// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package packet import ( "encoding/binary" "fmt" "net" "strings" "inet.af/netaddr" "tailscale.com/types/ipproto" "tailscale.com/types/strbuilder" ) const ( Unknown = ipproto.Unknown TCP = ipproto.TCP UDP = ipproto.UDP SCTP = ipproto.SCTP IGMP = ipproto.IGMP ICMPv4 = ipproto.ICMPv4 ICMPv6 = ipproto.ICMPv6 TSMP = ipproto.TSMP Fragment = ipproto.Fragment ) // RFC1858: prevent overlapping fragment attacks. const minFrag = 60 + 20 // max IPv4 header + basic TCP header type TCPFlag uint8 const ( TCPFin TCPFlag = 0x01 TCPSyn TCPFlag = 0x02 TCPRst TCPFlag = 0x04 TCPPsh TCPFlag = 0x08 TCPAck TCPFlag = 0x10 TCPSynAck TCPFlag = TCPSyn | TCPAck ) // Parsed is a minimal decoding of a packet suitable for use in filters. type Parsed struct { // b is the byte buffer that this decodes. b []byte // subofs is the offset of IP subprotocol. subofs int // dataofs is the offset of IP subprotocol payload. dataofs int // length is the total length of the packet. // This is not the same as len(b) because b can have trailing zeros. length int // IPVersion is the IP protocol version of the packet (4 or // 6), or 0 if the packet doesn't look like IPv4 or IPv6. IPVersion uint8 // IPProto is the IP subprotocol (UDP, TCP, etc.). Valid iff IPVersion != 0. IPProto ipproto.Proto // SrcIP4 is the source address. Family matches IPVersion. Port is // valid iff IPProto == TCP || IPProto == UDP. Src netaddr.IPPort // DstIP4 is the destination address. Family matches IPVersion. Dst netaddr.IPPort // TCPFlags is the packet's TCP flag bigs. Valid iff IPProto == TCP. TCPFlags TCPFlag } func (p *Parsed) String() string { if p.IPVersion != 4 && p.IPVersion != 6 { return "Unknown{???}" } sb := strbuilder.Get() sb.WriteString(p.IPProto.String()) sb.WriteByte('{') writeIPPort(sb, p.Src) sb.WriteString(" > ") writeIPPort(sb, p.Dst) sb.WriteByte('}') return sb.String() } // writeIPPort writes ipp.String() into sb, with fewer allocations. // // TODO: make netaddr more efficient in this area, and retire this func. func writeIPPort(sb *strbuilder.Builder, ipp netaddr.IPPort) { if ipp.IP.Is4() { raw := ipp.IP.As4() sb.WriteUint(uint64(raw[0])) sb.WriteByte('.') sb.WriteUint(uint64(raw[1])) sb.WriteByte('.') sb.WriteUint(uint64(raw[2])) sb.WriteByte('.') sb.WriteUint(uint64(raw[3])) sb.WriteByte(':') } else { sb.WriteByte('[') sb.WriteString(ipp.IP.String()) // TODO: faster? sb.WriteString("]:") } sb.WriteUint(uint64(ipp.Port)) } // Decode extracts data from the packet in b into q. // It performs extremely simple packet decoding for basic IPv4 packet types. // It extracts only the subprotocol id, IP addresses, and (if any) ports, // and shouldn't need any memory allocation. func (q *Parsed) Decode(b []byte) { q.b = b if len(b) < 1 { q.IPVersion = 0 q.IPProto = Unknown return } q.IPVersion = b[0] >> 4 switch q.IPVersion { case 4: q.decode4(b) case 6: q.decode6(b) default: q.IPVersion = 0 q.IPProto = Unknown } } // StuffForTesting makes Parsed contain a len-bytes buffer. Used in // tests to build up a synthetic parse result with a non-zero buffer. func (q *Parsed) StuffForTesting(len int) { q.b = make([]byte, len) } func (q *Parsed) decode4(b []byte) { if len(b) < ip4HeaderLength { q.IPVersion = 0 q.IPProto = Unknown return } // Check that it's IPv4. q.IPProto = ipproto.Proto(b[9]) q.length = int(binary.BigEndian.Uint16(b[2:4])) if len(b) < q.length { // Packet was cut off before full IPv4 length. q.IPProto = Unknown return } // If it's valid IPv4, then the IP addresses are valid q.Src.IP = netaddr.IPv4(b[12], b[13], b[14], b[15]) q.Dst.IP = netaddr.IPv4(b[16], b[17], b[18], b[19]) q.subofs = int((b[0] & 0x0F) << 2) if q.subofs > q.length { // next-proto starts beyond end of packet. q.IPProto = Unknown return } sub := b[q.subofs:] sub = sub[:len(sub):len(sub)] // help the compiler do bounds check elimination // We