You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tailscale/tka/sig.go

497 lines
16 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package tka
import (
"bytes"
"crypto/ed25519"
"encoding/base64"
"errors"
"fmt"
"strings"
"github.com/fxamacker/cbor/v2"
"github.com/hdevalence/ed25519consensus"
"golang.org/x/crypto/blake2s"
"tailscale.com/types/key"
"tailscale.com/types/logger"
"tailscale.com/types/tkatype"
)
//go:generate go run tailscale.com/cmd/cloner -clonefunc=false -type=NodeKeySignature
// SigKind describes valid NodeKeySignature types.
type SigKind uint8
const (
SigInvalid SigKind = iota
// SigDirect describes a signature over a specific node key, signed
// by a key in the tailnet key authority referenced by the specified keyID.
SigDirect
// SigRotation describes a signature over a specific node key, signed
// by the rotation key authorized by a nested NodeKeySignature structure.
//
// While it is possible to nest rotations multiple times up to the CBOR
// nesting limit, it is intended that nodes simply regenerate their outer
// SigRotation signature and sign it again with their rotation key. That
// way, SigRotation nesting should only be 2 deep in the common case.
SigRotation
// SigCredential describes a signature over a specific public key, signed
// by a key in the tailnet key authority referenced by the specified keyID.
// In effect, SigCredential delegates the ability to make a signature to
// a different public/private key pair.
//
// It is intended that a different public/private key pair be generated
// for each different SigCredential that is created. Implementors must
// take care that the private side is only known to the entity that needs
// to generate the wrapping SigRotation signature, and it is immediately
// discarded after use.
//
// SigCredential is expected to be nested in a SigRotation signature.
SigCredential
)
func (s SigKind) String() string {
switch s {
case SigInvalid:
return "invalid"
case SigDirect:
return "direct"
case SigRotation:
return "rotation"
case SigCredential:
return "credential"
default:
return fmt.Sprintf("Sig?<%d>", int(s))
}
}
// NodeKeySignature encapsulates a signature that authorizes a specific
// node key, based on verification from keys in the tailnet key authority.
type NodeKeySignature struct {
// SigKind identifies the variety of signature.
SigKind SigKind `cbor:"1,keyasint"`
// Pubkey identifies the key.NodePublic which is being authorized.
// SigCredential signatures do not use this field.
Pubkey []byte `cbor:"2,keyasint,omitempty"`
// KeyID identifies which key in the tailnet key authority should
// be used to verify this signature. Only set for SigDirect and
// SigCredential signature kinds.
KeyID []byte `cbor:"3,keyasint,omitempty"`
// Signature is the packed (R, S) ed25519 signature over all other
// fields of the structure.
Signature []byte `cbor:"4,keyasint,omitempty"`
// Nested describes a NodeKeySignature which authorizes the node-key
// used as Pubkey. Only used for SigRotation signatures.
Nested *NodeKeySignature `cbor:"5,keyasint,omitempty"`
// WrappingPubkey specifies the ed25519 public key which must be used
// to sign a Signature which embeds this one.
//
// For SigRotation signatures multiple levels deep, intermediate
// signatures may omit this value, in which case the parent WrappingPubkey
// is used.
//
// SigCredential signatures use this field to specify the public key
// they are certifying, following the usual semanticsfor WrappingPubkey.
WrappingPubkey []byte `cbor:"6,keyasint,omitempty"`
}
// String returns a human-readable representation of the NodeKeySignature,
// making it easy to see nested signatures.
func (s NodeKeySignature) String() string {
var b strings.Builder
var addToBuf func(NodeKeySignature, int)
addToBuf = func(sig NodeKeySignature, depth int) {
indent := strings.Repeat(" ", depth)
b.WriteString(indent + "SigKind: " + sig.SigKind.String() + "\n")
if len(sig.Pubkey) > 0 {
var pubKey string
var np key.NodePublic
if err := np.UnmarshalBinary(sig.Pubkey); err != nil {
pubKey = fmt.Sprintf("<error: %s>", err)
} else {
pubKey = np.ShortString()
}
b.WriteString(indent + "Pubkey: " + pubKey + "\n")
}
if len(sig.KeyID) > 0 {
keyID := key.NLPublicFromEd25519Unsafe(sig.KeyID).CLIString()
b.WriteString(indent + "KeyID: " + keyID + "\n")
}
if len(sig.WrappingPubkey) > 0 {
pubKey := key.NLPublicFromEd25519Unsafe(sig.WrappingPubkey).CLIString()
b.WriteString(indent + "WrappingPubkey: " + pubKey + "\n")
}
if sig.Nested != nil {
b.WriteString(indent + "Nested:\n")
addToBuf(*sig.Nested, depth+1)
}
}
addToBuf(s, 0)
return strings.TrimSpace(b.String())
}
// UnverifiedWrappingPublic returns the public key which must sign a
// signature which embeds this one, if any.
