStart: gso.L3HdrLen,
|
|
CsumOffset: gso.CsumOffset,
|
|
GSOSize: gso.MSS,
|
|
NeedsCsum: gso.NeedsCsum,
|
|
}
|
|
switch gso.Type {
|
|
case stack.GSONone:
|
|
options.GSOType = tun.GSONone
|
|
return options, nil
|
|
case stack.GSOTCPv4:
|
|
options.GSOType = tun.GSOTCPv4
|
|
case stack.GSOTCPv6:
|
|
options.GSOType = tun.GSOTCPv6
|
|
default:
|
|
return tun.GSOOptions{}, fmt.Errorf("unsupported gVisor GSOType: %v", gso.Type)
|
|
}
|
|
// options.HdrLen is both layer 3 and 4 together, whereas gVisor only
|
|
// gives us layer 3 length. We have to gather TCP header length
|
|
// ourselves.
|
|
if len(pkt) < int(gso.L3HdrLen)+minTCPHeaderSize {
|
|
return tun.GSOOptions{}, errors.New("gVisor GSOTCP packet length too short")
|
|
}
|
|
tcphLen := uint16(pkt[int(gso.L3HdrLen)+12] >> 4 * 4)
|
|
options.HdrLen = gso.L3HdrLen + tcphLen
|
|
return options, nil
|
|
}
|
|
|
|
// invertGSOChecksum inverts the transport layer checksum in pkt if gVisor
|
|
// handed us a segment with a partial checksum. A partial checksum is not a
|
|
// ones' complement of the sum, and incremental checksum updating is not yet
|
|
// partial checksum aware. This may be called twice for a single packet,
|
|
// both before and after partial checksum updates where later checksum
|
|
// offloading still expects a partial checksum.
|
|
// TODO(jwhited): plumb partial checksum awareness into net/packet/checksum.
|
|
func invertGSOChecksum(pkt []byte, gso stack.GSO) {
|
|
if gso.NeedsCsum != true {
|
|
return
|
|
}
|
|
at := int(gso.L3HdrLen + gso.CsumOffset)
|
|
if at+1 > len(pkt)-1 {
|
|
return
|
|
}
|
|
pkt[at] = ^pkt[at]
|
|
pkt[at+1] = ^pkt[at+1]
|
|
}
|
|
|
|
// injectedRead handles injected reads, which bypass filters.
|
|
func (t *Wrapper) injectedRead(res tunInjectedRead, outBuffs [][]byte, sizes []int, offset int) (n int, err error) {
|
|
var gso stack.GSO
|
|
|
|
pkt := outBuffs[0][offset:]
|
|
if res.packet != nil {
|
|
bufN := copy(pkt, res.packet.NetworkHeader().Slice())
|
|
bufN += copy(pkt[bufN:], res.packet.TransportHeader().Slice())
|
|
bufN += copy(pkt[bufN:], res.packet.Data().AsRange().ToSlice())
|
|
gso = res.packet.GSOOptions
|
|
pkt = pkt[:bufN]
|
|
defer res.packet.DecRef() // defer DecRef so we may continue to reference it
|
|
} else {
|
|
sizes[0] = copy(pkt, res.data)
|
|
pkt = pkt[:sizes[0]]
|
|
n = 1
|
|
}
|
|
|
|
pc := t.peerConfig.Load()
|
|
|
|
p := parsedPacketPool.Get().(*packet.Parsed)
|
|
defer parsedPacketPool.Put(p)
|
|
p.Decode(pkt)
|
|
|
|
invertGSOChecksum(pkt, gso)
|
|
pc.snat(p)
|
|
invertGSOChecksum(pkt, gso)
|
|
|
|
if m := t.destIPActivity.Load(); m != nil {
|
|
if fn := m[p.Dst.Addr()]; fn != nil {
|
|
fn()
|
|
}
|
|
}
|
|
|
|
if res.packet != nil {
|
|
var gsoOptions tun.GSOOptions
|
|
gsoOptions, err = stackGSOToTunGSO(pkt, gso)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
n, err = tun.GSOSplit(pkt, gsoOptions, outBuffs, sizes, offset)
|
|
}
|
|
|
|
if stats := t.stats.Load(); stats != nil {
|
|
for i := 0; i < n; i++ {
|
|
stats.UpdateTxVirtual(outBuffs[i][offset : offset+sizes[i]])
|
|
}
|
|
}
|
|
|
|
t.noteActivity()
|
|
metricPacketOut.Add(int64(n))
|
|
return n, err
|
|
}
|
|
|
|
func (t *Wrapper) filterPacketInboundFromWireGuard(p *packet.Parsed, captHook capture.Callback, pc *peerConfigTable, gro *gro.GRO) (filter.Response, *gro.GRO) {
|
|
if captHook != nil {
|
|
captHook(capture.FromPeer, t.now(), p.Buffer(), p.CaptureMeta)
|
|
}
|
|
|
|
if p.IPProto == ipproto.TSMP {
|
|
if pingReq, ok := p.AsTSMPPing(); ok {
|
|
t.noteActivity()
|
|
t.injectOutboundPong(p, pingReq)
|
|
return filter.DropSilently, gro
|
|
} else if data, ok := p.AsTSMPPong(); ok {
|
|
if f := t.OnTSMPPongReceived; f != nil {
|
|
f(data)
|
|
}
|
|
}
|
|
}
|
|
|
|
if p.IsEchoResponse() {
|
|
if f := t.OnICMPEchoResponseReceived; f != nil && f(p) {
|
|
// Note: this looks dropped in metrics, even though it was
|
|
// handled internally.
