// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package wgengine import ( "bufio" "bytes" "context" "encoding/binary" "errors" "fmt" "io" "log" "net" "os" "os/exec" "runtime" "strconv" "strings" "sync" "sync/atomic" "time" "github.com/tailscale/wireguard-go/device" "github.com/tailscale/wireguard-go/tun" "github.com/tailscale/wireguard-go/wgcfg" "go4.org/mem" "inet.af/netaddr" "tailscale.com/control/controlclient" "tailscale.com/internal/deepprint" "tailscale.com/ipn/ipnstate" "tailscale.com/net/interfaces" "tailscale.com/net/tsaddr" "tailscale.com/tailcfg" "tailscale.com/types/key" "tailscale.com/types/logger" "tailscale.com/version" "tailscale.com/wgengine/filter" "tailscale.com/wgengine/magicsock" "tailscale.com/wgengine/monitor" "tailscale.com/wgengine/packet" "tailscale.com/wgengine/router" "tailscale.com/wgengine/tsdns" "tailscale.com/wgengine/tstun" ) // minimalMTU is the MTU we set on tailscale's tuntap // interface. wireguard-go defaults to 1420 bytes, which only works if // the "outer" MTU is 1500 bytes. This breaks on DSL connections // (typically 1492 MTU) and on GCE (1460 MTU?!). // // 1280 is the smallest MTU allowed for IPv6, which is a sensible // "probably works everywhere" setting until we develop proper PMTU // discovery. const minimalMTU = 1280 const ( magicDNSIP = 0x64646464 // 100.100.100.100 magicDNSPort = 53 ) // Lazy wireguard-go configuration parameters. const ( // lazyPeerIdleThreshold is the idle duration after // which we remove a peer from the wireguard configuration. // (This includes peers that have never been idle, which // effectively have infinite idleness) lazyPeerIdleThreshold = 5 * time.Minute // packetSendTimeUpdateFrequency controls how often we record // the time that we wrote a packet to an IP address. packetSendTimeUpdateFrequency = 10 * time.Second // packetSendRecheckWireguardThreshold controls how long we can go // between packet sends to an IP before checking to see // whether this IP address needs to be added back to the // Wireguard peer oconfig. packetSendRecheckWireguardThreshold = 1 * time.Minute ) type userspaceEngine struct { logf logger.Logf reqCh chan struct{} waitCh chan struct{} // chan is closed when first Close call completes; contrast with closing bool timeNow func() time.Time tundev *tstun.TUN wgdev *device.Device router router.Router resolver *tsdns.Resolver magicConn *magicsock.Conn linkMon *monitor.Mon testMaybeReconfigHook func() // for tests; if non-nil, fires if maybeReconfigWireguardLocked called // localAddrs is the set of IP addresses assigned to the local // tunnel interface. It's used to reflect local packets // incorrectly sent to us. localAddrs atomic.Value // of map[packet.IP]bool wgLock sync.Mutex // serializes all wgdev operations; see lock order comment below lastCfgFull wgcfg.Config lastRouterSig string // of router.Config lastEngineSigFull string // of full wireguard config lastEngineSigTrim string // of trimmed wireguard config recvActivityAt map[tailcfg.DiscoKey]time.Time trimmedDisco map[tailcfg.DiscoKey]bool // set of disco keys of peers currently excluded from wireguard config sentActivityAt map[packet.IP]*int64 // value is atomic int64 of unixtime destIPActivityFuncs map[packet.IP]func() mu sync.Mutex // guards following; see lock order comment below closing bool // Close was called (even if we're still closing) statusCallback StatusCallback linkChangeCallback func(major bool, newState *interfaces.State) peerSequence []wgcfg.Key endpoints []string pingers map[wgcfg.Key]*pinger // legacy pingers for pre-discovery peers linkState *interfaces.State // Lock ordering: magicsock.Conn.mu, wgLock, then mu. } // RouterGen is the signature for a function that creates a // router.Router. type RouterGen func(logf logger.Logf, wgdev *device.Device, tundev tun.Device) (router.Router, error) type EngineConfig struct { // Logf is the logging function used by the engine. Logf logger.Logf // TUN is the tun device used by the engine. TUN tun.Device // RouterGen is the function used to instantiate the router. RouterGen RouterGen // ListenPort is the port on which the engine will listen. ListenPort uint16 // Fake determines whether this engine is running in fake mode, // which disables such features as DNS configuration and unrestricted ICMP Echo responses. Fake bool } type