mirror of https://github.com/tailscale/tailscale/
prober: library to build healthchecking probers.
Signed-off-by: David Anderson <danderson@tailscale.com>pull/4232/head
parent
f2041c9088
commit
e41a3b983c
@ -0,0 +1,62 @@
|
||||
// Copyright (c) 2022 Tailscale Inc & AUTHORS All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package prober
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"fmt"
|
||||
"io"
|
||||
"net/http"
|
||||
)
|
||||
|
||||
const maxHTTPBody = 4 << 20 // MiB
|
||||
|
||||
// HTTP returns a Probe that healthchecks an HTTP URL.
|
||||
//
|
||||
// The Probe sends a GET request for url, expects an HTTP 200
|
||||
// response, and verifies that want is present in the response
|
||||
// body. If the URL is HTTPS, the probe further checks that the TLS
|
||||
// certificate is good for at least the next 7 days.
|
||||
func HTTP(url, wantText string) Probe {
|
||||
return func(ctx context.Context) error {
|
||||
return probeHTTP(ctx, url, []byte(wantText))
|
||||
}
|
||||
}
|
||||
|
||||
func probeHTTP(ctx context.Context, url string, want []byte) error {
|
||||
req, err := http.NewRequestWithContext(ctx, "GET", url, nil)
|
||||
if err != nil {
|
||||
return fmt.Errorf("constructing request: %w", err)
|
||||
}
|
||||
|
||||
// Get a completely new transport each time, so we don't reuse a
|
||||
// past connection.
|
||||
tr := http.DefaultTransport.(*http.Transport).Clone()
|
||||
defer tr.CloseIdleConnections()
|
||||
c := &http.Client{
|
||||
Transport: tr,
|
||||
}
|
||||
|
||||
resp, err := c.Do(req)
|
||||
if err != nil {
|
||||
return fmt.Errorf("fetching %q: %w", url, err)
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
if resp.StatusCode != 200 {
|
||||
return fmt.Errorf("fetching %q: status code %d, want 200", url, resp.StatusCode)
|
||||
}
|
||||
|
||||
bs, err := io.ReadAll(&io.LimitedReader{resp.Body, maxHTTPBody})
|
||||
if err != nil {
|
||||
return fmt.Errorf("reading body of %q: %w", url, err)
|
||||
}
|
||||
|
||||
if !bytes.Contains(bs, want) {
|
||||
return fmt.Errorf("body of %q does not contain %q", url, want)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
@ -0,0 +1,235 @@
|
||||
// Copyright (c) 2022 Tailscale Inc & AUTHORS All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package prober implements a simple blackbox prober. Each probe runs
|
||||
// in its own goroutine, and run results are recorded as Prometheus
|
||||
// metrics.
|
||||
package prober
|
||||
|
||||
import (
|
||||
"context"
|
||||
"errors"
|
||||
"fmt"
|
||||
"log"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"tailscale.com/metrics"
|
||||
)
|
||||
|
||||
// Probe is a function that probes something and reports whether the
|
||||
// probe succeeded. The provided context must be used to ensure timely
|
||||
// cancellation and timeout behavior.
|
||||
type Probe func(context.Context) error
|
||||
|
||||
// a Prober manages a set of probes and keeps track of their results.
|
||||
type Prober struct {
|
||||
// Time-related functions that get faked out during tests.
|
||||
now func() time.Time
|
||||
newTicker func(time.Duration) ticker
|
||||
|
||||
// lastStart is the time, in seconds since epoch, of the last time
|
||||
// each probe started a probe cycle.
|
||||
lastStart metrics.LabelMap
|
||||
// lastEnd is the time, in seconds since epoch, of the last time
|
||||
// each probe finished a probe cycle.
|
||||
lastEnd metrics.LabelMap
|
||||
// lastResult records whether probes succeeded. A successful probe
|
||||
// is recorded as 1, a failure as 0.
|
||||
lastResult metrics.LabelMap
|
||||
// lastLatency records how long the last probe cycle took for each
|
||||
// probe, in milliseconds.
|
||||
lastLatency metrics.LabelMap
|
||||
// probeInterval records the time in seconds between successive
|
||||
// runs of each probe.