|
|
return filter.DropSilently, gro
|
|
}
|
|
}
|
|
|
|
// Issue 1526 workaround: if we see disco packets over
|
|
// Tailscale from ourselves, then drop them, as that shouldn't
|
|
// happen unless a networking stack is confused, as it seems
|
|
// macOS in Network Extension mode might be.
|
|
if p.IPProto == ipproto.UDP && // disco is over UDP; avoid isSelfDisco call for TCP/etc
|
|
t.isSelfDisco(p) {
|
|
t.limitedLogf("[unexpected] received self disco in packet over tstun; dropping")
|
|
metricPacketInDropSelfDisco.Add(1)
|
|
return filter.DropSilently, gro
|
|
}
|
|
|
|
if t.PreFilterPacketInboundFromWireGuard != nil {
|
|
if res := t.PreFilterPacketInboundFromWireGuard(p, t); res.IsDrop() {
|
|
return res, gro
|
|
}
|
|
}
|
|
|
|
var filt *filter.Filter
|
|
if pc.inboundPacketIsJailed(p) {
|
|
filt = t.jailedFilter.Load()
|
|
} else {
|
|
filt = t.filter.Load()
|
|
}
|
|
if filt == nil {
|
|
return filter.Drop, gro
|
|
}
|
|
outcome := filt.RunIn(p, t.filterFlags)
|
|
|
|
// Let peerapi through the filter; its ACLs are handled at L7,
|
|
// not at the packet level.
|
|
if outcome != filter.Accept &&
|
|
p.IPProto == ipproto.TCP &&
|
|
p.TCPFlags&packet.TCPSyn != 0 &&
|
|
t.PeerAPIPort != nil {
|
|
if port, ok := t.PeerAPIPort(p.Dst.Addr()); ok && port == p.Dst.Port() {
|
|
outcome = filter.Accept
|
|
}
|
|
}
|
|
|
|
if outcome != filter.Accept {
|
|
metricPacketInDropFilter.Add(1)
|
|
t.metrics.inboundDroppedPacketsTotal.Add(dropPacketLabel{
|
|
Reason: DropReasonACL,
|
|
}, 1)
|
|
|
|
// Tell them, via TSMP, we're dropping them due to the ACL.
|
|
// Their host networking stack can translate this into ICMP
|
|
// or whatnot as required. But notably, their GUI or tailscale CLI
|
|
// can show them a rejection history with reasons.
|
|
if p.IPVersion == 4 && p.IPProto == ipproto.TCP && p.TCPFlags&packet.TCPSyn != 0 && !t.disableTSMPRejected {
|
|
rj := packet.TailscaleRejectedHeader{
|
|
IPSrc: p.Dst.Addr(),
|
|
IPDst: p.Src.Addr(),
|
|
Src: p.Src,
|
|
Dst: p.Dst,
|
|
Proto: p.IPProto,
|
|
Reason: packet.RejectedDueToACLs,
|
|
}
|
|
if filt.ShieldsUp() {
|
|
rj.Reason = packet.RejectedDueToShieldsUp
|
|
}
|
|
pkt := packet.Generate(rj, nil)
|
|
t.InjectOutbound(pkt)
|
|
|
|
// TODO(bradfitz): also send a TCP RST, after the TSMP message.
