// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package tstun provides a TUN struct implementing the tun.Device interface // with additional features as required by wgengine. package tstun import ( "errors" "fmt" "io" "os" "strings" "sync" "sync/atomic" "time" "golang.zx2c4.com/wireguard/device" "golang.zx2c4.com/wireguard/tun" "inet.af/netaddr" "tailscale.com/net/packet" "tailscale.com/tstime/mono" "tailscale.com/types/ipproto" "tailscale.com/types/logger" "tailscale.com/types/pad32" "tailscale.com/wgengine/filter" ) const maxBufferSize = device.MaxMessageSize // PacketStartOffset is the minimal amount of leading space that must exist // before &packet[offset] in a packet passed to Read, Write, or InjectInboundDirect. // This is necessary to avoid reallocation in wireguard-go internals. const PacketStartOffset = device.MessageTransportHeaderSize // MaxPacketSize is the maximum size (in bytes) // of a packet that can be injected into a tstun.Wrapper. const MaxPacketSize = device.MaxContentSize const tapDebug = false // for super verbose TAP debugging var ( // ErrClosed is returned when attempting an operation on a closed Wrapper. ErrClosed = errors.New("device closed") // ErrFiltered is returned when the acted-on packet is rejected by a filter. ErrFiltered = errors.New("packet dropped by filter") ) var ( errPacketTooBig = errors.New("packet too big") errOffsetTooBig = errors.New("offset larger than buffer length") errOffsetTooSmall = errors.New("offset smaller than PacketStartOffset") ) // parsedPacketPool holds a pool of Parsed structs for use in filtering. // This is needed because escape analysis cannot see that parsed packets // do not escape through {Pre,Post}Filter{In,Out}. var parsedPacketPool = sync.Pool{New: func() interface{} { return new(packet.Parsed) }} // FilterFunc is a packet-filtering function with access to the Wrapper device. // It must not hold onto the packet struct, as its backing storage will be reused. type FilterFunc func(*packet.Parsed, *Wrapper) filter.Response // Wrapper augments a tun.Device with packet filtering and injection. type Wrapper struct { logf logger.Logf // tdev is the underlying Wrapper device. tdev tun.Device isTAP bool // whether tdev is a TAP device closeOnce sync.Once _ pad32.Four lastActivityAtomic mono.Time // time of last send or receive destIPActivity atomic.Value // of map[netaddr.IP]func() destMACAtomic atomic.Value // of [6]byte // buffer stores the oldest unconsumed packet from tdev. // It is made a static buffer in order to avoid allocations. buffer [maxBufferSize]byte // bufferConsumedMu protects bufferConsumed from concurrent sends and closes. // It does not prevent send-after-close, only data races. bufferConsumedMu sync.Mutex // bufferConsumed synchronizes access to buffer (shared by Read and poll). // // Close closes bufferConsumed. There may be outstanding sends to bufferConsumed // when that happens; we catch any resulting panics. // This lets us avoid expensive multi-case selects. bufferConsumed chan struct{} // closed signals poll (by closing) when the device is closed. closed chan struct{} // outboundMu protects outbound from concurrent sends and closes. // It does not prevent send-after-close, only data races. outboundMu sync.Mutex // outbound is the queue by which packets leave the TUN device. // // The directions are relative to the network, not the device: // inbound packets arrive via UDP and are written into the TUN device; // outbound packets are read from the TUN device and sent out via UDP. // This queue is needed because although inbound writes are synchronous, // the other direction must wait on a Wireguard goroutine to poll it. // // Empty reads are skipped by Wireguard, so it is always legal // to discard an empty packet instead of sending it through t.outbound. // // Close closes outbound. There may be outstanding sends to outbound // when