|
||||
//
|
||||
// This is to help Prometheus figure out how long a probe should
|
||||
// be failing before it fires an alert for it. To avoid random
|
||||
// background noise, you want it to wait for more than 1
|
||||
// datapoint, but you also can't use a fixed interval because some
|
||||
// probes might run every few seconds, while e.g. TLS certificate
|
||||
// expiry might only run once a day.
|
||||
//
|
||||
// So, for each probe, the prober tells Prometheus how often it
|
||||
// runs, so that the alert can autotune itself to eliminate noise
|
||||
// without being excessively delayed.
|
||||
probeInterval metrics.LabelMap
|
||||
|
||||
mu sync.Mutex // protects all following fields
|
||||
activeProbeCh map[string]chan struct{}
|
||||
}
|
||||
|
||||
// New returns a new Prober.
|
||||
func New() *Prober {
|
||||
return newForTest(time.Now, newRealTicker)
|
||||
}
|
||||
|
||||
func newForTest(now func() time.Time, newTicker func(time.Duration) ticker) *Prober {
|
||||
return &Prober{
|
||||
now: now,
|
||||
newTicker: newTicker,
|
||||
lastStart: metrics.LabelMap{Label: "probe"},
|
||||
lastEnd: metrics.LabelMap{Label: "probe"},
|
||||
lastResult: metrics.LabelMap{Label: "probe"},
|
||||
lastLatency: metrics.LabelMap{Label: "probe"},
|
||||
probeInterval: metrics.LabelMap{Label: "probe"},
|
||||
activeProbeCh: map[string]chan struct{}{},
|
||||
}
|
||||
}
|
||||
|
||||
// Expvar returns the metrics for running probes.
|
||||
func (p *Prober) Expvar() *metrics.Set {
|
||||
ret := new(metrics.Set)
|
||||
ret.Set("start_secs", &p.lastStart)
|
||||
ret.Set("end_secs", &p.lastEnd)
|
||||
ret.Set("result", &p.lastResult)
|
||||
ret.Set("latency_millis", &p.lastLatency)
|
||||
ret.Set("interval_secs", &p.probeInterval)
|
||||
return ret
|
||||
}
|
||||
|
||||
// Run executes fun every interval, and exports probe results under probeName.
|
||||
//
|
||||
// fun is given a context.Context that, if obeyed, ensures that fun
|
||||
// ends within interval. If fun disregards the context, it will not be
|
||||
// run again until it does finish, and metrics will reflect that the
|
||||
// probe function is stuck.
|
||||
//
|
||||
// Run returns a context.CancelFunc that stops the probe when
|
||||
// invoked. Probe shutdown and removal happens-before the CancelFunc
|
||||
// returns.
|
||||
//
|
||||
// Registering a probe under an already-registered name panics.
|
||||
func (p *Prober) Run(name string, interval time.Duration, fun Probe) context.CancelFunc {
|
||||
p.mu.Lock()
|
||||
defer p.mu.Unlock()
|
||||
ticker := p.registerLocked(name, interval)
|
||||
|
||||
ctx, cancel := context.WithCancel(context.Background())
|
||||
go p.probeLoop(ctx, name, interval, ticker, fun)
|
||||
|
||||
return func() {
|
||||
p.mu.Lock()
|
||||
stopped := p.activeProbeCh[name]
|
||||
p.mu.Unlock()
|
||||
cancel()
|
||||
<-stopped
|
||||
}
|
||||
}
|
||||
|
||||
// probeLoop invokes runProbe on fun every interval. The first probe
|
||||
// is run after interval.
|
||||
func (p *Prober) probeLoop(ctx context.Context, name string, interval time.Duration, tick ticker, fun Probe) {
|
||||
defer func() {
|
||||
p.unregister(name)
|
||||
tick.Stop()
|
||||
}()
|
||||
|
||||
for {
|
||||
select {
|
||||
case <-tick.Chan():
|
||||
p.runProbe(ctx, name, interval, fun)
|
||||
case <-ctx.Done():
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// runProbe invokes fun and records the results.
|
||||
//
|
||||
// fun is invoked with a timeout slightly less than interval, so that
|
||||
// the probe either succeeds or fails before the next cycle is
|
||||
// scheduled to start.
