// Copyright (c) Tailscale Inc & AUTHORS // SPDX-License-Identifier: BSD-3-Clause package derp // TODO(crawshaw): with predefined serverKey in clients and HMAC on packets we could skip TLS import ( "bufio" "bytes" "context" "crypto/ed25519" crand "crypto/rand" "crypto/x509" "crypto/x509/pkix" "encoding/binary" "encoding/json" "errors" "expvar" "fmt" "io" "log" "math" "math/big" "math/rand" "net" "net/http" "net/netip" "os/exec" "runtime" "strconv" "strings" "sync" "sync/atomic" "time" "go4.org/mem" "golang.org/x/sync/errgroup" "tailscale.com/client/tailscale" "tailscale.com/disco" "tailscale.com/envknob" "tailscale.com/metrics" "tailscale.com/syncs" "tailscale.com/tailcfg" "tailscale.com/tstime" "tailscale.com/tstime/rate" "tailscale.com/types/key" "tailscale.com/types/logger" "tailscale.com/util/set" "tailscale.com/version" ) // verboseDropKeys is the set of destination public keys that should // verbosely log whenever DERP drops a packet. var verboseDropKeys = map[key.NodePublic]bool{} func init() { keys := envknob.String("TS_DEBUG_VERBOSE_DROPS") if keys == "" { return } for _, keyStr := range strings.Split(keys, ",") { k, err := key.ParseNodePublicUntyped(mem.S(keyStr)) if err != nil { log.Printf("ignoring invalid debug key %q: %v", keyStr, err) } else { verboseDropKeys[k] = true } } } const ( perClientSendQueueDepth = 32 // packets buffered for sending writeTimeout = 2 * time.Second ) // dupPolicy is a temporary (2021-08-30) mechanism to change the policy // of how duplicate connection for the same key are handled. type dupPolicy int8 const ( // lastWriterIsActive is a dupPolicy where the connection // to send traffic for a peer is the active one. lastWriterIsActive dupPolicy = iota // disableFighters is a dupPolicy that detects if peers // are trying to send interleaved with each other and // then disables all of them. disableFighters ) type align64 [0]atomic.Int64 // for side effect of its 64-bit alignment // Server is a DERP server. type Server struct { // WriteTimeout, if non-zero, specifies how long to wait // before failing when writing to a client. WriteTimeout time.Duration privateKey key.NodePrivate publicKey key.NodePublic logf logger.Logf memSys0 uint64 // runtime.MemStats.Sys at start (or early-ish) meshKey string limitedLogf logger.Logf metaCert []byte // the encoded x509 cert to send after LetsEncrypt cert+intermediate dupPolicy dupPolicy debug bool // Counters: packetsSent, bytesSent expvar.Int packetsRecv, bytesRecv expvar.Int packetsRecvByKind metrics.LabelMap packetsRecvDisco *expvar.Int packetsRecvOther *expvar.Int _ align64 packetsDropped expvar.Int packetsDroppedReason metrics.LabelMap packetsDroppedReasonCounters []*expvar.Int // indexed by dropReason packetsDroppedType metrics.LabelMap packetsDroppedTypeDisco *expvar.Int packetsDroppedTypeOther *expvar.Int _ align64 packetsForwardedOut expvar.Int packetsForwardedIn expvar.Int peerGoneDisconnectedFrames expvar.Int // number of peer disconnected frames sent peerGoneNotHereFrames expvar.Int // number of peer not here frames sent gotPing expvar.Int // number of ping frames from client sentPong expvar.Int // number of pong frames enqueued to client accepts expvar.Int curClients expvar.Int curHomeClients expvar.Int // ones with preferred dupClientKeys expvar.Int // current number of public keys we have 2+ connections for dupClientConns expvar.Int // current number of connections sharing a public key dupClientConnTotal expvar.Int // total number of accepted connections when a dup key existed unknownFrames expvar.Int homeMovesIn expvar.Int // established clients announce home server moves in homeMovesOut expvar.Int // established clients announce home server moves out multiForwarderCreated expvar.Int multiForwarderDeleted expvar.Int removePktForwardOther expvar.Int avgQueueDuration *uint64 // In milliseconds; accessed atomically tcpRtt metrics.LabelMap // histogram // verifyClientsLocalTailscaled only accepts client connections to the DERP // server if the clientKey is a known peer in the network, as specified by a // running tailscaled's client's LocalAPI. verifyClientsLocalTailscaled bool verifyClientsURL string verifyClientsURLFailOpen bool mu sync.Mutex closed bool netConns map[Conn]chan struct{} // chan is closed when conn closes clients map[key.NodePublic]clientSet watchers set.Set[*sclient] // mesh peers // clientsMesh tracks all clients in the cluster, both locally // and to mesh peers. If the value is nil, that means the // peer is only local (and thus in the clients Map, but not // remote). If the value is non-nil, it's remote (+ maybe also // local). clientsMesh map[key.NodePublic]PacketForwarder // sentTo tracks which peers have sent to which other peers, // and at which connection number. This isn't on sclient // because it includes intra-region forwarded packets as the // src. sentTo map[key.NodePublic]map[key.NodePublic]int64 // src => dst => dst's latest sclient.connNum // maps from netip.AddrPort to a client's public key keyOfAddr map[netip.AddrPort]key.NodePublic clock tstime.Clock } // clientSet represents 1 or more *sclients. // // The two implementations are singleClient and *dupClientSet. // // In the common case, client should only have one connection to the // DERP server for a given key. When they're connected multiple times, // we record their set of connections in dupClientSet and keep their // connections open to make them happy (to keep them from spinning, // etc) and keep track of which is the latest connection. If only the last // is sending traffic, that last one is the active connection and it // gets traffic. Otherwise, in the case of a cloned node key, the // whole set of dups doesn't receive data frames. // // All methods should only be called while holding Server.mu. // // TODO(bradfitz): Issue 2746: in the future we'll send some sort of // "health_error" frame to them that'll communicate to the end users // that they cloned a device key, and we'll also surface it in the // admin panel, etc. type clientSet interface { // ActiveClient returns the most recently added client to // the set, as long as it hasn't been disabled, in which // case it returns nil. ActiveClient() *sclient // Len returns the number of clients in the set. Len() int // ForeachClient calls f for each client in the set. ForeachClient(f func(*sclient)) } // singleClient is a clientSet of a single connection. // This is the common case. type singleClient struct{ c *sclient } func (s singleClient) ActiveClient() *sclient { return s.c } func (s singleClient) Len() int { return 1 } func (s singleClient) ForeachClient(f func(*sclient)) { f(s.c) } // A dupClientSet is a clientSet of more than 1 connection. // // This can occur in some reasonable cases (temporarily while users // are changing networks) or in the case of a cloned key. In the // cloned key case, both peers are speaking and the clients get // disabled. // // All fields are guarded by Server.mu. type dupClientSet struct { // set is the set of connected clients for sclient.key. set set.Set[*sclient] // last is the most recent addition to set, or nil if the most // recent one has since disconnected and nobody else has send // data since. last *sclient // sendHistory is a log of which members of set have sent // frames to the derp server, with adjacent duplicates // removed. When a member of