// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package wgengine import ( "bufio" "bytes" "context" "errors" "fmt" "io" "log" "net" "os" "os/exec" "runtime" "strings" "sync" "time" "github.com/tailscale/wireguard-go/device" "github.com/tailscale/wireguard-go/tun" "github.com/tailscale/wireguard-go/wgcfg" "go4.org/mem" "tailscale.com/ipn/ipnstate" "tailscale.com/net/interfaces" "tailscale.com/tailcfg" "tailscale.com/types/key" "tailscale.com/types/logger" "tailscale.com/wgengine/filter" "tailscale.com/wgengine/magicsock" "tailscale.com/wgengine/monitor" "tailscale.com/wgengine/packet" "tailscale.com/wgengine/router" "tailscale.com/wgengine/tstun" ) // minimalMTU is the MTU we set on tailscale's tuntap // interface. wireguard-go defaults to 1420 bytes, which only works if // the "outer" MTU is 1500 bytes. This breaks on DSL connections // (typically 1492 MTU) and on GCE (1460 MTU?!). // // 1280 is the smallest MTU allowed for IPv6, which is a sensible // "probably works everywhere" setting until we develop proper PMTU // discovery. const minimalMTU = 1280 type userspaceEngine struct { logf logger.Logf reqCh chan struct{} waitCh chan struct{} // chan is closed when first Close call completes; contrast with closing bool tundev *tstun.TUN wgdev *device.Device router router.Router magicConn *magicsock.Conn linkMon *monitor.Mon wgLock sync.Mutex // serializes all wgdev operations; see lock order comment below lastReconfig string lastCfg wgcfg.Config mu sync.Mutex // guards following; see lock order comment below closing bool // Close was called (even if we're still closing) statusCallback StatusCallback peerSequence []wgcfg.Key endpoints []string pingers map[wgcfg.Key]context.CancelFunc // mu must be held to call CancelFunc linkState *interfaces.State // Lock ordering: wgLock, then mu. } type Loggify struct { f logger.Logf } func (l *Loggify) Write(b []byte) (int, error) { l.f(string(b)) return len(b), nil } func NewFakeUserspaceEngine(logf logger.Logf, listenPort uint16) (Engine, error) { logf("Starting userspace wireguard engine (FAKE tuntap device).") tundev := tstun.WrapTUN(logf, tstun.NewFakeTUN()) return NewUserspaceEngineAdvanced(logf, tundev, router.NewFake, listenPort) } // NewUserspaceEngine creates the named tun device and returns a // Tailscale Engine running on it. func NewUserspaceEngine(logf logger.Logf, tunname string, listenPort uint16) (Engine, error) { if tunname == "" { return nil, fmt.Errorf("--tun name must not be blank") } logf("Starting userspace wireguard engine with tun device %q", tunname) tun, err := tun.CreateTUN(tunname, minimalMTU) if err != nil { diagnoseTUNFailure(logf) logf("CreateTUN: %v", err) return nil, err } logf("CreateTUN ok.") tundev := tstun.WrapTUN(logf, tun) e, err := NewUserspaceEngineAdvanced(logf, tundev, router.New, listenPort) if err != nil { return nil, err } return e, err } // RouterGen is the signature for a function that creates a // router.Router. type RouterGen func(logf logger.Logf, wgdev *device.Device, tundev tun.Device) (router.Router, error) // NewUserspaceEngineAdvanced is like NewUserspaceEngine but takes a pre-created TUN device and allows specifing // a custom router constructor and listening port. func NewUserspaceEngineAdvanced(logf logger.Logf, tundev *tstun.TUN, routerGen RouterGen, listenPort uint16) (Engine, error) { return newUserspaceEngineAdvanced(logf, tundev, routerGen, listenPort) } func newUserspaceEngineAdvanced(logf logger.Logf, tundev *tstun.TUN, routerGen RouterGen, listenPort uint16) (_ Engine, reterr error) { e := &userspaceEngine{ logf: logf, reqCh: make(chan struct{}, 1), waitCh: make(chan struct{}), tundev: tundev, pingers: make(map[wgcfg.Key]context.CancelFunc), } e.linkState, _ = getLinkState() mon, err := monitor.New(logf, func() { e.LinkChange(false) }) if err != nil { tundev.Close() return nil, err } e.linkMon = mon endpointsFn := func(endpoints []string) { e.mu.Lock() e.endpoints = append(e.endpoints[:0], endpoints...) e.mu.Unlock() e.RequestStatus() } magicsockOpts := magicsock.Options{ Logf: logf, Port: listenPort, EndpointsFunc: endpointsFn, } e.magicConn, err = magicsock.NewConn(magicsockOpts) if err != nil { tundev.Close() return nil, fmt.Errorf("wgengine: %v", err) } // flags==0 because logf is already nested in another logger. // The outer one can display the preferred log prefixes, etc. dlog := log.New(&Loggify{logf}, "", 0) logger := device.Logger{ Debug: dlog, Info: dlog, Error: dlog, } opts := &device.DeviceOptions{ Logger: &logger, HandshakeDone: func(peerKey wgcfg.Key, allowedIPs []net.IPNet) { // Send an unsolicited status event every time a // handshake completes. This makes sure our UI can // update quickly as soon as it connects to a peer. // // We use a goroutine here to avoid deadlocking // wireguard, since RequestStatus() will call back // into it, and wireguard is what called us to get // here. go e.RequestStatus() // Ping every single-IP that peer routes. // These synthetic packets are used to traverse NATs. var ips []wgcfg.IP for _, ipNet := range allowedIPs { if ones, bits := ipNet.Mask.Size(); ones == bits && ones != 0 { var ip wgcfg.IP copy(ip.Addr[:], ipNet.IP.To16()) ips = append(ips, ip) } } if len(ips) > 0 { go e.pinger(peerKey, ips) } else { logf("[unexpected] peer %s has no single-IP routes: %v", peerKey.ShortString(), allowedIPs) } }, CreateBind: e.magicConn.CreateBind, CreateEndpoint: e.magicConn.CreateEndpoint, SkipBindUpdate: true, } // wgdev takes ownership of tundev, will close it when closed. e.wgdev = device.NewDevice(e.tundev, opts) defer func() { if reterr != nil { e.wgdev.Close() } }() // Pass the underlying tun.(*NativeDevice) to the router: // routers do not Read or Write, but do access native interfaces. e.router, err = routerGen(logf, e.wgdev, e.tundev.Unwrap()) if err != nil { e.magicConn.Close() return nil, err } go func() { up := false for event := range e.tundev.Events() { if event&tun.EventMTUUpdate != 0 { mtu, err := e.tundev.MTU() e.logf("external route MTU: %d (%v)", mtu, err) } if event&tun.EventUp != 0 && !up { e.logf("external route: up") e.RequestStatus() up = true } if event&tun.EventDown != 0 && up { e.logf("external route: down") e.RequestStatus() up = false } } }() e.wgdev.Up() if err := e.router.Up(); err != nil { e.magicConn.Close() e.wgdev.Close() return nil, err } // TODO(danderson): we should delete this. It's pointless to apply // a no-op settings here. if err := e.router.Set(nil); err != nil { e.magicConn.Close() e.wgdev.Close() return nil, err } e.linkMon.Start() e.magicConn.Start() return e, nil } // pinger sends ping packets for a few seconds. // // These generated packets are used to ensure we trigger the spray logic in // the magicsock package for NAT traversal. func (e *userspaceEngine) pinger(peerKey wgcfg.Key, ips []wgcfg.IP) { e.logf("generating initial ping traffic to %s (%v)", peerKey.ShortString(), ips) var srcIP packet.IP e.wgLock.Lock() if len(e.lastCfg.Addresses) > 0 { srcIP = packet.NewIP(e.lastCfg.Addresses[0].IP.IP()) } e.wgLock.Unlock() if srcIP == 0 { e.logf("generating initial ping traffic: no source IP") return } e.mu.Lock() if cancel := e.pingers[peerKey]; cancel != nil { cancel() } ctx, cancel := context.WithCancel(context.Background()) e.pingers[peerKey] = cancel e.mu.Unlock() // sendFreq