|
|
}
|
|
|
|
return filter.Drop, gro
|
|
}
|
|
|
|
if t.PostFilterPacketInboundFromWireGuard != nil {
|
|
var res filter.Response
|
|
res, gro = t.PostFilterPacketInboundFromWireGuard(p, t, gro)
|
|
if res.IsDrop() {
|
|
return res, gro
|
|
}
|
|
}
|
|
|
|
return filter.Accept, gro
|
|
}
|
|
|
|
// Write accepts incoming packets. The packets begin at buffs[:][offset:],
|
|
// like wireguard-go/tun.Device.Write. Write is called per-peer via
|
|
// wireguard-go/device.Peer.RoutineSequentialReceiver, so it MUST be
|
|
// thread-safe.
|
|
func (t *Wrapper) Write(buffs [][]byte, offset int) (int, error) {
|
|
metricPacketIn.Add(int64(len(buffs)))
|
|
i := 0
|
|
p := parsedPacketPool.Get().(*packet.Parsed)
|
|
defer parsedPacketPool.Put(p)
|
|
captHook := t.captureHook.Load()
|
|
pc := t.peerConfig.Load()
|
|
var buffsGRO *gro.GRO
|
|
for _, buff := range buffs {
|
|
p.Decode(buff[offset:])
|
|
pc.dnat(p)
|
|
if !t.disableFilter {
|
|
var res filter.Response
|
|
// TODO(jwhited): name and document this filter code path
|
|
// appropriately. It is not only responsible for filtering, it
|
|
// also routes packets towards gVisor/netstack.
|
|
res, buffsGRO = t.filterPacketInboundFromWireGuard(p, captHook, pc, buffsGRO)
|
|
if res != filter.Accept {
|
|
metricPacketInDrop.Add(1)
|
|
} else {
|
|
buffs[i] = buff
|
|
i++
|
|
}
|
|
}
|
|
}
|
|
if buffsGRO != nil {
|
|
buffsGRO.Flush()
|
|
}
|
|
if t.disableFilter {
|
|
i = len(buffs)
|
|
}
|
|
buffs = buffs[:i]
|
|
|
|
if len(buffs) > 0 {
|
|
t.noteActivity()
|
|
_, err := t.tdevWrite(buffs, offset)
|
|
if err != nil {
|
|
t.metrics.inboundDroppedPacketsTotal.Add(dropPacketLabel{
|
|
Reason: DropReasonError,
|
|
}, int64(len(buffs)))
|
|
}
|
|
return len(buffs), err
|
|
}
|
|
return 0, nil
|
|
}
|
|
|
|
func (t *Wrapper) tdevWrite(buffs [][]byte, offset int) (int, error) {
|
|
if stats := t.stats.Load(); stats != nil {
|
|
for i := range buffs {
|
|
stats.UpdateRxVirtual((buffs)[i][offset:])
|
|
}
|
|
}
|
|
return t.tdev.Write(buffs, offset)
|
|
}
|
|
|
|
func (t *Wrapper) GetFilter() *filter.Filter {
|
|
return t.filter.Load()
|
|
}
|
|
|
|
func (t *Wrapper) SetFilter(filt *filter.Filter) {
|
|
t.filter.Store(filt)
|
|
}
|
|
|
|
func (t *Wrapper) GetJailedFilter() *filter.Filter {
|
|
return t.jailedFilter.Load()
|
|
}
|
|
|
|
func (t *Wrapper) SetJailedFilter(filt *filter.Filter) {
|
|
t.jailedFilter.Store(filt)
|
|
}
|
|
|
|
// InjectInboundPacketBuffer makes the Wrapper device behave as if a packet
|
|
// (pkt) with the given contents was received from the network.
|
|
// It takes ownership of one reference count on pkt. The injected
|
|
// packet will not pass through inbound filters.
|
|
//
|
|
// pkt will be copied into buffs before writing to the underlying tun.Device.
|
|
// Therefore, callers must allocate and pass a buffs slice that is sized
|
|
// appropriately for holding pkt.Size() + PacketStartOffset as a single
|
|
// element (buffs[0]) and split across multiple elements if the originating
|
|
// stack supports GSO. sizes must be sized with similar consideration,
|
|
// len(buffs) should be equal to len(sizes). If any len(buffs[<index>]) was
|
|
// mutated by InjectInboundPacketBuffer it will be reset to cap(buffs[<index>])
|
|
// before returning.
|
|
//
|
|
// This path is typically used to deliver synthesized packets to the
|
|
// host networking stack.