set is removed, the same // element(s) are removed from sendHistory. sendHistory []*sclient } func (s *dupClientSet) ActiveClient() *sclient { if s.last != nil && !s.last.isDisabled.Load() { return s.last } return nil } func (s *dupClientSet) Len() int { return len(s.set) } func (s *dupClientSet) ForeachClient(f func(*sclient)) { for c := range s.set { f(c) } } // removeClient removes c from s and reports whether it was in s // to begin with. func (s *dupClientSet) removeClient(c *sclient) bool { n := len(s.set) delete(s.set, c) if s.last == c { s.last = nil } if len(s.set) == n { return false } trim := s.sendHistory[:0] for _, v := range s.sendHistory { if s.set.Contains(v) && (len(trim) == 0 || trim[len(trim)-1] != v) { trim = append(trim, v) } } for i := len(trim); i < len(s.sendHistory); i++ { s.sendHistory[i] = nil } s.sendHistory = trim if s.last == nil && len(s.sendHistory) > 0 { s.last = s.sendHistory[len(s.sendHistory)-1] } return true } // PacketForwarder is something that can forward packets. // // It's mostly an interface for circular dependency reasons; the // typical implementation is derphttp.Client. The other implementation // is a multiForwarder, which this package creates as needed if a // public key gets more than one PacketForwarder registered for it. type PacketForwarder interface { ForwardPacket(src, dst key.NodePublic, payload []byte) error String() string } // Conn is the subset of the underlying net.Conn the DERP Server needs. // It is a defined type so that non-net connections can be used. type Conn interface { io.WriteCloser LocalAddr() net.Addr // The *Deadline methods follow the semantics of net.Conn. SetDeadline(time.Time) error SetReadDeadline(time.Time) error SetWriteDeadline(time.Time) error } // NewServer returns a new DERP server. It doesn't listen on its own. // Connections are given to it via Server.Accept. func NewServer(privateKey key.NodePrivate, logf logger.Logf) *Server { var ms runtime.MemStats runtime.ReadMemStats(&ms) s := &Server{ debug: envknob.Bool("DERP_DEBUG_LOGS"), privateKey: privateKey, publicKey: privateKey.Public(), logf: logf, limitedLogf: logger.RateLimitedFn(logf, 30*time.Second, 5, 100), packetsRecvByKind: metrics.LabelMap{Label: "kind"}, packetsDroppedReason: metrics.LabelMap{Label: "reason"}, packetsDroppedType: metrics.LabelMap{Label: "type"}, clients: map[key.NodePublic]clientSet{}, clientsMesh: map[key.NodePublic]PacketForwarder{}, netConns: map[Conn]chan struct{}{}, memSys0: ms.Sys, watchers: set.Set[*sclient]{}, sentTo: map[key.NodePublic]map[key.NodePublic]int64{}, avgQueueDuration: new(uint64), tcpRtt: metrics.LabelMap{Label: "le"}, keyOfAddr: map[netip.AddrPort]key.NodePublic{}, clock: tstime.StdClock{}, } s.initMetacert() s.packetsRecvDisco = s.packetsRecvByKind.Get("disco") s.packetsRecvOther = s.packetsRecvByKind.Get("other") s.packetsDroppedReasonCounters = s.genPacketsDroppedReasonCounters() s.packetsDroppedTypeDisco = s.packetsDroppedType.Get("disco") s.packetsDroppedTypeOther = s.packetsDroppedType.Get("other") return s } func (s *Server) genPacketsDroppedReasonCounters() []*expvar.Int { getMetric := s.packetsDroppedReason.Get ret := []*expvar.Int{ dropReasonUnknownDest: getMetric("unknown_dest"), dropReasonUnknownDestOnFwd: getMetric("unknown_dest_on_fwd"), dropReasonGoneDisconnected: getMetric("gone_disconnected"), dropReasonQueueHead: getMetric("queue_head"), dropReasonQueueTail: getMetric("queue_tail"), dropReasonWriteError: getMetric("write_error"), dropReasonDupClient: getMetric("dup_client"), } if len(ret) != int(numDropReasons) { panic("dropReason metrics out of sync") } for i := range numDropReasons { if ret[i] == nil { panic("dropReason metrics out of sync") } } return ret } // SetMesh sets the pre-shared key that regional DERP servers used to mesh // amongst themselves. // // It must be called before serving begins. func (s *Server) SetMeshKey(v string) { s.meshKey = v } // SetVerifyClients sets whether this DERP server verifies clients through tailscaled. // // It must be called before serving begins. func (s *Server) SetVerifyClient(v bool) { s.verifyClientsLocalTailscaled = v } // SetVerifyClientURL sets the admission controller URL to use for verifying clients. // If empty, all clients are accepted (unless restricted by SetVerifyClient checking // against tailscaled). func (s *Server) SetVerifyClientURL(v string) { s.verifyClientsURL = v } // SetVerifyClientURLFailOpen sets whether to allow clients to connect if the // admission controller URL is unreachable. func (s *Server) SetVerifyClientURLFailOpen(v bool) { s.verifyClientsURLFailOpen = v } // HasMeshKey reports whether the server is configured with a mesh key. func (s *Server) HasMeshKey() bool { return s.meshKey != "" } // MeshKey returns the configured mesh key, if any. func (s *Server) MeshKey() string { return s.meshKey } // PrivateKey returns the server's private key. func (s *Server) PrivateKey() key.NodePrivate { return s.privateKey } // PublicKey returns the server's public key. func (s *Server) PublicKey() key.NodePublic { return s.publicKey } // Close closes the server and waits for the connections to disconnect. func (s *Server) Close() error { s.mu.Lock() wasClosed := s.closed s.closed = true s.mu.Unlock() if wasClosed { return nil } var closedChs []chan struct{} s.mu.Lock() for nc, closed := range s.netConns { nc.Close() closedChs = append(closedChs, closed) } s.mu.Unlock() for _, closed := range closedChs { <-closed } return nil } func (s *Server) isClosed() bool { s.mu.Lock() defer s.mu.Unlock() return s.closed } // IsClientConnectedForTest reports whether the client with specified key is connected. // This is used in tests to verify that nodes are connected. func (s *Server) IsClientConnectedForTest(k key.NodePublic) bool { s.mu.Lock() defer s.mu.Unlock() x, ok := s.clients[k] if !ok { return false } return x.ActiveClient() != nil } // Accept adds a new connection to the server and serves it. // // The provided bufio ReadWriter must be already connected to nc. // Accept blocks until the Server is closed or the connection closes // on its own. // // Accept closes nc. func (s *Server) Accept(ctx context.Context, nc Conn, brw *bufio.ReadWriter, remoteAddr string) { closed := make(chan struct{}) s.mu.Lock() s.accepts.Add(1) // while holding s.mu for connNum read on next line connNum := s.accepts.Value() // expvar sadly doesn't return new value on Add(1) s.netConns[nc] = closed s.mu.Unlock() defer func() { nc.Close() close(closed) s.mu.Lock() delete(s.netConns, nc) s.mu.Unlock() }() if err := s.accept(ctx, nc, brw, remoteAddr, connNum); err != nil && !s.isClosed() { s.logf("derp: %s: %v", remoteAddr, err) } } // initMetacert initialized s.metaCert with a self-signed x509 cert // encoding this server's public key and protocol version. cmd/derper // then sends this after the Let's Encrypt leaf + intermediate certs // after the ServerHello (encrypted in TLS 1.3, not that it matters // much). // // Then the client can save a round trip getting that and can start // speaking DERP right away. (We don't use ALPN because that's sent in // the clear and we're being paranoid to not look too weird to any // middleboxes, given that DERP is an ultimate fallback path). But // since the post-ServerHello certs are encrypted we can have the // client also use them as a signal