is slightly longer than sprayFreq in magicsock to ensure // that if these ping packets are the only source of early packets // sent to the peer, that each one will be sprayed. const sendFreq = 300 * time.Millisecond const stopAfter = 3 * time.Second start := time.Now() var dstIPs []packet.IP for _, ip := range ips { dstIPs = append(dstIPs, packet.NewIP(ip.IP())) } payload := []byte("magicsock_spray") // no meaning defer func() { e.mu.Lock() defer e.mu.Unlock() select { case <-ctx.Done(): return default: } // If the pinger context is not done, then the // CancelFunc is still in the pingers map. delete(e.pingers, peerKey) }() ipid := uint16(1) t := time.NewTicker(sendFreq) defer t.Stop() for { select { case <-ctx.Done(): return case <-t.C: } if time.Since(start) > stopAfter { return } for _, dstIP := range dstIPs { b := packet.GenICMP(srcIP, dstIP, ipid, packet.ICMPEchoRequest, 0, payload) e.tundev.InjectOutbound(b) } ipid++ } } func configSignature(cfg *wgcfg.Config, routerCfg *router.Config) (string, error) { // TODO(apenwarr): get rid of uapi stuff for in-process comms uapi, err := cfg.ToUAPI() if err != nil { return "", err } return fmt.Sprintf("%s %v", uapi, routerCfg), nil } func (e *userspaceEngine) Reconfig(cfg *wgcfg.Config, routerCfg *router.Config) error { e.wgLock.Lock() defer e.wgLock.Unlock() peerSet := make(map[key.Public]struct{}, len(cfg.Peers)) e.mu.Lock() e.peerSequence = e.peerSequence[:0] for _, p := range cfg.Peers { e.peerSequence = append(e.peerSequence, p.PublicKey) peerSet[key.Public(p.PublicKey)] = struct{}{} } e.mu.Unlock() rc, err := configSignature(cfg, routerCfg) if err != nil { return err } if rc == e.lastReconfig { return ErrNoChanges } e.logf("wgengine: Reconfig: configuring userspace wireguard engine") e.lastReconfig = rc e.lastCfg = cfg.Copy() // Tell magicsock about the new (or initial) private key // (which is needed by DERP) before wgdev gets it, as wgdev // will start trying to handshake, which we want to be able to // go over DERP. if err := e.magicConn.SetPrivateKey(cfg.PrivateKey); err != nil { e.logf("wgengine: Reconfig: SetPrivateKey: %v", err) } if err := e.wgdev.Reconfig(cfg); err != nil { e.logf("wgdev.Reconfig: %v", err) return err } e.magicConn.UpdatePeers(peerSet) if err := e.router.Set(routerCfg); err != nil { return err } e.logf("wgengine: Reconfig done") return nil } func (e *userspaceEngine) GetFilter() *filter.Filter { return e.tundev.GetFilter() } func (e *userspaceEngine) SetFilter(filt *filter.Filter) { e.tundev.SetFilter(filt) } func (e *userspaceEngine) SetStatusCallback(cb StatusCallback) { e.mu.Lock() defer e.mu.Unlock() e.statusCallback = cb } func (e *userspaceEngine) getStatusCallback() StatusCallback { e.mu.Lock() defer e.mu.Unlock() return e.statusCallback } // TODO: this function returns an error but it's always nil, and when // there's actually a problem it just calls log.Fatal. Why? func (e *userspaceEngine) getStatus() (*Status, error) { e.wgLock.Lock() defer e.wgLock.Unlock() e.mu.Lock() closing := e.closing e.mu.Unlock() if closing { return nil, errors.New("engine closing; no status") } if e.wgdev == nil { // RequestStatus was invoked before the wgengine has // finished initializing. This can happen when wgegine // provides a callback to magicsock for endpoint // updates that calls RequestStatus. return nil, nil } // lineLen is the max UAPI line we expect. The longest I see is // len("preshared_key=")+64 hex+"\n" == 79. Add some slop. const lineLen = 100 pr, pw := io.Pipe() errc := make(chan error, 1) go func() { defer pw.Close() bw := bufio.NewWriterSize(pw, lineLen) // TODO(apenwarr): get rid of silly