|
|
func (t *Wrapper) InjectInboundPacketBuffer(pkt *stack.PacketBuffer, buffs [][]byte, sizes []int) error {
|
|
buf := buffs[0][PacketStartOffset:]
|
|
|
|
bufN := copy(buf, pkt.NetworkHeader().Slice())
|
|
bufN += copy(buf[bufN:], pkt.TransportHeader().Slice())
|
|
bufN += copy(buf[bufN:], pkt.Data().AsRange().ToSlice())
|
|
if bufN != pkt.Size() {
|
|
panic("unexpected packet size after copy")
|
|
}
|
|
buf = buf[:bufN]
|
|
defer pkt.DecRef()
|
|
|
|
pc := t.peerConfig.Load()
|
|
|
|
p := parsedPacketPool.Get().(*packet.Parsed)
|
|
defer parsedPacketPool.Put(p)
|
|
p.Decode(buf)
|
|
captHook := t.captureHook.Load()
|
|
if captHook != nil {
|
|
captHook(capture.SynthesizedToLocal, t.now(), p.Buffer(), p.CaptureMeta)
|
|
}
|
|
|
|
invertGSOChecksum(buf, pkt.GSOOptions)
|
|
pc.dnat(p)
|
|
invertGSOChecksum(buf, pkt.GSOOptions)
|
|
|
|
gso, err := stackGSOToTunGSO(buf, pkt.GSOOptions)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// TODO(jwhited): support GSO passthrough to t.tdev. If t.tdev supports
|
|
// GSO we don't need to split here and coalesce inside wireguard-go,
|
|
// we can pass a coalesced segment all the way through.
|
|
n, err := tun.GSOSplit(buf, gso, buffs, sizes, PacketStartOffset)
|
|
if err != nil {
|
|
if errors.Is(err, tun.ErrTooManySegments) {
|
|
t.limitedLogf("InjectInboundPacketBuffer: GSO split overflows buffs")
|
|
} else {
|
|
return err
|
|
}
|
|
}
|
|
for i := 0; i < n; i++ {
|
|
buffs[i] = buffs[i][:PacketStartOffset+sizes[i]]
|
|
}
|
|
defer func() {
|
|
for i := 0; i < n; i++ {
|
|
buffs[i] = buffs[i][:cap(buffs[i])]
|
|
}
|
|
}()
|
|
_, err = t.tdevWrite(buffs[:n], PacketStartOffset)
|
|
return err
|
|
}
|
|
|
|
// InjectInboundDirect makes the Wrapper device behave as if a packet
|
|
// with the given contents was received from the network.
|
|
// It blocks and does not take ownership of the packet.
|
|
// The injected packet will not pass through inbound filters.
|
|
//
|
|
// The packet contents are to start at &buf[offset].
|
|
// offset must be greater or equal to PacketStartOffset.
|
|
// The space before &buf[offset] will be used by WireGuard.
|
|
func (t *Wrapper) InjectInboundDirect(buf []byte, offset int) error {
|
|
if len(buf) > MaxPacketSize {
|
|
return errPacketTooBig
|
|
}
|
|
if len(buf) < offset {
|
|
return errOffsetTooBig
|
|
}
|
|
if offset < PacketStartOffset {
|
|
return errOffsetTooSmall
|
|
}
|
|
|
|
// Write to the underlying device to skip filters.
|
|
_, err := t.tdevWrite([][]byte{buf}, offset) // TODO(jwhited): alloc?
|
|
return err
|
|
}
|
|
|
|
// InjectInboundCopy takes a packet without leading space,
|
|
// reallocates it to conform to the InjectInboundDirect interface
|
|
// and calls InjectInboundDirect on it. Injecting a nil packet is a no-op.
|
|
func (t *Wrapper) InjectInboundCopy(packet []byte) error {
|
|
// We duplicate this check from InjectInboundDirect here
|
|
// to avoid wasting an allocation on an oversized packet.
|
|
if len(packet) > MaxPacketSize {
|
|
return errPacketTooBig
|
|
}
|
|
if len(packet) == 0 {
|
|
return nil
|
|
}
|
|
|
|
buf := make([]byte, PacketStartOffset+len(packet))
|
|
copy(buf[PacketStartOffset:], packet)
|
|
|
|
return t.InjectInboundDirect(buf, PacketStartOffset)
|
|
}
|
|
|
|
func (t *Wrapper) injectOutboundPong(pp *packet.Parsed, req packet.TSMPPingRequest) {
|
|
pong := packet.TSMPPongReply{
|
|
Data: req.Data,
|
|
}
|
|
if t.PeerAPIPort != nil {
|
|
pong.PeerAPIPort, _ = t.PeerAPIPort(pp.Dst.Addr())
|
|
}
|
|
switch pp.IPVersion {
|
|
case 4:
|
|
h4 := pp.IP4Header()
|
|
h4.ToResponse()
|
|
pong.IPHeader = h4
|
|
case 6:
|
|
h6 := pp.IP6Header()
|
|
h6.ToResponse()
|
|
pong.IPHeader = h6
|
|
default:
|
|
return
|
|
}
|
|
|
|
t.InjectOutbound(packet.Generate(pong, nil))
|
|
}
|
|
|
|
// InjectOutbound makes the Wrapper device behave as if a packet
|
|
// with the given contents was sent to the network.
