net/art: implement the Table type, a multi-level art route table.

Updates #7781

                           │    sec/op     │
TableInsertion/ipv4/10       1.562µ ±   2%
TableInsertion/ipv4/100      2.398µ ±   5%
TableInsertion/ipv4/1000     2.097µ ±   3%
TableInsertion/ipv4/10000    2.756µ ±   4%
TableInsertion/ipv4/100000   2.473µ ±  13%
TableInsertion/ipv6/10       7.649µ ±   2%
TableInsertion/ipv6/100      12.09µ ±   3%
TableInsertion/ipv6/1000     14.84µ ±   5%
TableInsertion/ipv6/10000    14.72µ ±   8%
TableInsertion/ipv6/100000   13.23µ ±  41%
TableDelete/ipv4/10          378.4n ±   5%
TableDelete/ipv4/100         366.9n ±   3%
TableDelete/ipv4/1000        418.6n ±   3%
TableDelete/ipv4/10000       609.2n ±  11%
TableDelete/ipv4/100000      679.2n ±  28%
TableDelete/ipv6/10          504.2n ±   4%
TableDelete/ipv6/100         959.5n ±  12%
TableDelete/ipv6/1000        1.436µ ±   6%
TableDelete/ipv6/10000       1.772µ ±  15%
TableDelete/ipv6/100000      1.172µ ± 113%
TableGet/ipv4/10             32.14n ±  11%
TableGet/ipv4/100            38.58n ±   2%
TableGet/ipv4/1000           45.03n ±   2%
TableGet/ipv4/10000          52.90n ±   7%
TableGet/ipv4/100000         135.2n ±  11%
TableGet/ipv6/10             41.55n ±   1%
TableGet/ipv6/100            44.78n ±   2%
TableGet/ipv6/1000           49.03n ±   2%
TableGet/ipv6/10000          65.38n ±   5%
TableGet/ipv6/100000         525.0n ±  39%

                           │   avg-B/op   │
TableInsertion/ipv4/10       25.18Ki ± 0%
TableInsertion/ipv4/100      17.63Ki ± 0%
TableInsertion/ipv4/1000     14.14Ki ± 0%
TableInsertion/ipv4/10000    12.92Ki ± 0%
TableInsertion/ipv4/100000   11.13Ki ± 0%
TableInsertion/ipv6/10       76.87Ki ± 0%
TableInsertion/ipv6/100      98.33Ki ± 0%
TableInsertion/ipv6/1000     91.44Ki ± 0%
TableInsertion/ipv6/10000    90.39Ki ± 0%
TableInsertion/ipv6/100000   87.19Ki ± 0%
TableDelete/ipv4/10            3.230 ± 0%
TableDelete/ipv4/100           4.020 ± 0%
TableDelete/ipv4/1000          3.990 ± 0%
TableDelete/ipv4/10000         4.000 ± 0%
TableDelete/ipv4/100000        4.000 ± 0%
TableDelete/ipv6/10            16.00 ± 0%
TableDelete/ipv6/100           16.00 ± 0%
TableDelete/ipv6/1000          16.00 ± 0%
TableDelete/ipv6/10000         16.00 ± 0%
TableDelete/ipv6/100000        16.00 ± 0%

                           │ avg-allocs/op │
TableInsertion/ipv4/10          2.900 ± 0%
TableInsertion/ipv4/100         2.330 ± 0%
TableInsertion/ipv4/1000        2.070 ± 0%
TableInsertion/ipv4/10000       1.980 ± 0%
TableInsertion/ipv4/100000      1.840 ± 0%
TableInsertion/ipv6/10          6.800 ± 0%
TableInsertion/ipv6/100         8.420 ± 0%
TableInsertion/ipv6/1000        7.900 ± 0%
TableInsertion/ipv6/10000       7.820 ± 0%
TableInsertion/ipv6/100000      7.580 ± 0%
TableDelete/ipv4/10             1.000 ± 0%
TableDelete/ipv4/100            1.000 ± 0%
TableDelete/ipv4/1000           1.000 ± 0%
TableDelete/ipv4/10000          1.000 ± 0%
TableDelete/ipv4/100000         1.000 ± 0%
TableDelete/ipv6/10             1.000 ± 0%
TableDelete/ipv6/100            1.000 ± 0%
TableDelete/ipv6/1000           1.000 ± 0%
TableDelete/ipv6/10000          1.000 ± 0%
TableDelete/ipv6/100000         1.000 ± 0%