Loggify struct { f logger.Logf } func (l *Loggify) Write(b []byte) (int, error) { l.f(string(b)) return len(b), nil } func NewFakeUserspaceEngine(logf logger.Logf, listenPort uint16) (Engine, error) { logf("Starting userspace wireguard engine (FAKE tuntap device).") conf := EngineConfig{ Logf: logf, TUN: tstun.NewFakeTUN(), RouterGen: router.NewFake, ListenPort: listenPort, Fake: true, } return NewUserspaceEngineAdvanced(conf) } // NewUserspaceEngine creates the named tun device and returns a // Tailscale Engine running on it. func NewUserspaceEngine(logf logger.Logf, tunname string, listenPort uint16) (Engine, error) { if tunname == "" { return nil, fmt.Errorf("--tun name must not be blank") } logf("Starting userspace wireguard engine with tun device %q", tunname) tun, err := tun.CreateTUN(tunname, minimalMTU) if err != nil { diagnoseTUNFailure(logf) logf("CreateTUN: %v", err) return nil, err } logf("CreateTUN ok.") conf := EngineConfig{ Logf: logf, TUN: tun, RouterGen: router.New, ListenPort: listenPort, } e, err := NewUserspaceEngineAdvanced(conf) if err != nil { return nil, err } return e, err } // NewUserspaceEngineAdvanced is like NewUserspaceEngine // but provides control over all config fields. func NewUserspaceEngineAdvanced(conf EngineConfig) (Engine, error) { return newUserspaceEngineAdvanced(conf) } func newUserspaceEngineAdvanced(conf EngineConfig) (_ Engine, reterr error) { logf := conf.Logf rconf := tsdns.ResolverConfig{ Logf: conf.Logf, Forward: true, } e := &userspaceEngine{ timeNow: time.Now, logf: logf, reqCh: make(chan struct{}, 1), waitCh: make(chan struct{}), tundev: tstun.WrapTUN(logf, conf.TUN), resolver: tsdns.NewResolver(rconf), pingers: make(map[wgcfg.Key]*pinger), } e.localAddrs.Store(map[packet.IP]bool{}) e.linkState, _ = getLinkState() logf("link state: %+v", e.linkState) // Respond to all pings only in fake mode. if conf.Fake { e.tundev.PostFilterIn = echoRespondToAll } e.tundev.PreFilterOut = e.handleLocalPackets mon, err := monitor.New(logf, func() { e.LinkChange(false) }) if err != nil { e.tundev.Close() return nil, err } e.linkMon = mon endpointsFn := func(endpoints []string) { e.mu.Lock() e.endpoints = append(e.endpoints[:0], endpoints...) e.mu.Unlock() e.RequestStatus() } magicsockOpts := magicsock.Options{ Logf: logf, Port: conf.ListenPort, EndpointsFunc: endpointsFn, DERPActiveFunc: e.RequestStatus, IdleFunc: e.tundev.IdleDuration, NoteRecvActivity: e.noteReceiveActivity, } e.magicConn, err = magicsock.NewConn(magicsockOpts) if err != nil { e.tundev.Close() return nil, fmt.Errorf("wgengine: %v", err) } // flags==0 because logf is already nested in another logger. // The outer one can display the preferred log prefixes, etc. dlog := log.New(&Loggify{logf}, "", 0) logger := device.Logger{ Debug: dlog, Info: dlog, Error: dlog, } opts := &device.DeviceOptions{ Logger: &logger, HandshakeDone: func(peerKey wgcfg.Key, peer *device.Peer, deviceAllowedIPs *device.AllowedIPs) { // Send an unsolicited status event every time a // handshake completes. This makes sure our UI can // update quickly as soon as it connects to a peer. // // We use a goroutine here to avoid deadlocking // wireguard, since RequestStatus() will call back // into it, and wireguard is what called us to get // here. go e.RequestStatus() if e.magicConn.PeerHasDiscoKey(tailcfg.NodeKey(peerKey)) { e.logf("wireguard handshake complete for %v", peerKey.ShortString()) // This is a modern peer with discovery support. No need to send pings. return } e.logf("wireguard handshake complete for %v; sending legacy pings", peerKey.ShortString()) // Ping every single-IP that peer routes. // These synthetic packets are used to traverse NATs. var ips []wgcfg.IP allowedIPs := deviceAllowedIPs.EntriesForPeer(peer) for _, ipNet := range allowedIPs { if ones, bits := ipNet.Mask.Size(); ones == bits && ones != 0 { var ip wgcfg.IP copy(ip.Addr[:], ipNet.IP.To16()) ips = append(ips, ip) } } if len(ips) > 0 { go e.pinger(peerKey, ips) } else { logf("[unexpected] peer %s has no single-IP routes: %v", peerKey.ShortString(), allowedIPs) } }, CreateBind: e.magicConn.CreateBind, CreateEndpoint: e.magicConn.CreateEndpoint, SkipBindUpdate: true, } // wgdev takes ownership of tundev, will close it when closed. e.wgdev = device.NewDevice(e.tundev, opts) defer func() { if reterr != nil { e.wgdev.Close() } }() // Pass the underlying tun.