|
|
// It does not block, but takes ownership of the packet.
|
|
// The injected packet will not pass through outbound filters.
|
|
// Injecting an empty packet is a no-op.
|
|
func (t *Wrapper) InjectOutbound(pkt []byte) error {
|
|
if len(pkt) > MaxPacketSize {
|
|
return errPacketTooBig
|
|
}
|
|
if len(pkt) == 0 {
|
|
return nil
|
|
}
|
|
t.injectOutbound(tunInjectedRead{data: pkt})
|
|
return nil
|
|
}
|
|
|
|
// InjectOutboundPacketBuffer logically behaves as InjectOutbound. It takes ownership of one
|
|
// reference count on the packet, and the packet may be mutated. The packet refcount will be
|
|
// decremented after the injected buffer has been read.
|
|
func (t *Wrapper) InjectOutboundPacketBuffer(pkt *stack.PacketBuffer) error {
|
|
size := pkt.Size()
|
|
if size > MaxPacketSize {
|
|
pkt.DecRef()
|
|
return errPacketTooBig
|
|
}
|
|
if size == 0 {
|
|
pkt.DecRef()
|
|
return nil
|
|
}
|
|
if capt := t.captureHook.Load(); capt != nil {
|
|
b := pkt.ToBuffer()
|
|
capt(capture.SynthesizedToPeer, t.now(), b.Flatten(), packet.CaptureMeta{})
|
|
}
|
|
|
|
t.injectOutbound(tunInjectedRead{packet: pkt})
|
|
return nil
|
|
}
|
|
|
|
func (t *Wrapper) BatchSize() int {
|
|
if runtime.GOOS == "linux" {
|
|
// Always setup Linux to handle vectors, even in the very rare case that
|
|
// the underlying t.tdev returns 1. gVisor GSO is always enabled for
|
|
// Linux, and we cannot make a determination on gVisor usage at
|
|
// wireguard-go.Device startup, which is when this value matters for
|
|
// packet memory init.
|
|
return conn.IdealBatchSize
|
|
}
|
|
return t.tdev.BatchSize()
|
|
}
|
|
|
|
// Unwrap returns the underlying tun.Device.
|
|
func (t *Wrapper) Unwrap() tun.Device {
|
|
return t.tdev
|
|
}
|
|
|
|
// SetStatistics specifies a per-connection statistics aggregator.
|
|
// Nil may be specified to disable statistics gathering.
|
|
func (t *Wrapper) SetStatistics(stats *connstats.Statistics) {
|
|
t.stats.Store(stats)
|
|
}
|
|
|
|
var (
|
|
metricPacketIn = clientmetric.NewCounter("tstun_in_from_wg")
|
|
metricPacketInDrop = clientmetric.NewCounter("tstun_in_from_wg_drop")
|
|
metricPacketInDropFilter = clientmetric.NewCounter("tstun_in_from_wg_drop_filter")
|
|
metricPacketInDropSelfDisco = clientmetric.NewCounter("tstun_in_from_wg_drop_self_disco")
|
|
|
|
metricPacketOut = clientmetric.NewCounter("tstun_out_to_wg")
|
|
metricPacketOutDrop = clientmetric.NewCounter("tstun_out_to_wg_drop")
|
|
metricPacketOutDropFilter = clientmetric.NewCounter("tstun_out_to_wg_drop_filter")
|
|
metricPacketOutDropSelfDisco = clientmetric.NewCounter("tstun_out_to_wg_drop_self_disco")
|
|
)
|
|
|
|
type DropReason string
|
|
|
|
const (
|
|
DropReasonACL DropReason = "acl"
|
|
DropReasonError DropReason = "error"
|
|
)
|
|
|
|
type dropPacketLabel struct {
|
|
// Reason indicates what we have done with the packet, and has the following values:
|
|
// - acl (rejected packets because of ACL)
|
|
// - error (rejected packets because of an error)
|
|
Reason DropReason
|
|
}
|
|
|
|
func (t *Wrapper) InstallCaptureHook(cb capture.Callback) {
|
|
t.captureHook.Store(cb)
|
|
}
|