// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package filter contains a stateful packet filter. package filter import ( "fmt" "sync" "time" "github.com/golang/groupcache/lru" "golang.org/x/time/rate" "tailscale.com/types/logger" "tailscale.com/wgengine/packet" ) type filterState struct { mu sync.Mutex lru *lru.Cache // of tuple } // Filter is a stateful packet filter. type Filter struct { logf logger.Logf // localNets is the list of IP prefixes that we know to be "local" // to this node. All packets coming in over tailscale must have a // destination within localNets, regardless of the policy filter // below. A nil localNets rejects all incoming traffic. localNets []Net // matches is a list of match->action rules applied to all packets // arriving over tailscale tunnels. Matches are checked in order, // and processing stops at the first matching rule. The default // policy if no rules match is to drop the packet. matches Matches // state is the connection tracking state attached to this // filter. It is used to allow incoming traffic that is a response // to an outbound connection that this node made, even if those // incoming packets don't get accepted by matches above. state *filterState } // Response is a verdict: either a Drop, Accept, or noVerdict skip to // continue processing. type Response int const ( Drop Response = iota Accept noVerdict // Returned from subfilters to continue processing. ) func (r Response) String() string { switch r { case Drop: return "Drop" case Accept: return "Accept" case noVerdict: return "noVerdict" default: return "???" } } // RunFlags controls the filter's debug log verbosity at runtime. type RunFlags int const ( LogDrops RunFlags = 1 << iota LogAccepts HexdumpDrops HexdumpAccepts ) type tuple struct { SrcIP packet.IP DstIP packet.IP SrcPort uint16 DstPort uint16 } const lruMax = 512 // max entries in UDP LRU cache // MatchAllowAll matches all packets. var MatchAllowAll = Matches{ Match{[]NetPortRange{NetPortRangeAny}, []Net{NetAny}}, } // NewAllowAll returns a packet filter that accepts everything to and // from localNets. func NewAllowAll(localNets []Net, logf logger.Logf) *Filter { return New(MatchAllowAll, localNets, nil, logf) } // NewAllowNone returns a packet filter that rejects everything. func NewAllowNone(logf logger.Logf) *Filter { return New(nil, nil, nil, logf) } // New creates a new packet filter. The filter enforces that incoming // packets must be destined to an IP in localNets, and must be allowed // by matches. If shareStateWith is non-nil, the returned filter // shares state with the previous one, to enable rules to be changed // at runtime without breaking existing flows. func New(matches Matches, localNets []Net, shareStateWith *Filter, logf logger.Logf) *Filter { var state *filterState if shareStateWith != nil { state = shareStateWith.state } else { state = &filterState{ lru: lru.New(lruMax), } } f := &Filter{ logf: logf, matches: matches, localNets: localNets, state: state, } return f } func maybeHexdump(flag RunFlags, b []byte) string { if flag == 0 { return "" } return packet.Hexdump(b) + "\n" } // TODO(apenwarr): use a bigger bucket for specifically TCP SYN accept logging? // Logging is a quick way to record every newly opened TCP connection, but // we have to be cautious about flooding the logs vs letting people use // flood protection to hide their traffic. We could use a rate limiter in // the actual *filter* for SYN accepts, perhaps. var acceptBucket = rate.NewLimiter(rate.Every(10*time.Second), 3) var dropBucket = rate.NewLimiter(rate.Every(5*time.Second), 10) func (f *Filter) logRateLimit(runflags RunFlags, b []byte, q *packet.QDecode, r Response, why string) { var verdict string if r == Drop && (runflags&LogDrops) != 0 && dropBucket.Allow() { verdict = "Drop" runflags &= HexdumpDrops } else if r == Accept && (runflags&LogAccepts) != 0 && acceptBucket.Allow() { verdict = "Accept" runflags &= HexdumpAccepts } // Note: it is crucial that q.String() be called only if {accept,drop}Bucket.Allow() passes, // since it causes an allocation. if verdict != "" { var qs string if q == nil { qs = fmt.Sprintf("(%d bytes)", len(b)) } else { qs = q.String() } f.logf("%s: %s %d %s\n%s", verdict, qs, len(b), why, maybeHexdump(runflags, b)) } } func (f *Filter) RunIn(b []byte, q *packet.QDecode, rf RunFlags) Response { r := f.pre(b, q, rf) if r == Accept || r == Drop { // already logged return r } r, why := f.runIn(q) f.logRateLimit(rf, b, q, r, why) return r } func (f *Filter) RunOut(b []byte, q *packet.QDecode, rf RunFlags) Response { r := f.pre(b, q, rf) if r == Drop || r == Accept { // already logged return r } r, why := f.runOut(q) f.logRateLimit(rf, b, q, r, why) return r } func (f *Filter) runIn(q *packet.QDecode) (r Response, why string) { // A compromised peer could try to send us packets for // destinations we didn't explicitly advertise. This check is to // prevent that. if !ipInList(q.DstIP, f.localNets) { return Drop, "destination not allowed" } switch q.IPProto { case packet.ICMP: if q.IsEchoResponse() || q.IsError() { // ICMP responses are allowed. // TODO(apenwarr): consider using conntrack state. // We could choose to reject all packets that aren't // related to an existing ICMP-Echo, TCP, or UDP // session. return Accept, "icmp response ok" } else if matchIPWithoutPorts(f.matches, q) { // If any port is open to an IP, allow ICMP to it. return Accept, "icmp ok" } case packet.TCP: // For TCP, we want to allow *outgoing* connections, // which means we want to allow return packets on those // connections. To make this restriction work, we need to // allow non-SYN packets (continuation of an existing session) // to arrive. This should be okay since a new incoming session // can't be initiated without first sending a SYN. // It happens to also be much faster. // TODO(apenwarr): Skip the rest of decoding in this path? if q.IPProto == packet.TCP && !q.IsTCPSyn() { return Accept, "tcp non-syn" } if matchIPPorts(f.matches, q) { return Accept, "tcp ok" } case packet.UDP: t := tuple{q.SrcIP, q.DstIP, q.SrcPort, q.DstPort} f.state.mu.Lock() _, ok := f.state.lru.Get(t) f.state.mu.Unlock() if ok { return Accept, "udp cached" } if matchIPPorts(f.matches, q) { return Accept, "udp ok" } default: return Drop, "Unknown proto" } return Drop, "no rules matched" } func (f *Filter) runOut(q *packet.QDecode) (r Response, why string) { if q.IPProto == packet.UDP { t := tuple{q.DstIP, q.SrcIP, q.DstPort, q.SrcPort} var ti interface{} = t // allocate once, rather than twice inside mutex f.state.mu.Lock() f.state.lru.Add(ti, ti) f.state.mu.Unlock() } return Accept, "ok out" } func (f *Filter) pre(b []byte, q *packet.QDecode, rf RunFlags) Response { if len(b) == 0 { // wireguard keepalive packet, always permit. return Accept } if len(b) < 20 { f.logRateLimit(rf, b, nil, Drop, "too short") return Drop } q.Decode(b) if q.IPProto == packet.Junk { // Junk packets are dangerous; always drop them. f.logRateLimit(rf, b, q, Drop, "junk") return Drop } else if q.IPProto == packet.Fragment { // Fragments after the first always need to be passed through. // Very small fragments are considered Junk by QDecode. f.logRateLimit(rf, b, q, Accept, "fragment") return Accept } return noVerdict }