(*NativeDevice) to the router: // routers do not Read or Write, but do access native interfaces. e.router, err = conf.RouterGen(logf, e.wgdev, e.tundev.Unwrap()) if err != nil { e.magicConn.Close() return nil, err } go func() { up := false for event := range e.tundev.Events() { if event&tun.EventMTUUpdate != 0 { mtu, err := e.tundev.MTU() e.logf("external route MTU: %d (%v)", mtu, err) } if event&tun.EventUp != 0 && !up { e.logf("external route: up") e.RequestStatus() up = true } if event&tun.EventDown != 0 && up { e.logf("external route: down") e.RequestStatus() up = false } } }() e.wgdev.Up() if err := e.router.Up(); err != nil { e.magicConn.Close() e.wgdev.Close() return nil, err } // TODO(danderson): we should delete this. It's pointless to apply // a no-op settings here. if err := e.router.Set(nil); err != nil { e.magicConn.Close() e.wgdev.Close() return nil, err } e.linkMon.Start() e.magicConn.Start() e.resolver.Start() go e.pollResolver() return e, nil } // echoRespondToAll is an inbound post-filter responding to all echo requests. func echoRespondToAll(p *packet.ParsedPacket, t *tstun.TUN) filter.Response { if p.IsEchoRequest() { header := p.ICMPHeader() header.ToResponse() packet := packet.Generate(&header, p.Payload()) t.InjectOutbound(packet) // We already handled it, stop. return filter.Drop } return filter.Accept } // handleLocalPackets inspects packets coming from the local network // stack, and intercepts any packets that should be handled by // tailscaled directly. Other packets are allowed to proceed into the // main ACL filter. func (e *userspaceEngine) handleLocalPackets(p *packet.ParsedPacket, t *tstun.TUN) filter.Response { if verdict := e.handleDNS(p, t); verdict == filter.Drop { // local DNS handled the packet. return filter.Drop } if runtime.GOOS == "darwin" && e.isLocalAddr(p.DstIP) { // macOS NetworkExtension directs packets destined to the // tunnel's local IP address into the tunnel, instead of // looping back within the kernel network stack. We have to // notice that an outbound packet is actually destined for // ourselves, and loop it back into macOS. t.InjectInboundCopy(p.Buffer()) return filter.Drop } return filter.Accept } func (e *userspaceEngine) isLocalAddr(ip packet.IP) bool { localAddrs, ok := e.localAddrs.Load().(map[packet.IP]bool) if !ok { e.logf("[unexpected] e.localAddrs was nil, can't check for loopback packet") return false } return localAddrs[ip] } // handleDNS is an outbound pre-filter resolving Tailscale domains. func (e *userspaceEngine) handleDNS(p *packet.ParsedPacket, t *tstun.TUN) filter.Response { if p.DstIP == magicDNSIP && p.DstPort == magicDNSPort && p.IPProto == packet.UDP { request := tsdns.Packet{ Payload: append([]byte(nil), p.Payload()...), Addr: netaddr.IPPort{IP: p.SrcIP.Netaddr(), Port: p.SrcPort}, } err := e.resolver.EnqueueRequest(request) if err != nil { e.logf("tsdns: enqueue: %v", err) } return filter.Drop } return filter.Accept } // pollResolver reads responses from the DNS resolver and injects them inbound. func (e *userspaceEngine) pollResolver() { for { resp, err := e.resolver.NextResponse() if err == tsdns.ErrClosed { return } if err != nil { e.logf("tsdns: error: %v", err) continue } h := packet.UDPHeader{ IPHeader: packet.IPHeader{ SrcIP: packet.IP(magicDNSIP), DstIP: packet.IPFromNetaddr(resp.Addr.IP), }, SrcPort: magicDNSPort, DstPort: resp.Addr.Port, } hlen := h.Len() // TODO(dmytro): avoid this allocation without importing tstun quirks into tsdns. const offset = tstun.PacketStartOffset buf := make([]byte, offset+hlen+len(resp.Payload)) copy(buf[offset+hlen:], resp.Payload) h.Marshal(buf[offset:]) e.tundev.InjectInboundDirect(buf, offset) } } // pinger sends ping packets for a few seconds. // // These generated packets are used to ensure we trigger the spray logic in // the magicsock package for NAT traversal. // // These are only used with legacy peers (before 0.100.0) that don't // have advertised discovery keys. type pinger struct { e *userspaceEngine done chan struct{} // closed after shutdown (not the ctx.Done() chan) cancel context.CancelFunc } // close cleans up pinger and removes it from the userspaceEngine.pingers map. // It cannot be called while p.e.mu is held. func (p *pinger) close() { p.cancel() <-p.done } func (p *pinger) run(ctx context.Context, peerKey wgcfg.Key, ips []wgcfg.IP, srcIP packet.IP) { defer func() { p.e.mu.Lock() if p.e.pingers[peerKey] == p { delete(p.e.pingers, peerKey) } p.e.mu.Unlock() close(p.done) }() header := packet.ICMPHeader{ IPHeader: packet.IPHeader{ SrcIP: srcIP, }, Type: packet.ICMPEchoRequest, Code: packet.ICMPNoCode, } // sendFreq is slightly longer than sprayFreq in magicsock to ensure // that if these ping packets are the only source of early packets // sent to the peer, that each one will be sprayed. const sendFreq = 300 * time.Millisecond const stopAfter = 3 * time.Second start := time.Now() var dstIPs []packet.IP for _, ip := range ips { dstIPs = append(dstIPs, packet.NewIP(ip.IP())) } payload := []byte("magicsock_spray") // no meaning header.IPID = 1 t := time.NewTicker(sendFreq) defer t.Stop() for { select { case <-ctx.Done(): return case <-t.C: } if time.Since(start) > stopAfter { return } for _, dstIP := range dstIPs { header.DstIP = dstIP // InjectOutbound take ownership of the packet, so we allocate. b := packet.Generate(&header, payload) p.e.tundev.InjectOutbound(b) } header.IPID++ } } // pinger sends ping packets for a few seconds. // // These generated packets are used to ensure we trigger the spray logic in // the magicsock package for NAT traversal. // // This is only used with legacy peers (before 0.100.0) that don't // have advertised discovery keys. func (e *userspaceEngine) pinger(peerKey wgcfg.Key, ips []wgcfg.IP) { e.logf("generating initial ping traffic to %s (%v)", peerKey.ShortString(), ips) var srcIP packet.IP e.wgLock.Lock() if len(e.lastCfgFull.Addresses) > 0 { srcIP = packet.NewIP(e.lastCfgFull.Addresses[0].IP.IP()) } e.wgLock.Unlock() if srcIP == 0 { e.logf("generating initial ping traffic: no source IP") return } ctx, cancel := context.WithCancel(context.Background()) p := &pinger{ e: e, done: make(chan struct{}), cancel: cancel, } e.mu.Lock() if e.closing { e.mu.Unlock() return } oldPinger := e.pingers[peerKey] e.pingers[peerKey] = p e.mu.Unlock() if oldPinger != nil { oldPinger.close() } p.run(ctx, peerKey, ips, srcIP) } var ( debugTrimWireguardEnv = os.Getenv("TS_DEBUG_TRIM_WIREGUARD") debugTrimWireguard, _ = strconv.ParseBool(debugTrimWireguardEnv) ) // forceFullWireguardConfig reports whether we should give wireguard // our full network map, even for inactive peers // // TODO(bradfitz): remove this after our 1.0 launch; we don't want to // enable wireguard config trimming quite yet because it just landed // and we haven't got enough time testing it. func forceFullWireguardConfig(numPeers int) bool { // Did the user explicitly enable trimmming via the environment variable knob? if debugTrimWireguardEnv != "" { return !debugTrimWireguard } if opt := controlclient.TrimWGConfig(); opt != "" { return !opt.EqualBool(true) } // On iOS with large networks, it's critical, so turn on trimming. // Otherwise we run out of memory from wireguard-go goroutine stacks+buffers. // This will be the default later for all platforms and network sizes. iOS := runtime.GOOS == "darwin" && version.IsMobile() if iOS && numPeers > 50 { return false } return false } // isTrimmablePeer reports whether p is a peer that we can trim out of the // network map. // // We can only trim peers that both a) support discovery (because we // know who they are when we receive their data and don't need to rely // on wireguard-go figuring it out) and b) for implementation // simplicity, have only one IP address (an IPv4 /32), which is the // common case for most peers. Subnet router nodes will just always be // created in the wireguard-go config. func isTrimmablePeer(p *wgcfg.Peer, numPeers int) bool { if forceFullWireguardConfig(numPeers) { return false } if len(p.AllowedIPs) != 1 || len(p.Endpoints) != 1 { return false } if !strings.HasSuffix(p.Endpoints[0].Host, ".disco.tailscale") { return false } aip := p.AllowedIPs[0] // TODO: IPv6 support, once we support IPv6 within the tunnel. In that case, // len(p.AllowedIPs) probably will be more than 1. if aip.Mask != 32 || !aip.IP.Is4() { return false } return true } // noteReceiveActivity is called by magicsock when a packet has been received // by the peer using discovery key dk. Magicsock calls this no more than // every 10 seconds for a given peer. func (e *userspaceEngine) noteReceiveActivity(dk tailcfg.DiscoKey) { e.wgLock.Lock() defer e.wgLock.Unlock() if _, ok := e.recvActivityAt[dk]; !ok { // Not a trimmable peer we care about tracking. (See isTrimmablePeer) if e.trimmedDisco[dk] { e.logf("wgengine: [unexpected] noteReceiveActivity called on idle discokey %v that's not in recvActivityAt", dk.ShortString()) } return } now := e.timeNow() e.recvActivityAt[dk] = now // If the last activity time jumped a bunch (say, at least // half the idle timeout) then see if we need to reprogram // Wireguard. This could probably be just // lazyPeerIdleThreshold without the divide by 2, but // maybeReconfigWireguardLocked is cheap enough to call every // couple minutes (just not on every packet). if e.trimmedDisco[dk] { e.logf("wgengine: idle peer %v now active, reconfiguring wireguard", dk.ShortString()) e.maybeReconfigWireguardLocked() } } // isActiveSince reports whether the peer identified by (dk, ip) has // had a packet sent to or received from it since t. // // e.wgLock must be held. func (e *userspaceEngine) isActiveSince(dk tailcfg.DiscoKey, ip wgcfg.IP, t time.Time) bool { if e.recvActivityAt[dk].After(t) { return true } pip := packet.IP(binary.BigEndian.Uint32(ip.Addr[12:])) timePtr, ok := e.sentActivityAt[pip] if !ok { return false } unixTime := atomic.LoadInt64(timePtr) return unixTime >= t.Unix() } // discoKeyFromPeer returns the DiscoKey for a wireguard config's Peer. // // Invariant: isTrimmablePeer(p) == true, so it should have 1 endpoint with // Host of form "<64-hex-digits>.disco.tailscale". If invariant is violated, // we return the zero value. func discoKeyFromPeer(p *wgcfg.Peer) tailcfg.DiscoKey { host := p.Endpoints[0].Host if len(host) < 64 { return tailcfg.DiscoKey{} } k, err := key.NewPublicFromHexMem(mem.S(host[:64])) if err != nil { return tailcfg.DiscoKey{} } return tailcfg.DiscoKey(k) } // e.wgLock must be held. func (e *userspaceEngine) maybeReconfigWireguardLocked() error { if hook := e.testMaybeReconfigHook; hook != nil { hook() return nil } full := e.lastCfgFull // Compute a minimal config to pass to wireguard-go // based on the full config. Prune off all the peers // and only add the active ones back. min := full min.Peers = nil // We'll only keep a peer around if it's been active in // the past 5 minutes. That's more than WireGuard's key // rotation time anyway so it's no harm if we remove it // later if it's been inactive. activeCutoff := e.timeNow().Add(-lazyPeerIdleThreshold) // Not all peers can be trimmed from the network map (see // isTrimmablePeer). For those are are trimmable, keep track // of their DiscoKey and Tailscale IPs. These are the ones // we'll need to install tracking hooks for to watch their // send/receive activity. trackDisco := make([]tailcfg.DiscoKey, 0, len(full.Peers)) trackIPs := make([]wgcfg.IP, 0, len(full.Peers)) trimmedDisco := map[tailcfg.DiscoKey]bool{} // TODO: don't re-alloc this map each time for i := range full.Peers { p := &full.Peers[i] if !isTrimmablePeer(p, len(full.Peers)) { min.Peers = append(min.Peers, *p) continue } tsIP := p.AllowedIPs[0].IP dk := discoKeyFromPeer(p) trackDisco = append(trackDisco, dk) trackIPs = append(trackIPs, tsIP) if e.isActiveSince(dk, tsIP, activeCutoff) { min.Peers = append(min.Peers, *p) } else { trimmedDisco[dk] = true } } if !deepprint.UpdateHash(&e.lastEngineSigTrim, min) { // No changes return nil } e.trimmedDisco = trimmedDisco e.updateActivityMapsLocked(trackDisco, trackIPs) e.logf("wgengine: Reconfig: configuring userspace wireguard config (with %d/%d peers)", len(min.Peers), len(full.Peers)) if err := e.wgdev.Reconfig(&min); err != nil { e.logf("wgdev.Reconfig: %v", err) return err } return nil } // updateActivityMapsLocked updates the data structures used for tracking the activity // of wireguard peers that we might add/remove dynamically from the real config // as given to wireguard-go. // // e.wgLock must be held. func (e *userspaceEngine) updateActivityMapsLocked(trackDisco []tailcfg.DiscoKey, trackIPs []wgcfg.IP) { // Generate the new map of which discokeys we want to track // receive times for. mr := map[tailcfg.DiscoKey]time.Time{} // TODO: only recreate this if set of keys changed for _, dk := range trackDisco { // Preserve old times in the new map, but also // populate map entries for new trackDisco