to be able to start speaking DERP // right away, starting with its identity proof, encrypted to the // server's public key. // // This RTT optimization fails where there's a corp-mandated // TLS proxy with corp-mandated root certs on employee machines and // and TLS proxy cleans up unnecessary certs. In that case we just fall // back to the extra RTT. func (s *Server) initMetacert() { pub, priv, err := ed25519.GenerateKey(crand.Reader) if err != nil { log.Fatal(err) } tmpl := &x509.Certificate{ SerialNumber: big.NewInt(ProtocolVersion), Subject: pkix.Name{ CommonName: fmt.Sprintf("derpkey%s", s.publicKey.UntypedHexString()), }, // Windows requires NotAfter and NotBefore set: NotAfter: s.clock.Now().Add(30 * 24 * time.Hour), NotBefore: s.clock.Now().Add(-30 * 24 * time.Hour), // Per https://github.com/golang/go/issues/51759#issuecomment-1071147836, // macOS requires BasicConstraints when subject == issuer: BasicConstraintsValid: true, } cert, err := x509.CreateCertificate(crand.Reader, tmpl, tmpl, pub, priv) if err != nil { log.Fatalf("CreateCertificate: %v", err) } s.metaCert = cert } // MetaCert returns the server metadata cert that can be sent by the // TLS server to let the client skip a round trip during start-up. func (s *Server) MetaCert() []byte { return s.metaCert } // registerClient notes that client c is now authenticated and ready for packets. // // If c.key is connected more than once, the earlier connection(s) are // placed in a non-active state where we read from them (primarily to // observe EOFs/timeouts) but won't send them frames on the assumption // that they're dead. func (s *Server) registerClient(c *sclient) { s.mu.Lock() defer s.mu.Unlock() curSet := s.clients[c.key] switch curSet := curSet.(type) { case nil: s.clients[c.key] = singleClient{c} c.debugLogf("register single client") case singleClient: s.dupClientKeys.Add(1) s.dupClientConns.Add(2) // both old and new count s.dupClientConnTotal.Add(1) old := curSet.ActiveClient() old.isDup.Store(true) c.isDup.Store(true) s.clients[c.key] = &dupClientSet{ last: c, set: set.Set[*sclient]{ old: struct{}{}, c: struct{}{}, }, sendHistory: []*sclient{old}, } c.debugLogf("register duplicate client") case *dupClientSet: s.dupClientConns.Add(1) // the gauge s.dupClientConnTotal.Add(1) // the counter c.isDup.Store(true) curSet.set.Add(c) curSet.last = c curSet.sendHistory = append(curSet.sendHistory, c) c.debugLogf("register another duplicate client") } if _, ok := s.clientsMesh[c.key]; !ok { s.clientsMesh[c.key] = nil // just for varz of total users in cluster } s.keyOfAddr[c.remoteIPPort] = c.key s.curClients.Add(1) s.broadcastPeerStateChangeLocked(c.key, c.remoteIPPort, true) } // broadcastPeerStateChangeLocked enqueues a message to all watchers // (other DERP nodes in the region, or trusted clients) that peer's // presence changed. // // s.mu must be held. func (s *Server) broadcastPeerStateChangeLocked(peer key.NodePublic, ipPort netip.AddrPort, present bool) { for w := range s.watchers { w.peerStateChange = append(w.peerStateChange, peerConnState{ peer: peer, present: present, ipPort: ipPort, }) go w.requestMeshUpdate() } } // unregisterClient removes a client from the server. func (s *Server) unregisterClient(c *sclient) { s.mu.Lock() defer s.mu.Unlock() set := s.clients[c.key] switch set := set.(type) { case nil: c.logf("[unexpected]; clients map is empty") case singleClient: c.debugLogf("removed connection") delete(s.clients, c.key) if v, ok := s.clientsMesh[c.key]; ok && v == nil { delete(s.clientsMesh, c.key) s.notePeerGoneFromRegionLocked(c.key) } s.broadcastPeerStateChangeLocked(c.key, netip.AddrPort{}, false) case *dupClientSet: c.debugLogf("removed duplicate client") if set.removeClient(c) { s.dupClientConns.Add(-1) } else { c.logf("[unexpected]; dup client set didn't shrink") } if set.Len() == 1 { s.dupClientConns.Add(-1) // again; for the original one's s.dupClientKeys.Add(-1) var remain *sclient for remain = range set.set { break } if remain == nil { panic("unexpected nil remain from single element dup set") } remain.isDisabled.Store(false) remain.isDup.Store(false) s.clients[c.key] = singleClient{remain} } } if c.canMesh { delete(s.watchers, c) } delete(s.keyOfAddr, c.remoteIPPort) s.curClients.Add(-1) if c.preferred { s.curHomeClients.Add(-1) } } // notePeerGoneFromRegionLocked sends peerGone frames to parties that // key has sent to previously (whether those sends were from a local // client or forwarded). It must only be called after the key has // been removed from clientsMesh. func (s *Server) notePeerGoneFromRegionLocked(key key.NodePublic) { if _, ok := s.clientsMesh[key]; ok { panic("usage") } // Find still-connected peers and either notify that we've gone away // so they can drop their route entries to us (issue 150) // or move them over to the active client (in case a replaced client // connection is being unregistered). for pubKey, connNum := range s.sentTo[key] { set, ok := s.clients[pubKey] if !ok { continue } set.ForeachClient(func(peer *sclient) { if peer.connNum == connNum { go peer.requestPeerGoneWrite(key, PeerGoneReasonDisconnected) } }) } delete(s.sentTo, key) } // requestPeerGoneWriteLimited sends a request to write a "peer gone" // frame, but only in reply to a disco packet, and only if we haven't // sent one recently. func (c *sclient) requestPeerGoneWriteLimited(peer key.NodePublic, contents []byte, reason PeerGoneReasonType) { if disco.LooksLikeDiscoWrapper(contents) != true { return } if c.peerGoneLim.Allow() { go c.requestPeerGoneWrite(peer, reason) } } func (s *Server) addWatcher(c *sclient) { if !c.canMesh { panic("invariant: addWatcher called without permissions") } if c.key == s.publicKey { // We're connecting to ourself. Do nothing. return } s.mu.Lock() defer s.mu.Unlock() // Queue messages for each already-connected client. for peer, clientSet := range s.clients { ac := clientSet.ActiveClient() if ac == nil { continue } c.peerStateChange = append(c.peerStateChange, peerConnState{ peer: peer, present: true, ipPort: ac.remoteIPPort, }) } // And enroll the watcher in future updates (of both // connections & disconnections). s.watchers.Add(c) go c.requestMeshUpdate() } func (s *Server) accept(ctx context.Context, nc Conn, brw *bufio.ReadWriter, remoteAddr string, connNum int64) error { br := brw.Reader nc.SetDeadline(time.Now().Add(10 * time.Second)) bw := &lazyBufioWriter{w: nc, lbw: brw.Writer} if err := s.sendServerKey(bw); err != nil { return fmt.Errorf("send server key: %v", err) } nc.SetDeadline(time.Now().Add(10 * time.Second)) clientKey, clientInfo, err := s.recvClientKey(br) if err != nil { return fmt.Errorf("receive client key: %v", err) } clientAP, _ := netip.ParseAddrPort(remoteAddr) if err := s.verifyClient(ctx, clientKey, clientInfo, clientAP.Addr()); err != nil { return fmt.Errorf("client %x rejected: %v", clientKey, err) } // At this point we trust the client so we don't time out. nc.SetDeadline(time.Time{}) ctx, cancel := context.WithCancel(ctx) defer cancel() remoteIPPort, _ := netip.ParseAddrPort(remoteAddr) c := &sclient{ connNum: connNum, s: s, key: clientKey, nc: nc, br: br, bw: bw, logf: logger.WithPrefix(s.logf, fmt.Sprintf("derp client %v%s: ", remoteAddr, clientKey.ShortString())), done: ctx.Done(), remoteIPPort: remoteIPPort, connectedAt: s.clock.Now(), sendQueue: make(chan