|
||||
func (p *Prober) runProbe(ctx context.Context, name string, interval time.Duration, fun Probe) {
|
||||
start := p.start(name)
|
||||
defer func() {
|
||||
// Prevent a panic within one probe function from killing the
|
||||
// entire prober, so that a single buggy probe doesn't destroy
|
||||
// our entire ability to monitor anything. A panic is recorded
|
||||
// as a probe failure, so panicking probes will trigger an
|
||||
// alert for debugging.
|
||||
if r := recover(); r != nil {
|
||||
log.Printf("probe %s panicked: %v", name, r)
|
||||
p.end(name, start, errors.New("panic"))
|
||||
}
|
||||
}()
|
||||
timeout := time.Duration(float64(interval) * 0.8)
|
||||
ctx, cancel := context.WithTimeout(ctx, timeout)
|
||||
defer cancel()
|
||||
|
||||
err := fun(ctx)
|
||||
p.end(name, start, err)
|
||||
if err != nil {
|
||||
log.Printf("probe %s: %v", name, err)
|
||||
}
|
||||
}
|
||||
|
||||
func (p *Prober) registerLocked(name string, interval time.Duration) ticker {
|
||||
if _, ok := p.activeProbeCh[name]; ok {
|
||||
panic(fmt.Sprintf("probe named %q already registered", name))
|
||||
}
|
||||
|
||||
stoppedCh := make(chan struct{})
|
||||
p.activeProbeCh[name] = stoppedCh
|
||||
p.probeInterval.Get(name).Set(int64(interval.Seconds()))
|
||||
// Create and return a ticker from here, while Prober is
|
||||
// locked. This ensures that our fake time in tests always sees
|
||||
// the new fake ticker being created before seeing that a new
|
||||
// probe is registered.
|
||||
return p.newTicker(interval)
|
||||
}
|
||||
|
||||
func (p *Prober) unregister(name string) {
|
||||
p.mu.Lock()
|
||||
defer p.mu.Unlock()
|
||||
close(p.activeProbeCh[name])
|
||||
delete(p.activeProbeCh, name)
|
||||
p.lastStart.Delete(name)
|
||||
p.lastEnd.Delete(name)
|
||||
p.lastResult.Delete(name)
|
||||
p.lastLatency.Delete(name)
|
||||
p.probeInterval.Delete(name)
|
||||
}
|
||||
|
||||
func (p *Prober) start(name string) time.Time {
|
||||
st := p.now()
|
||||
p.lastStart.Get(name).Set(st.Unix())
|
||||
return st
|
||||
}
|
||||
|
||||
func (p *Prober) end(name string, start time.Time, err error) {
|
||||
end := p.now()
|
||||
p.lastEnd.Get(name).Set(end.Unix())
|
||||
p.lastLatency.Get(name).Set(end.Sub(start).Milliseconds())
|
||||
v := int64(1)
|
||||
if err != nil {
|
||||
v = 0
|
||||
}
|
||||
p.lastResult.Get(name).Set(v)
|
||||
}
|
||||
|
||||
// Reports the number of registered probes. For tests only.
|
||||
func (p *Prober) activeProbes() int {
|
||||
p.mu.Lock()
|
||||
defer p.mu.Unlock()
|
||||
return len(p.activeProbeCh)
|
||||
}
|
||||
|
||||
// ticker wraps a time.Ticker in a way that can be faked for tests.