that happens; we catch any resulting panics. // This lets us avoid expensive multi-case selects. outbound chan tunReadResult // eventsUpDown yields up and down tun.Events that arrive on a Wrapper's events channel. eventsUpDown chan tun.Event // eventsOther yields non-up-and-down tun.Events that arrive on a Wrapper's events channel. eventsOther chan tun.Event // filter atomically stores the currently active packet filter filter atomic.Value // of *filter.Filter // filterFlags control the verbosity of logging packet drops/accepts. filterFlags filter.RunFlags // PreFilterIn is the inbound filter function that runs before the main filter // and therefore sees the packets that may be later dropped by it. PreFilterIn FilterFunc // PostFilterIn is the inbound filter function that runs after the main filter. PostFilterIn FilterFunc // PreFilterOut is the outbound filter function that runs before the main filter // and therefore sees the packets that may be later dropped by it. PreFilterOut FilterFunc // PostFilterOut is the outbound filter function that runs after the main filter. PostFilterOut FilterFunc // OnTSMPPongReceived, if non-nil, is called whenever a TSMP pong arrives. OnTSMPPongReceived func(packet.TSMPPongReply) // PeerAPIPort, if non-nil, returns the peerapi port that's // running for the given IP address. PeerAPIPort func(netaddr.IP) (port uint16, ok bool) // disableFilter disables all filtering when set. This should only be used in tests. disableFilter bool // disableTSMPRejected disables TSMP rejected responses. For tests. disableTSMPRejected bool } // tunReadResult is the result of a TUN read: Some data and an error. // The byte slice is not interpreted in the usual way for a Read method. // See the comment in the middle of Wrap.Read. type tunReadResult struct { data []byte err error } func WrapTAP(logf logger.Logf, tdev tun.Device) *Wrapper { return wrap(logf, tdev, true) } func Wrap(logf logger.Logf, tdev tun.Device) *Wrapper { return wrap(logf, tdev, false) } func wrap(logf logger.Logf, tdev tun.Device, isTAP bool) *Wrapper { tun := &Wrapper{ logf: logger.WithPrefix(logf, "tstun: "), isTAP: isTAP, tdev: tdev, // bufferConsumed is conceptually a condition variable: // a goroutine should not block when setting it, even with no listeners. bufferConsumed: make(chan struct{}, 1), closed: make(chan struct{}), // outbound can be unbuffered; the buffer is an optimization. outbound: make(chan tunReadResult, 1), eventsUpDown: make(chan tun.Event), eventsOther: make(chan tun.Event), // TODO(dmytro): (highly rate-limited) hexdumps should happen on unknown packets. filterFlags: filter.LogAccepts | filter.LogDrops, } go tun.poll() go tun.pumpEvents() // The buffer starts out consumed. tun.bufferConsumed <- struct{}{} tun.noteActivity() return tun } // SetDestIPActivityFuncs sets a map of funcs to run per packet // destination (the map keys). // // The map ownership passes to the Wrapper. It must be non-nil. func (t *Wrapper) SetDestIPActivityFuncs(m map[netaddr.IP]func()) { t.destIPActivity.Store(m) } func (t *Wrapper) Close() error { var err error t.closeOnce.Do(func() { close(t.closed) t.bufferConsumedMu.Lock() close(t.bufferConsumed) t.bufferConsumedMu.Unlock() t.outboundMu.Lock() close(t.outbound) t.outboundMu.Unlock() err = t.tdev.Close() }) return err } // isClosed reports whether t is closed. func (t *Wrapper) isClosed() bool { select { case <-t.closed: return true default: return false } } // pumpEvents copies events from t.tdev to t.eventsUpDown and t.eventsOther. // pumpEvents exits when t.tdev.events or t.closed is closed. // pumpEvents closes t.eventsUpDown and t.eventsOther when it exits. func (t *Wrapper) pumpEvents() { defer close(t.eventsUpDown) defer close(t.eventsOther) src := t.tdev.Events() for { // Retrieve an event from the TUN device. var event tun.Event var ok bool select { case <-t.closed: return