pkt, perClientSendQueueDepth), discoSendQueue: make(chan pkt, perClientSendQueueDepth), sendPongCh: make(chan [8]byte, 1), peerGone: make(chan peerGoneMsg), canMesh: clientInfo.MeshKey != "" && clientInfo.MeshKey == s.meshKey, peerGoneLim: rate.NewLimiter(rate.Every(time.Second), 3), } if c.canMesh { c.meshUpdate = make(chan struct{}) } if clientInfo != nil { c.info = *clientInfo if envknob.Bool("DERP_PROBER_DEBUG_LOGS") && clientInfo.IsProber { c.debug = true } } if s.debug { c.debug = true } s.registerClient(c) defer s.unregisterClient(c) err = s.sendServerInfo(c.bw, clientKey) if err != nil { return fmt.Errorf("send server info: %v", err) } return c.run(ctx) } func (s *Server) debugLogf(format string, v ...any) { if s.debug { s.logf(format, v...) } } // run serves the client until there's an error. // If the client hangs up or the server is closed, run returns nil, otherwise run returns an error. func (c *sclient) run(ctx context.Context) error { // Launch sender, but don't return from run until sender goroutine is done. var grp errgroup.Group sendCtx, cancelSender := context.WithCancel(ctx) grp.Go(func() error { return c.sendLoop(sendCtx) }) defer func() { cancelSender() if err := grp.Wait(); err != nil && !c.s.isClosed() { if errors.Is(err, context.Canceled) { c.debugLogf("sender canceled by reader exiting") } else { c.logf("sender failed: %v", err) } } }() c.startStatsLoop(sendCtx) for { ft, fl, err := readFrameHeader(c.br) c.debugLogf("read frame type %d len %d err %v", ft, fl, err) if err != nil { if errors.Is(err, io.EOF) { c.debugLogf("read EOF") return nil } if c.s.isClosed() { c.logf("closing; server closed") return nil } return fmt.Errorf("client %s: readFrameHeader: %w", c.key.ShortString(), err) } c.s.noteClientActivity(c) switch ft { case frameNotePreferred: err = c.handleFrameNotePreferred(ft, fl) case frameSendPacket: err = c.handleFrameSendPacket(ft, fl) case frameForwardPacket: err = c.handleFrameForwardPacket(ft, fl) case frameWatchConns: err = c.handleFrameWatchConns(ft, fl) case frameClosePeer: err = c.handleFrameClosePeer(ft, fl) case framePing: err = c.handleFramePing(ft, fl) default: err = c.handleUnknownFrame(ft, fl) } if err != nil { return err } } } func (c *sclient) handleUnknownFrame(ft frameType, fl uint32) error { _, err := io.CopyN(io.Discard, c.br, int64(fl)) return err } func (c *sclient) handleFrameNotePreferred(ft frameType, fl uint32) error { if fl != 1 { return fmt.Errorf("frameNotePreferred wrong size") } v, err := c.br.ReadByte() if err != nil { return fmt.Errorf("frameNotePreferred ReadByte: %v", err) } c.setPreferred(v != 0) return nil } func (c *sclient) handleFrameWatchConns(ft frameType, fl uint32) error { if fl != 0 { return fmt.Errorf("handleFrameWatchConns wrong size") } if !c.canMesh { return fmt.Errorf("insufficient permissions") } c.s.addWatcher(c) return nil } func (c *sclient) handleFramePing(ft frameType, fl uint32) error { c.s.gotPing.Add(1) var m PingMessage if fl < uint32(len(m)) { return fmt.Errorf("short ping: %v", fl) } if fl > 1000 { // unreasonably extra large. We leave some extra // space for future extensibility, but not too much. return fmt.Errorf("ping body too large: %v", fl) } _, err := io.ReadFull(c.br, m[:]) if err != nil { return err } if extra := int64(fl) - int64(len(m)); extra > 0 { _, err = io.CopyN(io.Discard, c.br, extra) } select { case c.sendPongCh <- [8]byte(m): default: // They're pinging too fast. Ignore. // TODO(bradfitz): add a rate limiter too. } return err } func (c *sclient) handleFrameClosePeer(ft frameType, fl uint32) error { if fl != keyLen { return fmt.Errorf("handleFrameClosePeer wrong size") } if !c.canMesh { return fmt.Errorf("insufficient permissions") } var targetKey key.NodePublic if err := targetKey.ReadRawWithoutAllocating(c.br); err != nil { return err } s := c.s s.mu.Lock() defer s.mu.Unlock() if set, ok := s.clients[targetKey]; ok { if set.Len() == 1 { c.logf("frameClosePeer closing peer %x", targetKey) } else { c.logf("frameClosePeer closing peer %x (%d connections)", targetKey, set.Len()) } set.ForeachClient(func(target *sclient) { go target.nc.Close() }) } else { c.logf("frameClosePeer failed to find peer %x", targetKey) } return nil } // handleFrameForwardPacket reads a "forward packet" frame from the client // (which must be a trusted client, a peer in our mesh). func (c *sclient) handleFrameForwardPacket(ft frameType, fl uint32) error { if !c.canMesh { return fmt.Errorf("insufficient permissions") } s := c.s srcKey, dstKey, contents, err := s.recvForwardPacket(c.br, fl) if err != nil { return fmt.Errorf("client %x: recvForwardPacket: %v", c.key, err) } s.packetsForwardedIn.Add(1) var dstLen int var dst *sclient s.mu.Lock() if set, ok := s.clients[dstKey]; ok { dstLen = set.Len() dst = set.ActiveClient() } if dst != nil { s.notePeerSendLocked(srcKey, dst) } s.mu.Unlock() if dst == nil { reason := dropReasonUnknownDestOnFwd if dstLen > 1 { reason = dropReasonDupClient } else { c.requestPeerGoneWriteLimited(dstKey, contents, PeerGoneReasonNotHere) } s.recordDrop(contents, srcKey, dstKey, reason) return nil } dst.debugLogf("received forwarded packet from %s via %s", srcKey.ShortString(), c.key.ShortString()) return c.sendPkt(dst, pkt{ bs: contents, enqueuedAt: c.s.clock.Now(), src: srcKey, }) } // notePeerSendLocked records that src sent to dst. We keep track of // that so when src disconnects, we can tell dst (if it's still // around) that src is gone (a peerGone frame). func (s *Server) notePeerSendLocked(src key.NodePublic, dst *sclient) { m, ok := s.sentTo[src] if !ok { m = map[key.NodePublic]int64{} s.sentTo[src] = m } m[dst.key] = dst.connNum } // handleFrameSendPacket reads a "send packet" frame from the client. func (c *sclient) handleFrameSendPacket(ft frameType, fl uint32) error { s := c.s dstKey, contents, err := s.recvPacket(c.br, fl) if err != nil { return fmt.Errorf("client %x: recvPacket: %v", c.key, err) } var fwd PacketForwarder var dstLen int var dst *sclient s.mu.Lock() if set, ok := s.clients[dstKey]; ok { dstLen = set.Len() dst = set.ActiveClient() } if dst != nil { s.notePeerSendLocked(c.key, dst) } else if dstLen < 1 { fwd = s.clientsMesh[dstKey] } s.mu.Unlock() if dst == nil { if fwd != nil { s.packetsForwardedOut.Add(1) err := fwd.ForwardPacket(c.key, dstKey, contents) c.debugLogf("SendPacket for %s, forwarding via %s: %v", dstKey.ShortString(), fwd, err) if err != nil { // TODO: return nil } return nil } reason := dropReasonUnknownDest if dstLen > 1 { reason = dropReasonDupClient } else { c.requestPeerGoneWriteLimited(dstKey, contents, PeerGoneReasonNotHere) } s.recordDrop(contents, c.key, dstKey, reason) c.debugLogf("SendPacket for %s, dropping with reason=%s", dstKey.ShortString(), reason) return nil } c.debugLogf("SendPacket for %s, sending directly", dstKey.ShortString()) p := pkt{ bs: contents, enqueuedAt: c.s.clock.Now(), src: c.key, } return c.sendPkt(dst, p) } func (c *sclient) debugLogf(format string, v ...any) { if c.debug { c.logf(format, v...) } } // dropReason is why we dropped a DERP frame. type dropReason int //go:generate go run tailscale.com/cmd/addlicense -file dropreason_string.go go run golang.org/x/tools/cmd/stringer -type=dropReason -trimprefix=dropReason const ( dropReasonUnknownDest dropReason = iota // unknown destination pubkey dropReasonUnknownDestOnFwd // unknown destination