//
// See docs on NodeKeySignature.WrappingPubkey & SigRotation for documentation
// about wrapping public keys.
//
// SAFETY: The caller MUST verify the signature using
// Authority.NodeKeyAuthorized if treating this as authentic information.
func (s NodeKeySignature) UnverifiedWrappingPublic() (pub ed25519.PublicKey, ok bool) {
return s.wrappingPublic()
}
// wrappingPublic returns the public key which must sign a signature which
// embeds this one, if any.
func (s NodeKeySignature) wrappingPublic() (pub ed25519.PublicKey, ok bool) {
if len(s.WrappingPubkey) > 0 {
return ed25519.PublicKey(s.WrappingPubkey), true
}
switch s.SigKind {
case SigRotation:
if s.Nested == nil {
return nil, false
}
return s.Nested.wrappingPublic()
default:
return nil, false
}
}
// UnverifiedAuthorizingKeyID returns the KeyID of the key which authorizes
// this signature.
//
// SAFETY: The caller MUST verify the signature using
// Authority.NodeKeyAuthorized if treating this as authentic information.
func (s NodeKeySignature) UnverifiedAuthorizingKeyID() (tkatype.KeyID, error) {
return s.authorizingKeyID()
}
// authorizingKeyID returns the KeyID of the key trusted by network-lock which authorizes
// this signature.
func (s NodeKeySignature) authorizingKeyID() (tkatype.KeyID, error) {
switch s.SigKind {
case SigDirect, SigCredential:
if len(s.KeyID) == 0 {
return tkatype.KeyID{}, errors.New("invalid signature: no keyID present")
}
return tkatype.KeyID(s.KeyID), nil
case SigRotation:
if s.Nested == nil {
return tkatype.KeyID{}, errors.New("invalid signature: rotation signature missing nested signature")
}
return s.Nested.authorizingKeyID()
default:
return tkatype.KeyID{}, fmt.Errorf("unhandled signature type: %v", s.SigKind)
}
}
// SigHash returns the cryptographic digest which a signature
// is over.
//
// This is a hash of the serialized structure, sans the signature.
// Without this exclusion, the hash used for the signature
// would be circularly dependent on the signature.
func (s NodeKeySignature) SigHash() [blake2s.Size]byte {
dupe := s
dupe.Signature = nil
return blake2s.Sum256(dupe.Serialize())
}
// Serialize returns the given NKS in a serialized format.
//
// We would implement encoding.BinaryMarshaler, except that would
// unfortunately get called by the cbor marshaller resulting in infinite
// recursion.
func (s *NodeKeySignature) Serialize() tkatype.MarshaledSignature {
out := bytes.NewBuffer(make([]byte, 0, 128)) // 64byte sig + 32byte keyID + 32byte headroom
encoder, err := cbor.CTAP2EncOptions().EncMode()
if err != nil {
// Deterministic validation of encoding options, should
// never fail.
panic(err)
}
if err := encoder.NewEncoder(out).Encode(s); err != nil {
// Writing to a bytes.Buffer should never fail.
panic(err)
}
return out.Bytes()
}
// Unserialize decodes bytes representing a marshaled NKS.
//
// We would implement encoding.BinaryUnmarshaler, except that would
// unfortunately get called by the cbor unmarshaller resulting in infinite
// recursion.
func (s *NodeKeySignature) Unserialize(data []byte) error {
dec, _ := cborDecOpts.DecMode()
return dec.Unmarshal(data, s)
}
// verifySignature checks that the NodeKeySignature is authentic & certified
// by the given verificationKey. Additionally, SigDirect and SigRotation
// signatures are checked to ensure they authorize the given nodeKey.