|
||||
type ticker interface {
|
||||
Chan() <-chan time.Time
|
||||
Stop()
|
||||
}
|
||||
|
||||
type realTicker struct {
|
||||
*time.Ticker
|
||||
}
|
||||
|
||||
func (t *realTicker) Chan() <-chan time.Time {
|
||||
return t.Ticker.C
|
||||
}
|
||||
|
||||
func newRealTicker(d time.Duration) ticker {
|
||||
return &realTicker{time.NewTicker(d)}
|
||||
}
|
@ -0,0 +1,293 @@
|
||||
// Copyright (c) 2022 Tailscale Inc & AUTHORS All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package prober
|
||||
|
||||
import (
|
||||
"context"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"strings"
|
||||
"sync"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"tailscale.com/syncs"
|
||||
"tailscale.com/tstest"
|
||||
)
|
||||
|
||||
const (
|
||||
probeInterval = 10 * time.Second // So expvars that are integer numbers of seconds change
|
||||
halfProbeInterval = probeInterval / 2
|
||||
quarterProbeInterval = probeInterval / 4
|
||||
convergenceTimeout = time.Second
|
||||
convergenceSleep = time.Millisecond
|
||||
)
|
||||
|
||||
var epoch = time.Unix(0, 0)
|
||||
|
||||
func TestProberTiming(t *testing.T) {
|
||||
clk := newFakeTime()
|
||||
p := newForTest(clk.Now, clk.NewTicker)
|
||||
|
||||
invoked := make(chan struct{}, 1)
|
||||
|
||||
notCalled := func() {
|
||||
t.Helper()
|
||||
select {
|
||||
case <-invoked:
|
||||
t.Fatal("probe was invoked earlier than expected")
|
||||
default:
|
||||
}
|
||||
}
|
||||
called := func() {
|
||||
t.Helper()
|
||||
select {
|
||||
case <-invoked:
|
||||
case <-time.After(2 * time.Second):
|
||||
t.Fatal("probe wasn't invoked as expected")
|
||||
}
|
||||
}
|
||||
|
||||
p.Run("test-probe", probeInterval, func(context.Context) error {
|
||||
invoked <- struct{}{}
|
||||
return nil
|
||||
})
|
||||
|
||||
waitActiveProbes(t, p, 1)
|
||||
|
||||
notCalled()
|
||||
clk.Advance(probeInterval + halfProbeInterval)
|
||||
called()
|
||||
notCalled()
|
||||
clk.Advance(quarterProbeInterval)
|
||||
notCalled()
|
||||
clk.Advance(probeInterval)
|
||||
called()
|
||||
notCalled()
|
||||
}
|
||||
|
||||
func TestProberRun(t *testing.T) {
|
||||
clk := newFakeTime()
|
||||
p := newForTest(clk.Now, clk.NewTicker)
|
||||
|
||||
var (
|
||||
mu sync.Mutex
|
||||
cnt int
|
||||
)
|
||||
|
||||
const startingProbes = 100
|
||||
cancels := []context.CancelFunc{}
|
||||
|
||||
for i := 0; i < startingProbes; i++ {
|
||||
cancels = append(cancels, p.Run(fmt.Sprintf("probe%d", i), probeInterval, func(context.Context) error {
|
||||
mu.Lock()
|
||||
defer mu.Unlock()
|
||||
cnt++
|
||||
return nil
|
||||
}))
|
||||
}
|
||||
|
||||
checkCnt := func(want int) {
|
||||
err := tstest.WaitFor(convergenceTimeout, func() error {
|
||||
mu.Lock()
|
||||
defer mu.Unlock()
|
||||
if cnt == want {
|
||||
cnt = 0
|
||||
return nil
|
||||
}
|
||||
return fmt.Errorf("wrong number of probe counter increments, got %d want %d", cnt, want)
|
||||
})
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
waitActiveProbes(t, p, startingProbes)
|
||||
clk.Advance(probeInterval + halfProbeInterval)
|
||||
checkCnt(startingProbes)
|
||||
|
||||
keep := startingProbes / 2
|
||||
|
||||
for i := keep; i < startingProbes; i++ {
|
||||
cancels[i]()
|
||||
}
|
||||
waitActiveProbes(t, p, keep)
|
||||
|
||||
clk.Advance(probeInterval)
|
||||
checkCnt(keep)
|
||||
}
|
||||
|
||||
func TestExpvar(t *testing.T) {
|
||||
clk := newFakeTime()
|
||||
p := newForTest(clk.Now, clk.NewTicker)
|
||||
|
||||
const aFewMillis = 20 * time.Millisecond
|
||||
var succeed syncs.AtomicBool
|
||||
p.Run("probe", probeInterval, func(context.Context) error {
|
||||
clk.Advance(aFewMillis)
|
||||