uapi stuff for in-process comms // FIXME: get notified of status changes instead of polling. if err := e.wgdev.IpcGetOperation(bw); err != nil { errc <- fmt.Errorf("IpcGetOperation: %w", err) return } errc <- bw.Flush() }() pp := make(map[wgcfg.Key]*PeerStatus) p := &PeerStatus{} var hst1, hst2, n int64 var err error bs := bufio.NewScanner(pr) bs.Buffer(make([]byte, lineLen), lineLen) for bs.Scan() { line := bs.Bytes() k := line var v mem.RO if i := bytes.IndexByte(line, '='); i != -1 { k = line[:i] v = mem.B(line[i+1:]) } switch string(k) { case "public_key": pk, err := key.NewPublicFromHexMem(v) if err != nil { log.Fatalf("IpcGetOperation: invalid key %#v", v) } p = &PeerStatus{} pp[wgcfg.Key(pk)] = p key := tailcfg.NodeKey(pk) p.NodeKey = key case "rx_bytes": n, err = v.ParseInt(10, 64) p.RxBytes = ByteCount(n) if err != nil { log.Fatalf("IpcGetOperation: rx_bytes invalid: %#v", line) } case "tx_bytes": n, err = v.ParseInt(10, 64) p.TxBytes = ByteCount(n) if err != nil { log.Fatalf("IpcGetOperation: tx_bytes invalid: %#v", line) } case "last_handshake_time_sec": hst1, err = v.ParseInt(10, 64) if err != nil { log.Fatalf("IpcGetOperation: hst1 invalid: %#v", line) } case "last_handshake_time_nsec": hst2, err = v.ParseInt(10, 64) if err != nil { log.Fatalf("IpcGetOperation: hst2 invalid: %#v", line) } if hst1 != 0 || hst2 != 0 { p.LastHandshake = time.Unix(hst1, hst2) } // else leave at time.IsZero() } } if err := bs.Err(); err != nil { log.Fatalf("reading IpcGetOperation output: %v", err) } if err := <-errc; err != nil { log.Fatalf("IpcGetOperation: %v", err) } e.mu.Lock() defer e.mu.Unlock() var peers []PeerStatus for _, pk := range e.peerSequence { p := pp[pk] if p == nil { p = &PeerStatus{} } peers = append(peers, *p) } if len(pp) != len(e.peerSequence) { e.logf("wg status returned %v peers, expected %v", len(pp), len(e.peerSequence)) } return &Status{ LocalAddrs: append([]string(nil), e.endpoints...), Peers: peers, DERPs: e.magicConn.DERPs(), }, nil } func (e *userspaceEngine) RequestStatus() { // This is slightly tricky. e.getStatus() can theoretically get // blocked inside wireguard for a while, and RequestStatus() is // sometimes called from a goroutine, so we don't want a lot of // them hanging around. On the other hand, requesting multiple // status updates simultaneously is pointless anyway; they will // all say the same thing. // Enqueue at most one request. If one is in progress already, this // adds one more to the queue. If one has been requested but not // started, it is a no-op. select { case e.reqCh <- struct{}{}: default: } // Dequeue at most one request. Another thread may have already // dequeued the request we enqueued above, which is fine, since the // information is guaranteed to be at least as recent as the current // call to RequestStatus(). select { case <-e.reqCh: s, err := e.getStatus() if s == nil && err == nil { e.logf("RequestStatus: weird: both s and err are nil") return } if cb := e.getStatusCallback(); cb != nil { cb(s, err) } default: } } func (e *userspaceEngine) Close() { e.mu.Lock() if e.closing { e.mu.Unlock() return } e.closing = true for key, cancel := range e.pingers { delete(e.pingers, key) cancel() } e.mu.Unlock() r := bufio.NewReader(strings.NewReader("")) e.wgdev.IpcSetOperation(r) e.wgdev.Close() e.linkMon.Close() e.router.Close() e.magicConn.Close() close(e.waitCh) } func (e *userspaceEngine) Wait() { <-e.waitCh } func (e *userspaceEngine) setLinkState(st *interfaces.State) (changed bool) { if st == nil { return false } e.mu.Lock() defer e.mu.Unlock() changed = e.linkState == nil || !st.Equal(e.linkState) e.linkState = st return changed } func (e *userspaceEngine) LinkChange(isExpensive bool) { cur, err := getLinkState() if err != nil { e.logf("LinkChange: interfaces.GetState: %v", err) return } cur.IsExpensive = isExpensive needRebind := e.setLinkState(cur) e.logf("LinkChange(isExpensive=%v); needsRebind=%v", isExpensive, needRebind) why := "link-change-minor" if needRebind { why = "link-change-major" e.magicConn.Rebind() } e.magicConn.ReSTUN(why) } func getLinkState() (*interfaces.State, error) { s, err := interfaces.GetState() if s != nil { s.RemoveTailscaleInterfaces() } return s, err } func (e *userspaceEngine) SetNetInfoCallback(cb NetInfoCallback) { e.magicConn.SetNetInfoCallback(cb) } func (e *userspaceEngine) SetDERPMap(dm *tailcfg.DERPMap) { e.magicConn.SetDERPMap(dm) } func (e *userspaceEngine) UpdateStatus(sb *ipnstate.StatusBuilder) { st, err := e.getStatus() if err != nil { e.logf("wgengine: getStatus: %v", err) return } for _, ps := range st.Peers { sb.AddPeer(key.Public(ps.NodeKey), &ipnstate.PeerStatus{ RxBytes: int64(ps.RxBytes), TxBytes: int64(ps.TxBytes), LastHandshake: ps.LastHandshake, InEngine: true, }) } e.magicConn.UpdateStatus(sb) } // diagnoseTUNFailure is called if tun.CreateTUN fails, to poke around // the system and log some diagnostic info that might help debug why // TUN failed. Because TUN's already failed and things the program's // about to end, we might as well log a lot. func diagnoseTUNFailure(logf logger.Logf) { switch runtime.GOOS { case "linux": diagnoseLinuxTUNFailure(logf) default: logf("no TUN failure diagnostics for OS %q", runtime.GOOS) } } func diagnoseLinuxTUNFailure(logf logger.Logf) { kernel, err := exec.Command("uname", "-r").Output() kernel = bytes.TrimSpace(kernel) if err != nil { logf("no TUN, and failed to look up kernel version: %v", err) return } logf("Linux kernel version: %s", kernel) modprobeOut, err := exec.Command("/sbin/modprobe", "tun").CombinedOutput() if err == nil { logf("'modprobe tun' successful") // Either tun is currently loaded, or it's statically // compiled into the kernel (which modprobe checks // with /lib/modules/$(uname -r)/modules.builtin) // // So if there's a problem at this point, it's // probably because /dev/net/tun doesn't exist. const dev = "/dev/net/tun" if fi, err := os.Stat(dev); err != nil { logf("tun module loaded in kernel, but %s does not exist", dev) } else { logf("%s: %v", dev, fi.Mode()) } // We failed to find why it failed. Just let our // caller report the error it got from wireguard-go. return } logf("is CONFIG_TUN enabled in your kernel? `modprobe tun` failed with: %s", modprobeOut) distro := linuxDistro() switch distro { case "debian": dpkgOut, err := exec.Command("dpkg", "-S", "kernel/drivers/net/tun.ko").CombinedOutput() if len(bytes.TrimSpace(dpkgOut)) == 0 || err != nil { logf("tun module not loaded nor found on disk") return } if !bytes.Contains(dpkgOut, kernel) { logf("kernel/drivers/net/tun.ko found on disk, but not for current kernel; are you in middle of a system update and haven't rebooted? found: %s", dpkgOut) } case "arch": findOut, err := exec.Command("find", "/lib/modules/", "-path", "*/net/tun.ko*").CombinedOutput() if len(bytes.TrimSpace(findOut)) == 0 || err != nil { logf("tun module not loaded nor found on disk") return } if !bytes.Contains(findOut, kernel) { logf("kernel/drivers/net/tun.ko found on disk, but not for current kernel; are you in middle of a system update and haven't rebooted? found: %s", findOut) } } } func linuxDistro() string { if _, err := os.Stat("/etc/debian_version"); err == nil { return "debian" } if _, err := os.Stat("/etc/arch-release"); err == nil { return "arch" } return "" }