func (s *NodeKeySignature) verifySignature(nodeKey key.NodePublic, verificationKey Key) error {
if s.SigKind != SigCredential {
nodeBytes, err := nodeKey.MarshalBinary()
if err != nil {
return fmt.Errorf("marshalling pubkey: %v", err)
}
if !bytes.Equal(nodeBytes, s.Pubkey) {
return errors.New("signature does not authorize nodeKey")
}
}
sigHash := s.SigHash()
switch s.SigKind {
case SigRotation:
if s.Nested == nil {
return errors.New("nested signatures must nest a signature")
}
// Verify the signature using the nested rotation key.
verifyPub, ok := s.Nested.wrappingPublic()
if !ok {
return errors.New("missing rotation key")
}
if len(verifyPub) != ed25519.PublicKeySize {
return fmt.Errorf("bad rotation key length: %d", len(verifyPub))
}
if !ed25519.Verify(ed25519.PublicKey(verifyPub[:]), sigHash[:], s.Signature) {
return errors.New("invalid signature")
}
// Recurse to verify the signature on the nested structure.
var nestedPub key.NodePublic
// SigCredential signatures certify an indirection key rather than a node
// key, so theres no need to check the node key.
if s.Nested.SigKind != SigCredential {
if err := nestedPub.UnmarshalBinary(s.Nested.Pubkey); err != nil {
return fmt.Errorf("nested pubkey: %v", err)
}
}
if err := s.Nested.verifySignature(nestedPub, verificationKey); err != nil {
return fmt.Errorf("nested: %v", err)
}
return nil
case SigDirect, SigCredential:
if s.Nested != nil {
return fmt.Errorf("invalid signature: signatures of type %v cannot nest another signature", s.SigKind)
}
switch verificationKey.Kind {
case Key25519:
if len(verificationKey.Public) != ed25519.PublicKeySize {
return fmt.Errorf("ed25519 key has wrong length: %d", len(verificationKey.Public))
}
if ed25519consensus.Verify(ed25519.PublicKey(verificationKey.Public), sigHash[:], s.Signature) {
return nil
}
return errors.New("invalid signature")
default:
return fmt.Errorf("unhandled key type: %v", verificationKey.Kind)
}
default:
return fmt.Errorf("unhandled signature type: %v", s.SigKind)
}
}
// RotationDetails holds additional information about a nodeKeySignature
// of kind SigRotation.
type RotationDetails struct {
// PrevNodeKeys is a list of node keys which have been rotated out.
PrevNodeKeys []key.NodePublic
// InitialSig is the first signature in the chain which led to
// this rotating signature.
InitialSig *NodeKeySignature
}
// rotationDetails returns the RotationDetails for a SigRotation signature.
func (s *NodeKeySignature) rotationDetails() (*RotationDetails, error) {
if s.SigKind != SigRotation {
return nil, nil
}
sri := &RotationDetails{}
nested := s.Nested
for nested != nil {
if len(nested.Pubkey) > 0 {
var nestedPub key.NodePublic
if err := nestedPub.UnmarshalBinary(nested.Pubkey); err != nil {
return nil, fmt.Errorf("nested pubkey: %v", err)
}
sri.PrevNodeKeys = append(sri.PrevNodeKeys, nestedPub)
}
if nested.SigKind != SigRotation {
break
}
nested = nested.Nested
}
sri.InitialSig = nested
return sri, nil
}
// ResignNKS re-signs a node-key signature for a new node-key.
//
// This only matters on network-locked tailnets, because node-key signatures are
// how other nodes know that a node-key is authentic. When the node-key is
// rotated then the existing signature becomes invalid, so this function is
// responsible for generating a new wrapping signature to certify the new node-key.
//
// The signature itself is a SigRotation signature, which embeds the old signature
// and certifies the new node-key as a replacement for the old by signing the new
// signature with RotationPubkey (which is the node's own network-lock key).
func ResignNKS(priv key.NLPrivate, nodeKey key.NodePublic, oldNKS tkatype.MarshaledSignature) (tkatype.MarshaledSignature, error) {
var oldSig NodeKeySignature
if err := oldSig.Unserialize(oldNKS); err != nil {
return nil, fmt.Errorf("decoding NKS: %w", err)
}
nk, err := nodeKey.MarshalBinary()
if err != nil {
return nil, fmt.Errorf("marshalling node-key: %w", err)
}
if bytes.Equal(nk, oldSig.Pubkey) {
// The old signature is valid for the node-key we are using, so just
// use it verbatim.