                           │   routes/s   │
TableInsertion/ipv4/10       640.3k ±  2%
TableInsertion/ipv4/100      417.1k ±  5%
TableInsertion/ipv4/1000     477.0k ±  3%
TableInsertion/ipv4/10000    362.8k ±  5%
TableInsertion/ipv4/100000   404.5k ± 15%
TableInsertion/ipv6/10       130.7k ±  1%
TableInsertion/ipv6/100      82.69k ±  3%
TableInsertion/ipv6/1000     67.37k ±  5%
TableInsertion/ipv6/10000    67.93k ±  9%
TableInsertion/ipv6/100000   75.63k ± 29%
TableDelete/ipv4/10          2.642M ±  6%
TableDelete/ipv4/100         2.726M ±  3%
TableDelete/ipv4/1000        2.389M ±  3%
TableDelete/ipv4/10000       1.641M ± 12%
TableDelete/ipv4/100000      1.472M ± 27%
TableDelete/ipv6/10          1.984M ±  4%
TableDelete/ipv6/100         1.042M ± 11%
TableDelete/ipv6/1000        696.5k ±  6%
TableDelete/ipv6/10000       564.4k ± 13%
TableDelete/ipv6/100000      853.6k ± 53%

                     │   addrs/s    │
TableGet/ipv4/10       31.11M ± 10%
TableGet/ipv4/100      25.92M ±  2%
TableGet/ipv4/1000     22.21M ±  2%
TableGet/ipv4/10000    18.91M ±  8%
TableGet/ipv4/100000   7.397M ± 12%
TableGet/ipv6/10       24.07M ±  1%
TableGet/ipv6/100      22.33M ±  2%
TableGet/ipv6/1000     20.40M ±  2%
TableGet/ipv6/10000    15.30M ±  5%
TableGet/ipv6/100000   1.905M ± 28%

                     │    B/op    │
TableGet/ipv4/10       4.000 ± 0%
TableGet/ipv4/100      4.000 ± 0%
TableGet/ipv4/1000     4.000 ± 0%
TableGet/ipv4/10000    4.000 ± 0%
TableGet/ipv4/100000   4.000 ± 0%
TableGet/ipv6/10       16.00 ± 0%
TableGet/ipv6/100      16.00 ± 0%
TableGet/ipv6/1000     16.00 ± 0%
TableGet/ipv6/10000    16.00 ± 0%
TableGet/ipv6/100000   16.00 ± 0%

                     │ allocs/op  │
TableGet/ipv4/10       1.000 ± 0%
TableGet/ipv4/100      1.000 ± 0%
TableGet/ipv4/1000     1.000 ± 0%
TableGet/ipv4/10000    1.000 ± 0%
TableGet/ipv4/100000   1.000 ± 0%
TableGet/ipv6/10       1.000 ± 0%
TableGet/ipv6/100      1.000 ± 0%
TableGet/ipv6/1000     1.000 ± 0%
TableGet/ipv6/10000    1.000 ± 0%
TableGet/ipv6/100000   1.000 ± 0%

Signed-off-by: David Anderson <danderson@tailscale.com>
pull/7865/head
David Anderson 1 year ago committed by Dave Anderson
parent edb02b63f8
commit a7c910e361

@ -82,6 +82,11 @@ func (t *strideTable[T]) getOrCreateChild(addr uint8) *strideTable[T] {
return t.entries[idx].child
}
func (t *strideTable[T]) getValAndChild(addr uint8) (*T, *strideTable[T]) {
idx := hostIndex(addr)
return t.entries[idx].value, t.entries[idx].child
}
// allot updates entries whose stored prefixIndex matches oldPrefixIndex, in the
// subtree rooted at idx. Matching entries have their stored prefixIndex set to
// newPrefixIndex, and their value set to val.