case event, ok = <-src: if !ok { return } } // Pass along event to the correct recipient. // Though event is a bitmask, in practice there is only ever one bit set at a time. dst := t.eventsOther if event&(tun.EventUp|tun.EventDown) != 0 { dst = t.eventsUpDown } select { case <-t.closed: return case dst <- event: } } } // EventsUpDown returns a TUN event channel that contains all Up and Down events. func (t *Wrapper) EventsUpDown() chan tun.Event { return t.eventsUpDown } // Events returns a TUN event channel that contains all non-Up, non-Down events. // It is named Events because it is the set of events that we want to expose to wireguard-go, // and Events is the name specified by the wireguard-go tun.Device interface. func (t *Wrapper) Events() chan tun.Event { return t.eventsOther } func (t *Wrapper) File() *os.File { return t.tdev.File() } func (t *Wrapper) Flush() error { return t.tdev.Flush() } func (t *Wrapper) MTU() (int, error) { return t.tdev.MTU() } func (t *Wrapper) Name() (string, error) { return t.tdev.Name() } // allowSendOnClosedChannel suppresses panics due to sending on a closed channel. // This allows us to avoid synchronization between poll and Close. // Such synchronization (particularly multi-case selects) is too expensive // for code like poll or Read that is on the hot path of every packet. // If this makes you sad or angry, you may want to join our // weekly Go Performance Delinquents Anonymous meetings on Monday nights. func allowSendOnClosedChannel() { r := recover() if r == nil { return } e, _ := r.(error) if e != nil && e.Error() == "send on closed channel" { return } panic(r) } const ethernetFrameSize = 14 // 2 six byte MACs, 2 bytes ethertype // poll polls t.tdev.Read, placing the oldest unconsumed packet into t.buffer. // This is needed because t.tdev.Read in general may block (it does on Windows), // so packets may be stuck in t.outbound if t.Read called t.tdev.Read directly. func (t *Wrapper) poll() { for range t.bufferConsumed { DoRead: var n int var err error // Read may use memory in t.buffer before PacketStartOffset for mandatory headers. // This is the rationale behind the tun.Wrapper.{Read,Write} interfaces // and the reason t.buffer has size MaxMessageSize and not MaxContentSize. // In principle, read errors are not fatal (but wireguard-go disagrees). // We loop here until we get a non-empty (or failed) read. // We don't need this loop for correctness, // but wireguard-go will skip an empty read, // so we might as well avoid the send through t.outbound. for n == 0 && err == nil { if t.isClosed() { return } if t.isTAP { n, err = t.tdev.Read(t.buffer[:], PacketStartOffset-ethernetFrameSize) if tapDebug { s := fmt.Sprintf("% x", t.buffer[:]) for strings.HasSuffix(s, " 00") { s = strings.TrimSuffix(s, " 00") } t.logf("TAP read %v, %v: %s", n, err, s) } } else { n, err = t.tdev.Read(t.buffer[:], PacketStartOffset) } } if t.isTAP { if err == nil { ethernetFrame := t.buffer[PacketStartOffset-ethernetFrameSize:][:n] if t.handleTAPFrame(ethernetFrame) { goto DoRead } } // Fall through. We got an IP packet. if n >= ethernetFrameSize { n -= ethernetFrameSize } if tapDebug { t.logf("tap regular frame: %x", t.buffer[PacketStartOffset:PacketStartOffset+n]) } } t.sendOutbound(tunReadResult{data: t.buffer[PacketStartOffset : PacketStartOffset+n], err: err}) } } // sendBufferConsumed does t.bufferConsumed <- struct{}{}. // It protects against any panics or data races that that send could cause. func (t *Wrapper) sendBufferConsumed() { defer allowSendOnClosedChannel() t.bufferConsumedMu.Lock() defer t.bufferConsumedMu.Unlock() t.bufferConsumed <- struct{}{} } // sendOutbound does t.outboundMu <- r. // It protects against any panics or data races that that send could cause. func (t *Wrapper) sendOutbound(r tunReadResult) { defer allowSendOnClosedChannel() t.outboundMu.Lock() defer t.outboundMu.Unlock() t.outbound <- r } var magicDNSIPPort = netaddr.MustParseIPPort("100.100.100.100:0") func (t *Wrapper) filterOut(p *packet.Parsed) filter.Response { // Fake ICMP echo responses to MagicDNS (100.100.100.100). if p.IsEchoRequest() && p.Dst == magicDNSIPPort { header := p.ICMP4Header() header.ToResponse() outp := packet.Generate(&header, p.Payload()) t.InjectInboundCopy(outp) return filter.DropSilently // don't pass on to OS; already handled } if t.PreFilterOut != nil { if res := t.PreFilterOut(p, t); res.IsDrop() { return res } } filt, _ := t.filter.Load().