return oldNKS, nil
}
nested, err := maybeTrimRotationSignatureChain(oldSig, priv)
if err != nil {
return nil, fmt.Errorf("trimming rotation signature chain: %w", err)
}
newSig := NodeKeySignature{
SigKind: SigRotation,
Pubkey: nk,
Nested: &nested,
}
if newSig.Signature, err = priv.SignNKS(newSig.SigHash()); err != nil {
return nil, fmt.Errorf("signing NKS: %w", err)
}
return newSig.Serialize(), nil
}
// maybeTrimRotationSignatureChain truncates rotation signature chain to ensure
// it contains no more than 15 node keys.
func maybeTrimRotationSignatureChain(sig NodeKeySignature, priv key.NLPrivate) (NodeKeySignature, error) {
if sig.SigKind != SigRotation {
return sig, nil
}
// Collect all the previous node keys, ordered from newest to oldest.
prevPubkeys := [][]byte{sig.Pubkey}
nested := sig.Nested
for nested != nil {
if len(nested.Pubkey) > 0 {
prevPubkeys = append(prevPubkeys, nested.Pubkey)
}
if nested.SigKind != SigRotation {
break
}
nested = nested.Nested
}
// Existing rotation signature with 15 keys is the maximum we can wrap in a
// new signature without hitting the CBOR nesting limit of 16 (see
// MaxNestedLevels in tka.go).
const maxPrevKeys = 15
if len(prevPubkeys) <= maxPrevKeys {
return sig, nil
}
// Create a new rotation signature chain, starting with the original
// direct signature.
var err error
result := nested // original direct signature
for i := maxPrevKeys - 2; i >= 0; i-- {
result = &NodeKeySignature{
SigKind: SigRotation,
Pubkey: prevPubkeys[i],
Nested: result,
}
if result.Signature, err = priv.SignNKS(result.SigHash()); err != nil {
return sig, fmt.Errorf("signing NKS: %w", err)
}
}
return *result, nil
}
// SignByCredential signs a node public key by a private key which has its
// signing authority delegated by a SigCredential signature. This is used by
// wrapped auth keys.
func SignByCredential(privKey []byte, wrapped *NodeKeySignature, nodeKey key.NodePublic) (tkatype.MarshaledSignature, error) {
if wrapped.SigKind != SigCredential {
return nil, fmt.Errorf("wrapped signature must be a credential, got %v", wrapped.SigKind)
}
nk, err := nodeKey.MarshalBinary()
if err != nil {
return nil, fmt.Errorf("marshalling node-key: %w", err)
}
sig := &NodeKeySignature{
SigKind: SigRotation,
Pubkey: nk,
Nested: wrapped,
}
sigHash := sig.SigHash()
sig.Signature = ed25519.Sign(privKey, sigHash[:])
return sig.Serialize(), nil
}
// DecodeWrappedAuthkey separates wrapping information from an authkey, if any.
// In all cases the authkey is returned, sans wrapping information if any.
//
// If the authkey is wrapped, isWrapped returns true, along with the wrapping signature
// and private key.
func DecodeWrappedAuthkey(wrappedAuthKey string, logf logger.Logf) (authKey string, isWrapped bool, sig *NodeKeySignature, priv ed25519.PrivateKey) {
authKey, suffix, found := strings.Cut(wrappedAuthKey, "--TL")
if !found {
return wrappedAuthKey, false, nil, nil
}
sigBytes, privBytes, found := strings.Cut(suffix, "-")
if !found {
// TODO: propagate these errors to `tailscale up` output?
logf("decoding wrapped auth-key: did not find delimiter")
return wrappedAuthKey, false, nil, nil
}
rawSig, err := base64.RawStdEncoding.DecodeString(sigBytes)
if err != nil {
logf("decoding wrapped auth-key: signature decode: %v", err)
return wrappedAuthKey, false, nil, nil
}
rawPriv, err := base64.RawStdEncoding.DecodeString(privBytes)
if err != nil {
logf("decoding wrapped auth-key: priv decode: %v", err)
return wrappedAuthKey, false, nil, nil
}
sig = new(NodeKeySignature)
if err := sig.Unserialize(rawSig); err != nil {
logf("decoding wrapped auth-key: signature: %v", err)
return wrappedAuthKey, false, nil, nil
}
priv = ed25519.PrivateKey(rawPriv)
return authKey, true, sig, priv
}