@ -16,6 +16,7 @@ import (
)
func TestInversePrefix(t *testing.T) {
t.Parallel()
for i := 0; i < 256; i++ {
for len := 0; len < 9; len++ {
addr := i & (0xFF << (8 - len))
@ -29,6 +30,7 @@ func TestInversePrefix(t *testing.T) {
}
func TestHostIndex(t *testing.T) {
t.Parallel()
for i := 0; i < 256; i++ {
got := hostIndex(uint8(i))
want := prefixIndex(uint8(i), 8)
@ -39,6 +41,7 @@ func TestHostIndex(t *testing.T) {
}
func TestStrideTableInsert(t *testing.T) {
t.Parallel()
// Verify that strideTable's lookup results after a bunch of inserts exactly
// match those of a naive implementation that just scans all prefixes on
// every lookup. The naive implementation is very slow, but its behavior is
@ -66,6 +69,7 @@ func TestStrideTableInsert(t *testing.T) {
}
func TestStrideTableInsertShuffled(t *testing.T) {
t.Parallel()
// The order in which routes are inserted into a route table does not
// influence the final shape of the table, as long as the same set of
// prefixes is being inserted. This test verifies that strideTable behaves
@ -111,6 +115,7 @@ func TestStrideTableInsertShuffled(t *testing.T) {
}
func TestStrideTableDelete(t *testing.T) {
t.Parallel()
// Compare route deletion to our reference slowTable.
pfxs := shufflePrefixes(allPrefixes())[:100]
slow := slowTable[int]{pfxs}
@ -145,6 +150,7 @@ func TestStrideTableDelete(t *testing.T) {
}
func TestStrideTableDeleteShuffle(t *testing.T) {
t.Parallel()
// Same as TestStrideTableInsertShuffle, the order in which prefixes are
// deleted should not impact the final shape of the route table.
@ -191,17 +197,17 @@ func TestStrideTableDeleteShuffle(t *testing.T) {
}
}
var benchRouteCount = []int{10, 50, 100, 200}
var strideRouteCount = []int{10, 50, 100, 200}
// forCountAndOrdering runs the benchmark fn with different sets of routes.
//
// fn is called once for each combination of {num_routes, order}, where
// num_routes is the values in benchRouteCount, and order is the order of the
// num_routes is the values in strideRouteCount, and order is the order of the
// routes in the list: random, largest prefix first (/0 to /8), and smallest
// prefix first (/8 to /0).
func forCountAndOrdering(b *testing.B, fn func(b *testing.B, routes []slowEntry[int])) {
func forStrideCountAndOrdering(b *testing.B, fn func(b *testing.B, routes []slowEntry[int])) {
routes := shufflePrefixes(allPrefixes())
for _, nroutes := range benchRouteCount {
for _, nroutes := range strideRouteCount {
b.Run(fmt.Sprint(nroutes), func(b *testing.B) {
routes := append([]slowEntry[int](nil), routes[:nroutes]...)
b.Run("random_order", func(b *testing.B) {
@ -233,7 +239,7 @@ func forCountAndOrdering(b *testing.B, fn func(b *testing.B, routes []slowEntry[
}
func BenchmarkStrideTableInsertion(b *testing.B) {
forCountAndOrdering(b, func(b *testing.B, routes []slowEntry[int]) {
forStrideCountAndOrdering(b, func(b *testing.B, routes []slowEntry[int]) {
val := 0
for i := 0; i < b.N; i++ {
var rt strideTable[int]
@ -250,7 +256,7 @@ func BenchmarkStrideTableInsertion(b *testing.B) {
}
func BenchmarkStrideTableDeletion(b *testing.B) {
forCountAndOrdering(b, func(b *testing.B, routes []slowEntry[int]) {
forStrideCountAndOrdering(b, func(b *testing.B, routes []slowEntry[int]) {
val := 0
var rt strideTable[int]
for _, route := range routes {