values with // time.Time{} zero values. (Only entries in this map // are tracked, so the Time zero values allow it to be // tracked later) mr[dk] = e.recvActivityAt[dk] } e.recvActivityAt = mr oldTime := e.sentActivityAt e.sentActivityAt = make(map[packet.IP]*int64, len(oldTime)) oldFunc := e.destIPActivityFuncs e.destIPActivityFuncs = make(map[packet.IP]func(), len(oldFunc)) for _, wip := range trackIPs { pip := packet.IP(binary.BigEndian.Uint32(wip.Addr[12:])) timePtr := oldTime[pip] if timePtr == nil { timePtr = new(int64) } e.sentActivityAt[pip] = timePtr fn := oldFunc[pip] if fn == nil { // This is the func that gets run on every outgoing packet for tracked IPs: fn = func() { now := e.timeNow().Unix() old := atomic.LoadInt64(timePtr) // How long's it been since we last sent a packet? // For our first packet, old is Unix epoch time 0 (1970). elapsedSec := now - old if elapsedSec >= int64(packetSendTimeUpdateFrequency/time.Second) { atomic.StoreInt64(timePtr, now) } // On a big jump, assume we might no longer be in the wireguard // config and go check. if elapsedSec >= int64(packetSendRecheckWireguardThreshold/time.Second) { e.wgLock.Lock() defer e.wgLock.Unlock() e.maybeReconfigWireguardLocked() } } } e.destIPActivityFuncs[pip] = fn } e.tundev.SetDestIPActivityFuncs(e.destIPActivityFuncs) } func (e *userspaceEngine) Reconfig(cfg *wgcfg.Config, routerCfg *router.Config) error { if routerCfg == nil { panic("routerCfg must not be nil") } localAddrs := map[packet.IP]bool{} for _, addr := range routerCfg.LocalAddrs { // TODO: ipv6 if !addr.IP.Is4() { continue } localAddrs[packet.IPFromNetaddr(addr.IP)] = true } e.localAddrs.Store(localAddrs) e.wgLock.Lock() defer e.wgLock.Unlock() peerSet := make(map[key.Public]struct{}, len(cfg.Peers)) e.mu.Lock() e.peerSequence = e.peerSequence[:0] for _, p := range cfg.Peers { e.peerSequence = append(e.peerSequence, p.PublicKey) peerSet[key.Public(p.PublicKey)] = struct{}{} } e.mu.Unlock() engineChanged := deepprint.UpdateHash(&e.lastEngineSigFull, cfg) routerChanged := deepprint.UpdateHash(&e.lastRouterSig, routerCfg) if !engineChanged && !routerChanged { return ErrNoChanges } e.lastCfgFull = cfg.Copy() // Tell magicsock about the new (or initial) private key // (which is needed by DERP) before wgdev gets it, as wgdev // will start trying to handshake, which we want to be able to // go over DERP. if err := e.magicConn.SetPrivateKey(cfg.PrivateKey); err != nil { e.logf("wgengine: Reconfig: SetPrivateKey: %v", err) } e.magicConn.UpdatePeers(peerSet) if err := e.maybeReconfigWireguardLocked(); err != nil { return err } if routerChanged { if routerCfg.DNS.Proxied { ips := routerCfg.DNS.Nameservers upstreams := make([]net.Addr, len(ips)) for i, ip := range ips { stdIP := ip.IPAddr() upstreams[i] = &net.UDPAddr{ IP: stdIP.IP, Port: 53, Zone: stdIP.Zone, } } e.resolver.SetUpstreams(upstreams) routerCfg.DNS.Nameservers = []netaddr.IP{tsaddr.TailscaleServiceIP()} } e.logf("wgengine: Reconfig: configuring router") if err := e.router.Set(routerCfg); err != nil { return err } } e.logf("wgengine: Reconfig done") return nil } func (e *userspaceEngine) GetFilter() *filter.Filter { return e.tundev.GetFilter() } func (e *userspaceEngine) SetFilter(filt *filter.Filter) { e.tundev.SetFilter(filt) } func (e *userspaceEngine) SetDNSMap(dm *tsdns.Map) { e.resolver.SetMap(dm) } func (e *userspaceEngine) SetStatusCallback(cb StatusCallback) { e.mu.Lock() defer e.mu.Unlock() e.statusCallback = cb } func (e *userspaceEngine) getStatusCallback() StatusCallback { e.mu.Lock() defer e.mu.Unlock() return e.statusCallback } // TODO: this function returns an error but it's always nil, and when // there's actually a problem it just calls log.Fatal. Why? func (e *userspaceEngine) getStatus() (*Status, error) { // Grab derpConns before acquiring wgLock to not violate lock ordering; // the DERPs method acquires magicsock.Conn.mu. // (See comment in userspaceEngine's declaration.) derpConns := e.magicConn.DERPs() e.wgLock.Lock() defer e.wgLock.Unlock() e.mu.Lock() closing := e.closing e.mu.Unlock() if closing { return nil, errors.New("engine closing; no status") } if e.wgdev == nil { // RequestStatus was invoked before the wgengine has // finished initializing. This can happen when wgegine // provides a callback to magicsock for endpoint // updates