pubkey on a derp-forwarded packet dropReasonGoneDisconnected // destination tailscaled disconnected before we could send dropReasonQueueHead // destination queue is full, dropped packet at queue head dropReasonQueueTail // destination queue is full, dropped packet at queue tail dropReasonWriteError // OS write() failed dropReasonDupClient // the public key is connected 2+ times (active/active, fighting) numDropReasons // unused; keep last ) func (s *Server) recordDrop(packetBytes []byte, srcKey, dstKey key.NodePublic, reason dropReason) { s.packetsDropped.Add(1) s.packetsDroppedReasonCounters[reason].Add(1) looksDisco := disco.LooksLikeDiscoWrapper(packetBytes) if looksDisco { s.packetsDroppedTypeDisco.Add(1) } else { s.packetsDroppedTypeOther.Add(1) } if verboseDropKeys[dstKey] { // Preformat the log string prior to calling limitedLogf. The // limiter acts based on the format string, and we want to // rate-limit per src/dst keys, not on the generic "dropped // stuff" message. msg := fmt.Sprintf("drop (%s) %s -> %s", srcKey.ShortString(), reason, dstKey.ShortString()) s.limitedLogf(msg) } s.debugLogf("dropping packet reason=%s dst=%s disco=%v", reason, dstKey, looksDisco) } func (c *sclient) sendPkt(dst *sclient, p pkt) error { s := c.s dstKey := dst.key // Attempt to queue for sending up to 3 times. On each attempt, if // the queue is full, try to drop from queue head to prioritize // fresher packets. sendQueue := dst.sendQueue if disco.LooksLikeDiscoWrapper(p.bs) { sendQueue = dst.discoSendQueue } for attempt := 0; attempt < 3; attempt++ { select { case <-dst.done: s.recordDrop(p.bs, c.key, dstKey, dropReasonGoneDisconnected) dst.debugLogf("sendPkt attempt %d dropped, dst gone", attempt) return nil default: } select { case sendQueue <- p: dst.debugLogf("sendPkt attempt %d enqueued", attempt) return nil default: } select { case pkt := <-sendQueue: s.recordDrop(pkt.bs, c.key, dstKey, dropReasonQueueHead) c.recordQueueTime(pkt.enqueuedAt) default: } } // Failed to make room for packet. This can happen in a heavily // contended queue with racing writers. Give up and tail-drop in // this case to keep reader unblocked. s.recordDrop(p.bs, c.key, dstKey, dropReasonQueueTail) dst.debugLogf("sendPkt attempt %d dropped, queue full") return nil } // requestPeerGoneWrite sends a request to write a "peer gone" frame // with an explanation of why it is gone. It blocks until either the // write request is scheduled, or the client has closed. func (c *sclient) requestPeerGoneWrite(peer key.NodePublic, reason PeerGoneReasonType) { select { case c.peerGone <- peerGoneMsg{ peer: peer, reason: reason, }: case <-c.done: } } func (c *sclient) requestMeshUpdate() { if !c.canMesh { panic("unexpected requestMeshUpdate") } select { case c.meshUpdate <- struct{}{}: case <-c.done: } } // verifyClient checks whether the client is allowed to connect to the derper, // depending on how & whether the server's been configured to verify. func (s *Server) verifyClient(ctx context.Context, clientKey key.NodePublic, info *clientInfo, clientIP netip.Addr) error { // tailscaled-based verification: if s.verifyClientsLocalTailscaled { status, err := tailscale.Status(ctx) if err != nil { return fmt.Errorf("failed to query local tailscaled status: %w", err) } if clientKey == status.Self.PublicKey { return nil } if _, exists := status.Peer[clientKey]; !exists { return fmt.Errorf("client %v not in set of peers", clientKey) } } // admission controller-based verification: if s.verifyClientsURL != "" { ctx, cancel := context.WithTimeout(ctx, 5*time.Second) defer cancel() jreq, err := json.Marshal(&tailcfg.DERPAdmitClientRequest{ NodePublic: clientKey, Source: clientIP, }) if err != nil { return err } req, err := http.NewRequestWithContext(ctx, "POST", s.verifyClientsURL, bytes.NewReader(jreq)) if err != nil { return err } res, err := http.DefaultClient.Do(req) if err != nil { if s.verifyClientsURLFailOpen { s.logf("admission controller unreachable; allowing client %v", clientKey) return nil } return err } defer res.Body.Close() if res.StatusCode != 200 { return fmt.Errorf("admission controller: %v", res.Status) } var jres tailcfg.DERPAdmitClientResponse if err := json.NewDecoder(io.LimitReader(res.Body, 4<<10)).Decode(&jres); err != nil { return err } if !jres.Allow { return fmt.Errorf("admission controller: %v/%v not allowed", clientKey, clientIP) } // TODO(bradfitz): add policy for configurable bandwidth rate per client? } return nil } func (s *Server) sendServerKey(lw *lazyBufioWriter) error { buf := make([]byte, 0, len(magic)+key.NodePublicRawLen) buf = append(buf, magic...) buf = s.publicKey.AppendTo(buf) err := writeFrame(lw.bw(), frameServerKey, buf) lw.Flush() // redundant (no-op) flush to release bufio.Writer return err } func (s *Server) noteClientActivity(c *sclient) { if !c.isDup.Load() { // Fast path for clients that aren't in a dup set. return } if c.isDisabled.Load() { // If they're already disabled, no point checking more. return } s.mu.Lock() defer s.mu.Unlock() ds, ok := s.clients[c.key].(*dupClientSet) if !ok { // It became unduped in between the isDup fast path check above // and the mutex check. Nothing to do. return } if s.dupPolicy == lastWriterIsActive { ds.last = c } else if ds.last == nil { // If we didn't have a primary, let the current // speaker be the primary. ds.last = c } if sh := ds.sendHistory; len(sh) != 0 && sh[len(sh)-1] == c { // The client c was the last client to make activity // in this set and it was already recorded. Nothing to // do. return } // If we saw this connection send previously, then consider // the group fighting and disable them all. if s.dupPolicy == disableFighters { for _, prior := range ds.sendHistory { if prior == c { ds.ForeachClient(func(c *sclient) { c.isDisabled.Store(true) }) break } } } // Append this client to the list of clients who spoke last. ds.sendHistory = append(ds.sendHistory, c) } type serverInfo struct { Version int `json:"version,omitempty"` TokenBucketBytesPerSecond int `json:",omitempty"` TokenBucketBytesBurst int `json:",omitempty"` } func (s *Server) sendServerInfo(bw *lazyBufioWriter, clientKey key.NodePublic) error { msg, err := json.Marshal(serverInfo{Version: ProtocolVersion}) if err != nil { return err } msgbox := s.privateKey.SealTo(clientKey, msg) if err := writeFrameHeader(bw.bw(), frameServerInfo, uint32(len(msgbox))); err != nil { return err } if _, err := bw.Write(msgbox); err != nil { return err } return bw.Flush() } // recvClientKey reads the frameClientInfo frame from the client (its // proof of identity) upon its initial connection. It should be // considered especially untrusted at this point. func (s *Server) recvClientKey(br *bufio.Reader) (clientKey key.NodePublic, info *clientInfo, err error) { fl, err := readFrameTypeHeader(br, frameClientInfo) if err != nil { return zpub, nil, err } const minLen = keyLen + nonceLen if fl < minLen { return zpub, nil, errors.New("short client info") } // We don't trust the client at all yet, so limit its input size to limit // things like JSON resource exhausting (http://github.com/golang/go/issues/31789). if fl > 256<<10 { return zpub, nil, errors.New("long client info") } if err := clientKey.ReadRawWithoutAllocating(br); err != nil { return zpub, nil, err } msgLen := int(fl - keyLen) msgbox := make([]byte, msgLen) if _, err := io.ReadFull(br, msgbox); err != nil { return zpub, nil, fmt.Errorf("msgbox: %v", err) } msg, ok := s.privateKey.OpenFrom(clientKey, msgbox) if !ok { return zpub, nil, fmt.Errorf("msgbox: cannot open len=%d with client key %s", msgLen, clientKey) } info = new(clientInfo) if err := json.Unmarshal(msg, info); err != nil { return zpub, nil, fmt.Errorf("msg: %v", err) } return clientKey, info, nil } func (s *Server) recvPacket(br *bufio.Reader, frameLen uint32) (dstKey key.NodePublic, contents []byte, err error) { if frameLen < keyLen { return zpub, nil, errors.New("short send packet frame") } if err := dstKey.ReadRawWithoutAllocating(br); err != nil { return zpub, nil, err } packetLen := frameLen - keyLen if packetLen > MaxPacketSize { return zpub, nil, fmt.Errorf("data packet longer (%d) than max of %v", packetLen, MaxPacketSize) } contents = make([]byte, packetLen) if _, err := io.ReadFull(br, contents); err != nil { return zpub, nil, err } s.packetsRecv.Add(1) s.bytesRecv.Add(int64(len(contents))) if disco.LooksLikeDiscoWrapper(contents) { s.packetsRecvDisco.Add(1) } else { s.packetsRecvOther.Add(1) } return dstKey, contents, nil } // zpub is the key.NodePublic zero value. var zpub key.NodePublic func (s *Server) recvForwardPacket(br *bufio.Reader, frameLen uint32) (srcKey, dstKey key.NodePublic, contents []byte, err error) { if frameLen < keyLen*2 { return zpub, zpub, nil, errors.New("short send packet frame") } if err := srcKey.ReadRawWithoutAllocating(br); err != nil { return zpub, zpub, nil, err } if err := dstKey.ReadRawWithoutAllocating(br); err != nil { return zpub, zpub, nil, err } packetLen := frameLen - keyLen*2 if packetLen > MaxPacketSize { return zpub, zpub, nil, fmt.Errorf("data packet longer (%d) than max of %v", packetLen, MaxPacketSize) } contents = make([]byte, packetLen) if _, err := io.ReadFull(br, contents); err != nil { return zpub, zpub, nil, err } // TODO: was s.packetsRecv.Add(1) // TODO: was s.bytesRecv.Add(int64(len(contents))) return srcKey, dstKey, contents, nil } // sclient is a client connection to the server. // // (The "s" prefix is to more explicitly distinguish it from Client in derp_client.go) type sclient struct { // Static after construction. connNum int64 // process-wide unique counter, incremented each Accept s *Server nc Conn key key.NodePublic info clientInfo logf logger.Logf done <-chan struct{} // closed when connection closes remoteIPPort netip.AddrPort // zero if remoteAddr is not ip:port. sendQueue chan pkt // packets queued to this client; never closed discoSendQueue chan pkt // important packets queued to this client; never closed sendPongCh chan [8]byte // pong replies to send to the client; never closed peerGone chan peerGoneMsg // write request that a peer is not at this server (not used by mesh peers) meshUpdate chan struct{} // write request to write peerStateChange canMesh bool // clientInfo had correct mesh token for inter-region routing isDup atomic.Bool // whether more than 1 sclient for key is connected isDisabled atomic.Bool // whether sends to this peer are disabled due to active/active dups debug bool // turn on for verbose logging // Owned by run, not thread-safe. br *bufio.Reader connectedAt time.Time preferred bool // Owned by sender, not thread-safe. bw *lazyBufioWriter // Guarded by s.mu // // peerStateChange is used by mesh peers (a set of regional // DERP servers) and contains records that need to be sent to // the client for them to update their map of who's connected // to this node. peerStateChange []peerConnState // peerGoneLimiter limits how often the server will inform a // client that it's trying to establish a direct connection // through us with a peer we have no record of. peerGoneLim *rate.Limiter } // peerConnState represents whether a peer is connected to the server // or not. type peerConnState struct { ipPort netip.AddrPort // if present, the peer's IP:port peer key.NodePublic present bool } // pkt is a request to write a data frame to an sclient. type pkt struct { // enqueuedAt is when a packet was put onto a queue before it was sent, // and is used for reporting metrics on the duration of packets in the queue. enqueuedAt time.Time // bs is the data packet bytes. // The memory is owned by pkt. bs []byte // src is the who's the sender of the packet. src key.NodePublic } // peerGoneMsg is a request to write a peerGone frame to an sclient type peerGoneMsg struct { peer key.NodePublic reason PeerGoneReasonType } func (c *sclient) setPreferred(v bool) { if c.preferred == v { return } c.preferred = v var homeMove *expvar.Int if v { c.s.curHomeClients.Add(1) homeMove = &c.s.homeMovesIn } else { c.s.curHomeClients.Add(-1) homeMove = &c.s.homeMovesOut } // Keep track of varz for home serve moves in/out. But ignore // the initial packet set when a client connects, which we // assume happens within 5 seconds. In any case, just for // graphs, so not important to miss a move. But it shouldn't: // the netcheck/re-STUNs in magicsock only happen about every // 30 seconds. if c.s.clock.Since(c.connectedAt) > 5*time.Second { homeMove.Add(1) } } // expMovingAverage returns the new moving average given the previous average, // a new value, and an alpha decay factor. // https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average func expMovingAverage(prev, newValue, alpha float64) float64 { return alpha*newValue + (1-alpha)*prev } // recordQueueTime updates the average queue duration metric after a packet has been sent. func (c *sclient) recordQueueTime(enqueuedAt time.Time) { elapsed := float64(c.s.clock.Since(enqueuedAt).Milliseconds()) for { old := atomic.LoadUint64(c.s.avgQueueDuration) newAvg := expMovingAverage(math.Float64frombits(old), elapsed, 0.1) if atomic.CompareAndSwapUint64(c.s.avgQueueDuration, old, math.Float64bits(newAvg)) { break } } } func (c *sclient) sendLoop(ctx context.Context) error { defer func() { // If the sender shuts down unilaterally due to an error, close so // that the receive loop unblocks and cleans up the rest. c.nc.Close() // Drain the send queue to count dropped packets for { select { case pkt := <-c.sendQueue: c.s.recordDrop(pkt.bs, pkt.src, c.key, dropReasonGoneDisconnected) case pkt := <-c.discoSendQueue: c.s.recordDrop(pkt.bs, pkt.src, c.key, dropReasonGoneDisconnected) default: return } } }() jitter := time.Duration(rand.Intn(5000)) * time.Millisecond keepAliveTick, keepAliveTickChannel := c.s.clock.NewTicker(keepAlive + jitter) defer keepAliveTick.Stop() var werr error // last write error for { if werr != nil { return werr } // First, a non-blocking select (with a default) that // does as many non-flushing writes as possible. select { case <-ctx.Done(): return nil case msg := <-c.peerGone: werr = c.sendPeerGone(msg.peer, msg.reason) continue case <-c.meshUpdate: werr = c.sendMeshUpdates() continue case msg := <-c.sendQueue: werr = c.sendPacket(msg.src, msg.bs) c.recordQueueTime(msg.enqueuedAt) continue case msg := <-c.discoSendQueue: werr = c.sendPacket(msg.src, msg.bs) c.recordQueueTime(msg.enqueuedAt) continue case msg := <-c.sendPongCh: werr = c.sendPong(msg) continue case <-keepAliveTickChannel: werr = c.sendKeepAlive() continue default: // Flush any writes from the 3 sends above, or from // the blocking loop below. if werr = c.bw.Flush(); werr != nil { return werr } } // Then a blocking select with