don't care much about IP fragmentation, except insofar as it's // used for firewall bypass attacks. The trick is make the first // fragment of a TCP or UDP packet so short that it doesn't fit // the TCP or UDP header, so we can't read the port, in hope that // it'll sneak past. Then subsequent fragments fill it in, but we're // missing the first part of the header, so we can't read that either. // // A "perfectly correct" implementation would have to reassemble // fragments before deciding what to do. But the truth is there's // zero reason to send such a short first fragment, so we can treat // it as Unknown. We can also treat any subsequent fragment that starts // at such a low offset as Unknown. fragFlags := binary.BigEndian.Uint16(b[6:8]) moreFrags := (fragFlags & 0x20) != 0 fragOfs := fragFlags & 0x1FFF if fragOfs == 0 { // This is the first fragment if moreFrags && len(sub) < minFrag { // Suspiciously short first fragment, dump it. q.IPProto = Unknown return } // otherwise, this is either non-fragmented (the usual case) // or a big enough initial fragment that we can read the // whole subprotocol header. switch q.IPProto { case ICMPv4: if len(sub) < icmp4HeaderLength { q.IPProto = Unknown return } q.Src.Port = 0 q.Dst.Port = 0 q.dataofs = q.subofs + icmp4HeaderLength return case IGMP: // Keep IPProto, but don't parse anything else // out. return case TCP: if len(sub) < tcpHeaderLength { q.IPProto = Unknown return } q.Src.Port = binary.BigEndian.Uint16(sub[0:2]) q.Dst.Port = binary.BigEndian.Uint16(sub[2:4]) q.TCPFlags = TCPFlag(sub[13]) & 0x3F headerLength := (sub[12] & 0xF0) >> 2 q.dataofs = q.subofs + int(headerLength) return case UDP: if len(sub) < udpHeaderLength { q.IPProto = Unknown return } q.Src.Port = binary.BigEndian.Uint16(sub[0:2]) q.Dst.Port = binary.BigEndian.Uint16(sub[2:4]) q.dataofs = q.subofs + udpHeaderLength return case SCTP: if len(sub) < sctpHeaderLength { q.IPProto = Unknown return } q.Src.Port = binary.BigEndian.Uint16(sub[0:2]) q.Dst.Port = binary.BigEndian.Uint16(sub[2:4]) return case TSMP: // Inter-tailscale messages. q.dataofs = q.subofs return default: q.IPProto = Unknown return } } else { // This is a fragment other than the first one. if fragOfs < minFrag { // First frag was suspiciously short, so we can't // trust the followup either. q.IPProto = Unknown return } // otherwise, we have to permit the fragment to slide through. // Second and later fragments don't have sub-headers. // Ideally, we would drop fragments that we can't identify, // but that would require statefulness. Anyway, receivers' // kernels know to drop fragments where the initial fragment // doesn't arrive. q.IPProto = Fragment return } } func (q *Parsed) decode6(b []byte) { if len(b) < ip6HeaderLength { q.IPVersion = 0 q.IPProto = Unknown return } q.IPProto = ipproto.Proto(b[6]) q.length = int(binary.BigEndian.Uint16(b[4:6])) + ip6HeaderLength if len(b) < q.length { // Packet was cut off before the full IPv6 length. q.IPProto = Unknown return } // okay to ignore `ok` here, because IPs pulled from packets are // always well-formed stdlib IPs. q.Src.IP, _ = netaddr.FromStdIP(net.IP(b[8:24])) q.Dst.IP, _ = netaddr.FromStdIP(net.IP(b[24:40])) // We don't support any IPv6 extension headers. Don't try to // be clever. Therefore, the IP subprotocol always starts at // byte 40. // // Note that this means we don't support fragmentation in // IPv6. This is fine, because IPv6 strongly mandates that you // should not fragment, which makes fragmentation on the open // internet extremely uncommon. // // This also means we don't support IPSec headers (AH/ESP), or // IPv6 jumbo frames. Those will get marked Unknown and // dropped. q.subofs = 40 sub := b[q.subofs:] sub = sub[:len(sub):len(sub)] // help the compiler do bounds check elimination switch q.IPProto { case ICMPv6: if len(sub) < icmp6HeaderLength { q.IPProto = Unknown return } q.Src.Port = 0 q.Dst.Port = 0 q.dataofs = q.subofs + icmp6HeaderLength case TCP: if len(sub) < tcpHeaderLength { q.IPProto = Unknown return } q.Src.Port = binary.BigEndian.Uint16(sub[0:2]) q.Dst.Port = binary.BigEndian.Uint16(sub[2:4]) q.TCPFlags = TCPFlag(sub[13]) & 0x3F headerLength := (sub[12] & 0xF0) >> 2 q.dataofs = q.subofs + int(headerLength) return case UDP: if len(sub) < udpHeaderLength { q.IPProto = Unknown return } q.Src.Port = binary.BigEndian.Uint16(sub[0:2]) q.Dst.Port = binary.BigEndian.Uint16(sub[2:4]) q.dataofs = q.subofs + udpHeaderLength case SCTP: if len(sub) < sctpHeaderLength { q.IPProto = Unknown return } q.Src.Port = binary.BigEndian.Uint16(sub[0:2]) q.Dst.Port = binary.BigEndian.Uint16(sub[2:4]) return case TSMP: // Inter-tailscale messages. q.dataofs = q.subofs return default: q.IPProto = Unknown return } } func (q *Parsed) IP4Header() IP4Header { if q.IPVersion != 4 { panic("IP4Header called on non-IPv4 Parsed") } ipid := binary.BigEndian.Uint16(q.b[4:6]) return IP4Header{ IPID: ipid, IPProto: q.IPProto, Src: q.Src.IP, Dst: q.Dst.IP, } } func (q *Parsed) ICMP4Header() ICMP4Header { if q.IPVersion != 4 { panic("IP4Header called on non-IPv4 Parsed") } return ICMP4Header{ IP4Header: q.IP4Header(), Type: ICMP4Type(q.b[q.subofs+0]), Code: ICMP4Code(q.b[q.subofs+1]), } } func (q *Parsed) UDP4Header() UDP4Header { if q.IPVersion != 4 { panic("IP4Header called on non-IPv4 Parsed") } return UDP4Header{ IP4Header: q.IP4Header(), SrcPort: q.Src.Port, DstPort: q.Dst.Port, } } // Buffer returns the entire packet buffer. // This is a read-only view; that is, q retains the ownership of the buffer. func (q *Parsed) Buffer() []byte { return q.b } // Payload returns the payload of the IP subprotocol section. // This is a read-only view; that is, q retains the ownership of the buffer. func (q *Parsed) Payload() []byte { return q.b[q.dataofs:q.length] } // IsTCPSyn reports whether q is a TCP SYN packet // (i.e. the first packet in a new connection). func (q *Parsed) IsTCPSyn() bool { return (q.TCPFlags & TCPSynAck) == TCPSyn } // IsError reports whether q is an ICMP "Error" packet. func (q *Parsed) IsError() bool { switch q.IPProto { case ICMPv4: if len(q.b) < q.subofs+8 { return false } t := ICMP4Type(q.b[q.subofs]) return t == ICMP4Unreachable || t == ICMP4TimeExceeded case ICMPv6: if len(q.b) < q.subofs+8 { return false } t := ICMP6Type(q.b[q.subofs]) return t == ICMP6Unreachable || t == ICMP6TimeExceeded default: return false } } // IsEchoRequest reports whether q is an ICMP Echo Request. func (q *Parsed) IsEchoRequest() bool { switch q.IPProto { case ICMPv4: return len(q.b) >= q.subofs+8 && ICMP4Type(q.b[q.subofs]) == ICMP4EchoRequest && ICMP4Code(q.b[q.subofs+1]) == ICMP4NoCode case ICMPv6: return len(q.b) >= q.subofs+8 && ICMP6Type(q.b[q.subofs]) == ICMP6EchoRequest && ICMP6Code(q.b[q.subofs+1]) == ICMP6NoCode default: return false } } // IsEchoRequest reports whether q is an IPv4 ICMP Echo Response. func (q *Parsed) IsEchoResponse() bool { switch q.IPProto { case ICMPv4: return len(q.b) >= q.subofs+8 && ICMP4Type(q.b[q.subofs]) == ICMP4EchoReply && ICMP4Code(q.b[q.subofs+1]) == ICMP4NoCode case ICMPv6: return len(q.b) >= q.subofs+8 && ICMP6Type(q.b[q.subofs]) == ICMP6EchoReply && ICMP6Code(q.b[q.subofs+1]) == ICMP6NoCode default: return false } } func Hexdump(b []byte) string { out := new(strings.Builder) for i := 0; i < len(b); i += 16 { if i > 0 { fmt.Fprintf(out, "\n") } fmt.Fprintf(out, " %04x ", i) j := 0 for ; j < 16 && i+j < len(b); j++ { if j == 8 { fmt.Fprintf(out, " ") } fmt.Fprintf(out, "%02x ", b[i+j]) } for ; j < 16; j++ { if j == 8 { fmt.Fprintf(out, " ") } fmt.Fprintf(out, " ") } fmt.Fprintf(out, " ") for j = 0; j < 16 && i+j < len(b); j++ { if b[i+j] >= 32 && b[i+j] < 128 { fmt.Fprintf(out, "%c", b[i+j]) } else { fmt.Fprintf(out, ".") } } } return out.String() }