that calls RequestStatus. return nil, nil } // lineLen is the max UAPI line we expect. The longest I see is // len("preshared_key=")+64 hex+"\n" == 79. Add some slop. const lineLen = 100 pr, pw := io.Pipe() errc := make(chan error, 1) go func() { defer pw.Close() bw := bufio.NewWriterSize(pw, lineLen) // TODO(apenwarr): get rid of silly uapi stuff for in-process comms // FIXME: get notified of status changes instead of polling. filter := device.IPCGetFilter{ // The allowed_ips are somewhat expensive to compute and they're // unused below; request that they not be sent instead. FilterAllowedIPs: true, } if err := e.wgdev.IpcGetOperationFiltered(bw, filter); err != nil { errc <- fmt.Errorf("IpcGetOperation: %w", err) return } errc <- bw.Flush() }() pp := make(map[wgcfg.Key]*PeerStatus) p := &PeerStatus{} var hst1, hst2, n int64 var err error bs := bufio.NewScanner(pr) bs.Buffer(make([]byte, lineLen), lineLen) for bs.Scan() { line := bs.Bytes() k := line var v mem.RO if i := bytes.IndexByte(line, '='); i != -1 { k = line[:i] v = mem.B(line[i+1:]) } switch string(k) { case "public_key": pk, err := key.NewPublicFromHexMem(v) if err != nil { log.Fatalf("IpcGetOperation: invalid key %#v", v) } p = &PeerStatus{} pp[wgcfg.Key(pk)] = p key := tailcfg.NodeKey(pk) p.NodeKey = key case "rx_bytes": n, err = mem.ParseInt(v, 10, 64) p.RxBytes = ByteCount(n) if err != nil { log.Fatalf("IpcGetOperation: rx_bytes invalid: %#v", line) } case "tx_bytes": n, err = mem.ParseInt(v, 10, 64) p.TxBytes = ByteCount(n) if err != nil { log.Fatalf("IpcGetOperation: tx_bytes invalid: %#v", line) } case "last_handshake_time_sec": hst1, err = mem.ParseInt(v, 10, 64) if err != nil { log.Fatalf("IpcGetOperation: hst1 invalid: %#v", line) } case "last_handshake_time_nsec": hst2, err = mem.ParseInt(v, 10, 64) if err != nil { log.Fatalf("IpcGetOperation: hst2 invalid: %#v", line) } if hst1 != 0 || hst2 != 0 { p.LastHandshake = time.Unix(hst1, hst2) } // else leave at time.IsZero() } } if err := bs.Err(); err != nil { log.Fatalf("reading IpcGetOperation output: %v", err) } if err := <-errc; err != nil { log.Fatalf("IpcGetOperation: %v", err) } e.mu.Lock() defer e.mu.Unlock() var peers []PeerStatus for _, pk := range e.peerSequence { if p, ok := pp[pk]; ok { // ignore idle ones not in wireguard-go's config peers = append(peers, *p) } } return &Status{ LocalAddrs: append([]string(nil), e.endpoints...), Peers: peers, DERPs: derpConns, }, nil } func (e *userspaceEngine) RequestStatus() { // This is slightly tricky. e.getStatus() can theoretically get // blocked inside wireguard for a while, and RequestStatus() is // sometimes called from a goroutine, so we don't want a lot of // them hanging around. On the other hand, requesting multiple // status updates simultaneously is pointless anyway; they will // all say the same thing. // Enqueue at most one request. If one is in progress already, this // adds one more to the queue. If one has been requested but not // started, it is a no-op. select { case e.reqCh <- struct{}{}: default: } // Dequeue at most one request. Another thread may have already // dequeued the request we enqueued above, which is fine, since the // information is guaranteed to be at least as recent as the current // call to RequestStatus(). select { case <-e.reqCh: s, err := e.getStatus() if s == nil && err == nil { e.logf("RequestStatus: weird: both s and err are nil") return } if cb := e.getStatusCallback(); cb != nil { cb(s, err) } default: } } func (e *userspaceEngine) Close() { var pingers []*pinger e.mu.Lock() if e.closing { e.mu.Unlock() return } e.closing = true for _, pinger := range e.pingers { pingers = append(pingers, pinger) } e.mu.Unlock() r := bufio.NewReader(strings.NewReader("")) e.wgdev.IpcSetOperation(r) e.resolver.Close() e.magicConn.Close() e.linkMon.Close() e.router.Close() e.wgdev.Close() // Shut down pingers after tundev is closed (by e.wgdev.Close) so the // synchronous close does not get stuck on InjectOutbound. for _, pinger := range pingers { pinger.close() } close(e.waitCh) } func (e *userspaceEngine) Wait() { <-e.waitCh } func (e *userspaceEngine) setLinkState(st *interfaces.State) (changed bool, cb func(major bool, newState *interfaces.State)) { if st == nil { return false, nil } e.mu.Lock() defer e.mu.Unlock() changed = e.linkState == nil || !st.Equal(e.linkState) e.linkState = st return changed, e.linkChangeCallback } func (e *userspaceEngine) LinkChange(isExpensive bool) { cur, err := getLinkState() if err != nil { e.logf("LinkChange: interfaces.GetState: %v", err) return } cur.IsExpensive = isExpensive needRebind, linkChangeCallback := e.setLinkState(cur) if needRebind { e.logf("LinkChange: major, rebinding. New state: %+v", cur) } else { e.logf("LinkChange: minor") } why := "link-change-minor" if needRebind { why = "link-change-major" e.magicConn.Rebind() } e.magicConn.ReSTUN(why) if linkChangeCallback != nil { go linkChangeCallback(needRebind, cur) } } func (e *userspaceEngine) SetLinkChangeCallback(cb func(major bool, newState *interfaces.State)) { e.mu.Lock() defer e.mu.Unlock() e.linkChangeCallback = cb } func getLinkState() (*interfaces.State, error) { s, err := interfaces.GetState() if s != nil { s.RemoveTailscaleInterfaces() } return s, err } func (e *userspaceEngine) SetNetInfoCallback(cb NetInfoCallback) { e.magicConn.SetNetInfoCallback(cb) } func (e *userspaceEngine) SetDERPMap(dm *tailcfg.DERPMap) { e.magicConn.SetDERPMap(dm) } func (e *userspaceEngine) SetNetworkMap(nm *controlclient.NetworkMap) { e.magicConn.SetNetworkMap(nm) } func (e *userspaceEngine) DiscoPublicKey() tailcfg.DiscoKey { return e.magicConn.DiscoPublicKey() } func (e *userspaceEngine) UpdateStatus(sb *ipnstate.StatusBuilder) { st, err := e.getStatus() if err != nil { e.logf("wgengine: getStatus: %v", err) return } for _, ps := range st.Peers { sb.AddPeer(key.Public(ps.NodeKey), &ipnstate.PeerStatus{ RxBytes: int64(ps.RxBytes), TxBytes: int64(ps.TxBytes), LastHandshake: ps.LastHandshake, InEngine: true, }) } e.magicConn.UpdateStatus(sb) } func (e *userspaceEngine) Ping(ip netaddr.IP, cb func(*ipnstate.PingResult)) { e.magicConn.Ping(ip, cb) } // diagnoseTUNFailure is called if tun.CreateTUN fails, to poke around // the system and log some diagnostic info that might help debug why // TUN failed. Because TUN's already failed and things the program's // about to end, we might as well log a lot. func diagnoseTUNFailure(logf logger.Logf) { switch runtime.GOOS { case "linux": diagnoseLinuxTUNFailure(logf) default: logf("no TUN failure diagnostics for OS %q", runtime.GOOS) } } func diagnoseLinuxTUNFailure(logf logger.Logf) { kernel, err := exec.Command("uname", "-r").Output() kernel = bytes.TrimSpace(kernel) if err != nil { logf("no TUN, and failed to look up kernel version: %v", err) return } logf("Linux kernel version: %s", kernel) modprobeOut, err := exec.Command("/sbin/modprobe", "tun").CombinedOutput() if err == nil { logf("'modprobe tun' successful") // Either tun is currently loaded, or it's statically // compiled into the kernel (which modprobe checks // with /lib/modules/$(uname -r)/modules.builtin) // // So if there's a problem at this point, it's // probably because /dev/net/tun doesn't exist. const dev = "/dev/net/tun" if fi, err := os.Stat(dev); err != nil { logf("tun module loaded in kernel, but %s does not exist", dev) } else { logf("%s: %v", dev, fi.Mode()) } // We failed to find why it failed. Just let our // caller report the error it got from wireguard-go. return } logf("is CONFIG_TUN enabled in your kernel? `modprobe tun` failed with: %s", modprobeOut) distro := linuxDistro() switch distro { case "debian": dpkgOut, err := exec.Command("dpkg", "-S", "kernel/drivers/net/tun.ko").CombinedOutput() if len(bytes.TrimSpace(dpkgOut)) == 0 || err != nil { logf("tun module not loaded nor found on disk") return } if !bytes.Contains(dpkgOut, kernel) { logf("kernel/drivers/net/tun.ko found on disk, but not for current kernel; are you in middle of a system update and haven't rebooted? found: %s", dpkgOut) } case "arch": findOut, err := exec.Command("find", "/lib/modules/", "-path", "*/net/tun.ko*").CombinedOutput() if len(bytes.TrimSpace(findOut)) == 0 || err != nil { logf("tun module not loaded nor found on disk") return } if !bytes.Contains(findOut, kernel) { logf("kernel/drivers/net/tun.ko found on disk, but not for current kernel; are you in middle of a system update and haven't rebooted? found: %s", findOut) } } } func linuxDistro() string { if _, err := os.Stat("/etc/debian_version"); err == nil { return "debian" } if _, err := os.Stat("/etc/arch-release"); err == nil { return "arch" } return "" }