same: select { case <-ctx.Done(): return nil case msg := <-c.peerGone: werr = c.sendPeerGone(msg.peer, msg.reason) case <-c.meshUpdate: werr = c.sendMeshUpdates() continue case msg := <-c.sendQueue: werr = c.sendPacket(msg.src, msg.bs) c.recordQueueTime(msg.enqueuedAt) case msg := <-c.discoSendQueue: werr = c.sendPacket(msg.src, msg.bs) c.recordQueueTime(msg.enqueuedAt) case msg := <-c.sendPongCh: werr = c.sendPong(msg) continue case <-keepAliveTickChannel: werr = c.sendKeepAlive() } } } func (c *sclient) setWriteDeadline() { c.nc.SetWriteDeadline(time.Now().Add(writeTimeout)) } // sendKeepAlive sends a keep-alive frame, without flushing. func (c *sclient) sendKeepAlive() error { c.setWriteDeadline() return writeFrameHeader(c.bw.bw(), frameKeepAlive, 0) } // sendPong sends a pong reply, without flushing. func (c *sclient) sendPong(data [8]byte) error { c.s.sentPong.Add(1) c.setWriteDeadline() if err := writeFrameHeader(c.bw.bw(), framePong, uint32(len(data))); err != nil { return err } _, err := c.bw.Write(data[:]) return err } // sendPeerGone sends a peerGone frame, without flushing. func (c *sclient) sendPeerGone(peer key.NodePublic, reason PeerGoneReasonType) error { switch reason { case PeerGoneReasonDisconnected: c.s.peerGoneDisconnectedFrames.Add(1) case PeerGoneReasonNotHere: c.s.peerGoneNotHereFrames.Add(1) } c.setWriteDeadline() data := make([]byte, 0, keyLen+1) data = peer.AppendTo(data) data = append(data, byte(reason)) if err := writeFrameHeader(c.bw.bw(), framePeerGone, uint32(len(data))); err != nil { return err } _, err := c.bw.Write(data) return err } // sendPeerPresent sends a peerPresent frame, without flushing. func (c *sclient) sendPeerPresent(peer key.NodePublic, ipPort netip.AddrPort) error { c.setWriteDeadline() const frameLen = keyLen + 16 + 2 if err := writeFrameHeader(c.bw.bw(), framePeerPresent, frameLen); err != nil { return err } payload := make([]byte, frameLen) _ = peer.AppendTo(payload[:0]) a16 := ipPort.Addr().As16() copy(payload[keyLen:], a16[:]) binary.BigEndian.PutUint16(payload[keyLen+16:], ipPort.Port()) _, err := c.bw.Write(payload) return err } // sendMeshUpdates drains as many mesh peerStateChange entries as // possible into the write buffer WITHOUT flushing or otherwise // blocking (as it holds c.s.mu while working). If it can't drain them // all, it schedules itself to be called again in the future. func (c *sclient) sendMeshUpdates() error { c.s.mu.Lock() defer c.s.mu.Unlock() // allow all happened-before mesh update request goroutines to complete, if // we don't finish the task we'll queue another below. drainUpdates: for { select { case <-c.meshUpdate: default: break drainUpdates } } writes := 0 for _, pcs := range c.peerStateChange { if c.bw.Available() <= frameHeaderLen+keyLen { break } var err error if pcs.present { err = c.sendPeerPresent(pcs.peer, pcs.ipPort) } else { err = c.sendPeerGone(pcs.peer, PeerGoneReasonDisconnected) } if err != nil { // Shouldn't happen, though, as we're writing // into available buffer space, not the // network. return err } writes++ } remain := copy(c.peerStateChange, c.peerStateChange[writes:]) c.peerStateChange = c.peerStateChange[:remain] // Did we manage to write them all into the bufio buffer without flushing? if len(c.peerStateChange) == 0 { if cap(c.peerStateChange) > 16 { c.peerStateChange = nil } } else { // Didn't finish in the buffer space provided; schedule a future run. go c.requestMeshUpdate() } return nil } // sendPacket writes contents to the client in a RecvPacket frame. If // srcKey.IsZero, uses the old DERPv1 framing format, otherwise uses // DERPv2. The bytes of contents are only valid until this function // returns, do not retain slices. // It does not flush its bufio.Writer. func (c *sclient) sendPacket(srcKey key.NodePublic, contents []byte) (err error) { defer func() { // Stats update. if err != nil { c.s.recordDrop(contents, srcKey, c.key, dropReasonWriteError) } else { c.s.packetsSent.Add(1) c.s.bytesSent.Add(int64(len(contents))) } c.debugLogf("sendPacket from %s: %v", srcKey.ShortString(), err) }() c.setWriteDeadline() withKey := !srcKey.IsZero() pktLen := len(contents) if withKey { pktLen += key.NodePublicRawLen } if err = writeFrameHeader(c.bw.bw(), frameRecvPacket, uint32(pktLen)); err != nil { return err } if withKey { if err := srcKey.WriteRawWithoutAllocating(c.bw.bw()); err != nil { return err } } _, err = c.bw.Write(contents) return err } // AddPacketForwarder registers fwd as a packet forwarder for dst. // fwd must be comparable. func (s *Server) AddPacketForwarder(dst key.NodePublic, fwd PacketForwarder) { s.mu.Lock() defer s.mu.Unlock() if prev, ok := s.clientsMesh[dst]; ok { if prev == fwd { // Duplicate registration of same forwarder. Ignore. return } if m, ok := prev.(*multiForwarder); ok { if _, ok := m.all[fwd]; ok { // Duplicate registration of same forwarder in set; ignore. return } m.add(fwd) return } if prev != nil { // Otherwise, the existing value is not a set, // not a dup, and not local-only (nil) so make // it a set. `prev` existed first, so will have higher // priority. fwd = newMultiForwarder(prev, fwd) s.multiForwarderCreated.Add(1) } } s.clientsMesh[dst] = fwd } // RemovePacketForwarder removes fwd as a packet forwarder for dst. // fwd must be comparable. func (s *Server) RemovePacketForwarder(dst key.NodePublic, fwd PacketForwarder) { s.mu.Lock() defer s.mu.Unlock() v, ok := s.clientsMesh[dst] if !ok { return } if m, ok := v.(*multiForwarder); ok { if len(m.all) < 2 { panic("unexpected") } if remain, isLast := m.deleteLocked(fwd); isLast { // If fwd was in m and we no longer need to be a // multiForwarder, replace the entry with the // remaining PacketForwarder. s.clientsMesh[dst] = remain s.multiForwarderDeleted.Add(1) } return } if v != fwd { s.removePktForwardOther.Add(1) // Delete of an entry that wasn't in the // map. Harmless, so ignore. // (This might happen if a user is moving around // between nodes and/or the server sent duplicate // connection change broadcasts.) return } if _, isLocal := s.clients[dst]; isLocal { s.clientsMesh[dst] = nil } else { delete(s.clientsMesh, dst) s.notePeerGoneFromRegionLocked(dst) } } // multiForwarder is a PacketForwarder that represents a set of // forwarding options. It's used in the rare cases that a client is // connected to multiple DERP nodes in a region. That shouldn't really // happen except for perhaps during brief moments while the client is // reconfiguring, in which case we don't want to forget where the // client is. The map value is unique connection number; the lowest // one has been seen the longest. It's used to make sure we forward // packets consistently to the same node and don't pick randomly. type multiForwarder struct { fwd syncs.AtomicValue[PacketForwarder] // preferred forwarder. all map[PacketForwarder]uint8 // all forwarders, protected by s.mu. } // newMultiForwarder creates a new multiForwarder. // The first PacketForwarder passed to this function will be the preferred one. func newMultiForwarder(fwds ...PacketForwarder) *multiForwarder { f := &multiForwarder{all: make(map[PacketForwarder]uint8)} f.fwd.Store(fwds[0]) for idx, fwd := range fwds { f.all[fwd] = uint8(idx) } return f } // add adds a new forwarder to the map with a connection number that // is higher than the existing ones. func (f *multiForwarder) add(fwd