if succeed.Get() {
|
||||
return nil
|
||||
}
|
||||
return errors.New("failing, as instructed by test")
|
||||
})
|
||||
|
||||
waitActiveProbes(t, p, 1)
|
||||
clk.Advance(probeInterval + halfProbeInterval)
|
||||
|
||||
waitExpInt(t, p, "start_secs/probe", int((probeInterval + halfProbeInterval).Seconds()))
|
||||
waitExpInt(t, p, "end_secs/probe", int((probeInterval + halfProbeInterval).Seconds()))
|
||||
waitExpInt(t, p, "interval_secs/probe", int(probeInterval.Seconds()))
|
||||
waitExpInt(t, p, "latency_millis/probe", int(aFewMillis.Milliseconds()))
|
||||
waitExpInt(t, p, "result/probe", 0)
|
||||
|
||||
succeed.Set(true)
|
||||
clk.Advance(probeInterval)
|
||||
|
||||
waitExpInt(t, p, "start_secs/probe", int((probeInterval + probeInterval + halfProbeInterval).Seconds()))
|
||||
waitExpInt(t, p, "end_secs/probe", int((probeInterval + probeInterval + halfProbeInterval).Seconds()))
|
||||
waitExpInt(t, p, "interval_secs/probe", int(probeInterval.Seconds()))
|
||||
waitExpInt(t, p, "latency_millis/probe", int(aFewMillis.Milliseconds()))
|
||||
waitExpInt(t, p, "result/probe", 1)
|
||||
}
|
||||
|
||||
type fakeTicker struct {
|
||||
ch chan time.Time
|
||||
interval time.Duration
|
||||
|
||||
sync.Mutex
|
||||
next time.Time
|
||||
stopped bool
|
||||
}
|
||||
|
||||
func (t *fakeTicker) Chan() <-chan time.Time {
|
||||
return t.ch
|
||||
}
|
||||
|
||||
func (t *fakeTicker) Stop() {
|
||||
t.Lock()
|
||||
defer t.Unlock()
|
||||
t.stopped = true
|
||||
}
|
||||
|
||||
func (t *fakeTicker) fire(now time.Time) {
|
||||
t.Lock()
|
||||
defer t.Unlock()
|
||||
// Slight deviation from the stdlib ticker: time.Ticker will
|
||||
// adjust t.next to make up for missed ticks, whereas we tick on a
|
||||
// fixed interval regardless of receiver behavior. In our case
|
||||
// this is fine, since we're using the ticker as a wakeup
|
||||
// mechanism and not a precise timekeeping system.
|
||||
select {
|
||||
case t.ch <- now:
|
||||
default:
|
||||
}
|
||||
t.next = now.Add(t.interval)
|
||||
}
|
||||
|
||||
type fakeTime struct {
|
||||
sync.Mutex
|
||||
*sync.Cond
|
||||
curTime time.Time
|
||||
tickers []*fakeTicker
|
||||
}
|
||||
|
||||
func newFakeTime() *fakeTime {
|
||||
ret := &fakeTime{
|
||||
curTime: epoch,
|
||||
}
|
||||
ret.Cond = &sync.Cond{L: &ret.Mutex}
|
||||
ret.Advance(time.Duration(1)) // so that Now never IsZero
|
||||
return ret
|
||||
}
|
||||
|
||||
func (t *fakeTime) Now() time.Time {
|
||||
t.Lock()
|
||||
defer t.Unlock()
|
||||
ret := t.curTime
|
||||
// so that time always seems to advance for the program under test
|
||||
t.curTime = t.curTime.Add(time.Microsecond)
|
||||
return ret
|
||||
}
|
||||
|
||||
func (t *fakeTime) NewTicker(d time.Duration) ticker {
|
||||
t.Lock()
|
||||
defer t.Unlock()
|
||||
ret := &fakeTicker{
|
||||
ch: make(chan time.Time, 1),
|
||||
interval: d,
|
||||
next: t.curTime.Add(d),
|
||||
}
|
||||
t.tickers = append(t.tickers, ret)
|
||||
t.Cond.Broadcast()
|
||||
return ret
|
||||
}
|
||||
|
||||
func (t *fakeTime) Advance(d time.Duration) {
|
||||
t.Lock()
|
||||
defer t.Unlock()
|
||||
t.curTime = t.curTime.Add(d)
|
||||
for _, tick := range t.tickers {
|
||||
if t.curTime.After(tick.next) {
|
||||
tick.fire(t.curTime)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func waitExpInt(t *testing.T, p *Prober, path string, want int) {
|
||||
t.Helper()
|
||||
err := tstest.WaitFor(convergenceTimeout, func() error {
|
||||
got, ok := getExpInt(t, p, path)
|
||||
if !ok {
|
||||
return fmt.Errorf("expvar %q did not get set", path)
|
||||
}
|
||||
if got != want {
|
||||
return fmt.Errorf("expvar %q is %d, want %d", path, got, want)