(*filter.Filter) if filt == nil { return filter.Drop } if filt.RunOut(p, t.filterFlags) != filter.Accept { return filter.Drop } if t.PostFilterOut != nil { if res := t.PostFilterOut(p, t); res.IsDrop() { return res } } return filter.Accept } // noteActivity records that there was a read or write at the current time. func (t *Wrapper) noteActivity() { t.lastActivityAtomic.StoreAtomic(mono.Now()) } // IdleDuration reports how long it's been since the last read or write to this device. // // Its value should only be presumed accurate to roughly 10ms granularity. // If there's never been activity, the duration is since the wrapper was created. func (t *Wrapper) IdleDuration() time.Duration { return mono.Since(t.lastActivityAtomic.LoadAtomic()) } func (t *Wrapper) Read(buf []byte, offset int) (int, error) { res, ok := <-t.outbound if !ok { // Wrapper is closed. return 0, io.EOF } if res.err != nil { return 0, res.err } pkt := res.data n := copy(buf[offset:], pkt) // t.buffer has a fixed location in memory. // If the packet is not from t.buffer, then it is an injected packet. // &pkt[0] can be used because empty packets do not reach t.outbound. isInjectedPacket := &pkt[0] != &t.buffer[PacketStartOffset] if !isInjectedPacket { // We are done with t.buffer. Let poll re-use it. t.sendBufferConsumed() } p := parsedPacketPool.Get().(*packet.Parsed) defer parsedPacketPool.Put(p) p.Decode(buf[offset : offset+n]) if m, ok := t.destIPActivity.Load().(map[netaddr.IP]func()); ok { if fn := m[p.Dst.IP()]; fn != nil { fn() } } // Do not filter injected packets. if !isInjectedPacket && !t.disableFilter { response := t.filterOut(p) if response != filter.Accept { // Wireguard considers read errors fatal; pretend nothing was read return 0, nil } } t.noteActivity() return n, nil } func (t *Wrapper) filterIn(buf []byte) filter.Response { p := parsedPacketPool.Get().(*packet.Parsed) defer parsedPacketPool.Put(p) p.Decode(buf) if p.IPProto == ipproto.TSMP { if pingReq, ok := p.AsTSMPPing(); ok { t.noteActivity() t.injectOutboundPong(p, pingReq) return filter.DropSilently } else if data, ok := p.AsTSMPPong(); ok { if f := t.OnTSMPPongReceived; f != nil { f(data) } } } if t.PreFilterIn != nil { if res := t.PreFilterIn(p, t); res.IsDrop() { return res } } filt, _ := t.filter.Load().(*filter.Filter) if filt == nil { return filter.Drop } outcome := filt.RunIn(p, t.filterFlags) // Let peerapi through the filter; its ACLs are handled at L7, // not at the packet level. if outcome != filter.Accept && p.IPProto == ipproto.TCP && p.TCPFlags&packet.TCPSyn != 0 && t.PeerAPIPort != nil { if port, ok := t.PeerAPIPort(p.Dst.IP()); ok && port == p.Dst.Port() { outcome = filter.Accept } } if outcome != filter.Accept { // Tell them, via TSMP, we're dropping them due to the ACL. // Their host networking stack can translate this into ICMP // or whatnot as required. But notably, their GUI or tailscale CLI // can show them a rejection history with reasons. if p.IPVersion == 4 && p.IPProto == ipproto.TCP && p.TCPFlags&packet.TCPSyn != 0 && !t.disableTSMPRejected { rj := packet.TailscaleRejectedHeader{ IPSrc: p.Dst.IP(), IPDst: p.Src.IP(), Src: p.Src, Dst: p.Dst, Proto: p.IPProto, Reason: packet.RejectedDueToACLs, } if filt.ShieldsUp() { rj.Reason = packet.RejectedDueToShieldsUp } pkt := packet.Generate(rj, nil) t.InjectOutbound(pkt) // TODO(bradfitz): also send a TCP RST, after the TSMP message. } return filter.Drop } if t.PostFilterIn != nil { if res := t.PostFilterIn(p, t); res.IsDrop() { return res } } return filter.Accept } // Write accepts an incoming packet. The packet begins at buf[offset:], // like wireguard-go/tun.Device.Write. func (t *Wrapper) Write(buf []byte, offset int) (int, error) { if !t.disableFilter { if t.filterIn(buf[offset:]) != filter.Accept { // If we're not accepting the packet, lie to wireguard-go and pretend // that everything is okay with a nil error, so wireguard-go // doesn't log about this Write "failure". // // We return len(buf), but the ill-defined wireguard-go/tun.Device.Write // method doesn't specify how the offset affects the return value. // In fact, the Linux implementation does one of two different things depending // on how the /dev/net/tun was created. But fortunately the wireguard-go // code ignores the int return and only looks at the error: // // device/receive.go: _, err = device.tun.device.Write(....) // // TODO(bradfitz): fix upstream interface docs, implementation. return len(buf), nil } } t.noteActivity() return t.tdevWrite(buf, offset) } func (t *Wrapper) tdevWrite(buf []byte, offset int) (int, error) { if t.isTAP { return t.tapWrite(buf, offset) } return t.tdev.Write(buf, offset) } func (t *Wrapper) GetFilter() *filter.Filter { filt, _ := t.filter.Load().(*filter.Filter) return filt } func (t *Wrapper) SetFilter(filt *filter.Filter) { t.filter.Store(filt) } // InjectInboundDirect makes the Wrapper device behave as if a packet // with the given contents was received from the network. // It blocks and does not take ownership of the packet. // The injected packet will not pass through inbound filters. // // The packet contents are to start at &buf[offset]. // offset must be greater or equal to PacketStartOffset. // The space before &buf[offset] will be used by Wireguard. func (t *Wrapper) InjectInboundDirect(buf []byte, offset int) error { if len(buf) > MaxPacketSize { return errPacketTooBig } if len(buf) < offset { return errOffsetTooBig } if offset < PacketStartOffset { return errOffsetTooSmall } // Write to the underlying device to skip filters. _, err := t.tdevWrite(buf, offset) return err } // InjectInboundCopy takes a packet without leading space, // reallocates it to conform to the InjectInboundDirect interface // and calls InjectInboundDirect on it. Injecting a nil packet is a no-op. func (t *Wrapper) InjectInboundCopy(packet []byte) error { // We duplicate this check from InjectInboundDirect here // to avoid wasting an allocation on an oversized packet. if len(packet) > MaxPacketSize { return errPacketTooBig } if len(packet) == 0 { return nil } buf := make([]byte, PacketStartOffset+len(packet)) copy(buf[PacketStartOffset:], packet) return t.InjectInboundDirect(buf, PacketStartOffset) } func (t *Wrapper) injectOutboundPong(pp *packet.Parsed, req packet.TSMPPingRequest) { pong := packet.TSMPPongReply{ Data: req.Data, } if t.PeerAPIPort != nil { pong.PeerAPIPort, _ = t.PeerAPIPort(pp.Dst.IP()) } switch pp.IPVersion { case 4: h4 := pp.IP4Header() h4.ToResponse() pong.IPHeader = h4 case 6: h6 := pp.IP6Header() h6.ToResponse() pong.IPHeader = h6 default: return } t.InjectOutbound(packet.Generate(pong, nil)) } // InjectOutbound makes the Wrapper device behave as if a packet // with the given contents was sent to the network. // It does not block, but takes ownership of the packet. // The injected packet will not pass through outbound filters. // Injecting an empty packet is a no-op. func (t *Wrapper) InjectOutbound(packet []byte) error { if len(packet) > MaxPacketSize { return errPacketTooBig } if len(packet) == 0 { return nil } t.sendOutbound(tunReadResult{data: packet}) return nil } // Unwrap returns the underlying tun.Device. func (t *Wrapper) Unwrap() tun.Device { return t.tdev }