PacketForwarder) { var max uint8 for _, v := range f.all { if v > max { max = v } } f.all[fwd] = max + 1 } // deleteLocked removes a packet forwarder from the map. It expects Server.mu to be held. // If only one forwarder remains after the removal, it will be returned alongside a `true` boolean value. func (f *multiForwarder) deleteLocked(fwd PacketForwarder) (_ PacketForwarder, isLast bool) { delete(f.all, fwd) if fwd == f.fwd.Load() { // The preferred forwarder has been removed, choose a new one // based on the lowest index. var lowestfwd PacketForwarder var lowest uint8 for k, v := range f.all { if lowestfwd == nil || v < lowest { lowestfwd = k lowest = v } } if lowestfwd != nil { f.fwd.Store(lowestfwd) } } if len(f.all) == 1 { for k := range f.all { return k, true } } return nil, false } func (f *multiForwarder) ForwardPacket(src, dst key.NodePublic, payload []byte) error { return f.fwd.Load().ForwardPacket(src, dst, payload) } func (f *multiForwarder) String() string { return fmt.Sprintf("", f.fwd.Load(), len(f.all)) } func (s *Server) expVarFunc(f func() any) expvar.Func { return expvar.Func(func() any { s.mu.Lock() defer s.mu.Unlock() return f() }) } // ExpVar returns an expvar variable suitable for registering with expvar.Publish. func (s *Server) ExpVar() expvar.Var { m := new(metrics.Set) m.Set("gauge_memstats_sys0", expvar.Func(func() any { return int64(s.memSys0) })) m.Set("gauge_watchers", s.expVarFunc(func() any { return len(s.watchers) })) m.Set("gauge_current_file_descriptors", expvar.Func(func() any { return metrics.CurrentFDs() })) m.Set("gauge_current_connections", &s.curClients) m.Set("gauge_current_home_connections", &s.curHomeClients) m.Set("gauge_clients_total", expvar.Func(func() any { return len(s.clientsMesh) })) m.Set("gauge_clients_local", expvar.Func(func() any { return len(s.clients) })) m.Set("gauge_clients_remote", expvar.Func(func() any { return len(s.clientsMesh) - len(s.clients) })) m.Set("gauge_current_dup_client_keys", &s.dupClientKeys) m.Set("gauge_current_dup_client_conns", &s.dupClientConns) m.Set("counter_total_dup_client_conns", &s.dupClientConnTotal) m.Set("accepts", &s.accepts) m.Set("bytes_received", &s.bytesRecv) m.Set("bytes_sent", &s.bytesSent) m.Set("packets_dropped", &s.packetsDropped) m.Set("counter_packets_dropped_reason", &s.packetsDroppedReason) m.Set("counter_packets_dropped_type", &s.packetsDroppedType) m.Set("counter_packets_received_kind", &s.packetsRecvByKind) m.Set("packets_sent", &s.packetsSent) m.Set("packets_received", &s.packetsRecv) m.Set("unknown_frames", &s.unknownFrames) m.Set("home_moves_in", &s.homeMovesIn) m.Set("home_moves_out", &s.homeMovesOut) m.Set("got_ping", &s.gotPing) m.Set("sent_pong", &s.sentPong) m.Set("peer_gone_disconnected_frames", &s.peerGoneDisconnectedFrames) m.Set("peer_gone_not_here_frames", &s.peerGoneNotHereFrames) m.Set("packets_forwarded_out", &s.packetsForwardedOut) m.Set("packets_forwarded_in", &s.packetsForwardedIn) m.Set("multiforwarder_created", &s.multiForwarderCreated) m.Set("multiforwarder_deleted", &s.multiForwarderDeleted) m.Set("packet_forwarder_delete_other_value", &s.removePktForwardOther) m.Set("average_queue_duration_ms", expvar.Func(func() any { return math.Float64frombits(atomic.LoadUint64(s.avgQueueDuration)) })) m.Set("counter_tcp_rtt", &s.tcpRtt) var expvarVersion expvar.String expvarVersion.Set(version.Long()) m.Set("version", &expvarVersion) return m } func (s *Server) ConsistencyCheck() error { s.mu.Lock() defer s.mu.Unlock() var errs []string var nilMeshNotInClient int for k, f := range s.clientsMesh { if f == nil { if _, ok := s.clients[k]; !ok { nilMeshNotInClient++ } } } if nilMeshNotInClient != 0 { errs = append(errs, fmt.Sprintf("%d s.clientsMesh keys not in s.clients", nilMeshNotInClient)) } var clientNotInMesh int for k := range s.clients { if _, ok := s.clientsMesh[k]; !ok { clientNotInMesh++ } } if clientNotInMesh != 0 { errs = append(errs, fmt.Sprintf("%d s.clients keys not in s.clientsMesh", clientNotInMesh)) } if s.curClients.Value() != int64(len(s.clients)) { errs = append(errs, fmt.Sprintf("expvar connections = %d != clients map says of %d", s.curClients.Value(), len(s.clients))) } if len(errs) == 0 { return nil } return errors.New(strings.Join(errs, ", ")) } const minTimeBetweenLogs = 2 * time.Second // BytesSentRecv records the number of bytes that have been sent since the last traffic check // for a given process, as well as the public key of the process sending those bytes. type BytesSentRecv struct { Sent uint64 Recv uint64 // Key is the public key of the client which sent/received these bytes. Key key.NodePublic } // parseSSOutput parses the output from the specific call to ss in ServeDebugTraffic. // Separated out for ease of testing. func parseSSOutput(raw string) map[netip.AddrPort]BytesSentRecv { newState := map[netip.AddrPort]BytesSentRecv{} // parse every 2 lines and get src and dst ips, and kv pairs lines := strings.Split(raw, "\n") for i := 0; i < len(lines); i += 2 { ipInfo := strings.Fields(strings.TrimSpace(lines[i])) if len(ipInfo) < 5 { continue } src, err := netip.ParseAddrPort(ipInfo[4]) if err != nil { continue } stats := strings.Fields(strings.TrimSpace(lines[i+1])) stat := BytesSentRecv{} for _, s := range stats { if strings.Contains(s, "bytes_sent") { sent, err := strconv.Atoi(s[strings.Index(s, ":")+1:]) if err == nil { stat.Sent = uint64(sent) } } else if strings.Contains(s, "bytes_received") { recv, err := strconv.Atoi(s[strings.Index(s, ":")+1:]) if err == nil { stat.Recv = uint64(recv) } } } newState[src] = stat } return newState } func (s *Server) ServeDebugTraffic(w http.ResponseWriter, r *http.Request) { prevState := map[netip.AddrPort]BytesSentRecv{} enc := json.NewEncoder(w) for r.Context().Err() == nil { output, err := exec.Command("ss", "-i", "-H", "-t").Output() if err != nil { fmt.Fprintf(w, "ss failed: %v", err) return } newState := parseSSOutput(string(output)) s.mu.Lock() for k, next := range newState { prev := prevState[k] if prev.Sent < next.Sent || prev.Recv < next.Recv { if pkey, ok := s.keyOfAddr[k]; ok { next.Key = pkey if err := enc.Encode(next); err != nil { s.mu.Unlock() return } } } } s.mu.Unlock() prevState = newState if _, err := fmt.Fprintln(w); err != nil { return } if f, ok := w.(http.Flusher); ok { f.Flush() } time.Sleep(minTimeBetweenLogs) } } var bufioWriterPool = &sync.Pool{ New: func() any { return bufio.NewWriterSize(io.Discard, 2<<10) }, } // lazyBufioWriter is a bufio.Writer-like wrapping writer that lazily // allocates its actual bufio.Writer from a sync.Pool, releasing it to // the pool upon flush. // // We do this to reduce memory overhead; most DERP connections are // idle and the idle bufio.Writers were 30% of overall memory usage. type lazyBufioWriter struct { w io.Writer // underlying lbw *bufio.Writer // lazy; nil means it needs an associated buffer } func (w *lazyBufioWriter) bw() *bufio.Writer { if w.lbw == nil { w.lbw = bufioWriterPool.Get().(*bufio.Writer) w.lbw.Reset(w.w) } return w.lbw } func (w *lazyBufioWriter) Available() int { return w.bw().Available() } func (w *lazyBufioWriter) Write(p []byte) (int, error) { return w.bw().Write(p) } func (w *lazyBufioWriter) Flush() error { if w.lbw == nil { return nil } err := w.lbw.Flush() w.lbw.Reset(io.Discard) bufioWriterPool.Put(w.lbw) w.lbw = nil return err }