|
||||
}
|
||||
return nil
|
||||
})
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
func getExpInt(t *testing.T, p *Prober, path string) (ret int, ok bool) {
|
||||
t.Helper()
|
||||
s := p.Expvar().String()
|
||||
dec := map[string]interface{}{}
|
||||
if err := json.Unmarshal([]byte(s), &dec); err != nil {
|
||||
t.Fatalf("couldn't unmarshal expvar data: %v", err)
|
||||
}
|
||||
var v interface{} = dec
|
||||
for _, d := range strings.Split(path, "/") {
|
||||
m, ok := v.(map[string]interface{})
|
||||
if !ok {
|
||||
t.Fatalf("expvar path %q ended early with a leaf value", path)
|
||||
}
|
||||
child, ok := m[d]
|
||||
if !ok {
|
||||
return 0, false
|
||||
}
|
||||
v = child
|
||||
}
|
||||
f, ok := v.(float64)
|
||||
if !ok {
|
||||
return 0, false
|
||||
}
|
||||
return int(f), true
|
||||
}
|
||||
|
||||
func waitActiveProbes(t *testing.T, p *Prober, want int) {
|
||||
t.Helper()
|
||||
err := tstest.WaitFor(convergenceTimeout, func() error {
|
||||
if got := p.activeProbes(); got != want {
|
||||
return fmt.Errorf("active probe count is %d, want %d", got, want)
|
||||
}
|
||||
return nil
|
||||
})
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
@ -0,0 +1,30 @@
|
||||
// Copyright (c) 2022 Tailscale Inc & AUTHORS All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package prober
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"net"
|
||||
)
|
||||
|
||||
// TCP returns a Probe that healthchecks a TCP endpoint.
|
||||
//
|
||||
// The Probe reports whether it can successfully connect to addr.
|
||||
func TCP(addr string) Probe {
|
||||
return func(ctx context.Context) error {
|
||||
return probeTCP(ctx, addr)
|
||||
}
|
||||
}
|
||||
|
||||
func probeTCP(ctx context.Context, addr string) error {
|
||||
var d net.Dialer
|
||||
conn, err := d.DialContext(ctx, "tcp", addr)
|
||||
if err != nil {
|
||||
return fmt.Errorf("dialing %q: %v", addr, err)
|
||||
}
|
||||
conn.Close()
|
||||
return nil
|
||||
}
|
@ -0,0 +1,46 @@
|
||||
// Copyright (c) 2022 Tailscale Inc & AUTHORS All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package prober
|
||||
|
||||
import (
|
||||
"context"
|
||||
"crypto/tls"
|
||||
"fmt"
|
||||
"net"
|
||||
"time"
|
||||
)
|
||||
|
||||
// TLS returns a Probe that healthchecks a TLS endpoint.
|
||||
//
|
||||
// The Probe connects to hostname, does a TLS handshake, verifies that
|
||||
// the hostname matches the presented certificate, and that the
|
||||
// certificate expires in more than 7 days from the probe time.
|
||||
func TLS(hostname string) Probe {
|
||||
return func(ctx context.Context) error {
|
||||
return probeTLS(ctx, hostname)
|
||||
}
|
||||
}
|
||||
|
||||
func probeTLS(ctx context.Context, hostname string) error {
|
||||
var d net.Dialer
|
||||
conn, err := tls.DialWithDialer(&d, "tcp", hostname+":443", nil)
|
||||
if err != nil {
|
||||
return fmt.Errorf("connecting to %q: %w", hostname, err)
|
||||
}
|
||||
if err := conn.Handshake(); err != nil {
|
||||
return fmt.Errorf("TLS handshake error with %q: %w", hostname, err)
|
||||
}
|
||||
if err := conn.VerifyHostname(hostname); err != nil {
|
||||
return fmt.Errorf("Host %q TLS verification failed: %w", hostname, err)
|
||||
}
|
||||
|
||||
latestAllowedExpiration := time.Now().Add(7 * 24 * time.Hour) // 7 days from now
|
||||
if expires := conn.ConnectionState().PeerCertificates[0].NotAfter; latestAllowedExpiration.After(expires) {
|
||||
left := expires.Sub(time.Now())
|
||||
return fmt.Errorf("TLS certificate for %q expires in %v", hostname, left)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
Loading…
Reference in New Issue