@ -11,3 +11,152 @@
// For more information, see Yoichi Hariguchi's paper:
// https://cseweb.ucsd.edu//~varghese/TEACH/cs228/artlookup.pdf
package art
import (
"bytes"
"fmt"
"io"
"net/netip"
"strings"
)
// Table is an IPv4 and IPv6 routing table.
type Table[T any] struct {
v4 strideTable[T]
v6 strideTable[T]
}
// Get does a route lookup for addr and returns the associated value, or nil if
// no route matched.
func (t *Table[T]) Get(addr netip.Addr) *T {
st := &t.v4
if addr.Is6() {
st = &t.v6
}
var ret *T
for _, stride := range addr.AsSlice() {
rt, child := st.getValAndChild(stride)
if rt != nil {
// Found a more specific route than whatever we found previously,
// keep a note.
ret = rt
}
if child == nil {
// No sub-routes further down, whatever we have recorded in ret is
// the result.
return ret
}
st = child
}
// Unreachable because Insert/Delete won't allow the leaf strideTables to
// have children, so we must return via the nil check in the loop.
panic("unreachable")
}
// Insert adds pfx to the table, with value val.
// If pfx is already present in the table, its value is set to val.
func (t *Table[T]) Insert(pfx netip.Prefix, val *T) {
if val == nil {
panic("Table.Insert called with nil value")
}
st := &t.v4
if pfx.Addr().Is6() {
st = &t.v6
}
bs := pfx.Addr().AsSlice()
i := 0
numBits := pfx.Bits()
// The strideTable we want to insert into is potentially at the end of a
// chain of parent tables, each one encoding successive 8 bits of the
// prefix. Navigate downwards, allocating child tables as needed, until we
// find the one this prefix belongs in.
for numBits > 8 {
st = st.getOrCreateChild(bs[i])
i++
numBits -= 8
}
// Finally, insert the remaining 0-8 bits of the prefix into the child
// table.
st.insert(bs[i], numBits, val)
}
// Delete removes pfx from the table, if it is present.
func (t *Table[T]) Delete(pfx netip.Prefix) {
st := &t.v4
if pfx.Addr().Is6() {
st = &t.v6
}
bs := pfx.Addr().AsSlice()
i := 0
numBits := pfx.Bits()
// Deletion may drive the refcount of some strideTables down to zero. We
// need to clean up these dangling tables, so we have to keep track of which
// tables we touch on the way down, and which strideEntry index each child
// is registered in.
strideTables := [16]*strideTable[T]{st}
var strideIndexes [16]int
// Similar to Insert, navigate down the tree of strideTables, looking for
// the one that houses the last 0-8 bits of the prefix to delete.
//
// The only difference is that here, we don't create missing child tables.
// If a child necessary to pfx is missing, then the pfx cannot exist in the
// Table, and we can exit early.
for numBits > 8 {
child, idx := st.getChild(bs[i])
if child == nil {
// Prefix can't exist in the table, one of the necessary
// strideTables doesn't exit.
return
}
// Note that the strideIndex and strideTables entries are off-by-one.
// The child table pointer is recorded at i+1, but it is referenced by a
// particular index in the parent table, at index i.
strideIndexes[i] = idx
i++
strideTables[i] = child
numBits -= 8
st = child
}
if st.delete(bs[i], numBits) == nil {
// Prefix didn't exist in the expected strideTable, refcount hasn't
// changed, no need to run through cleanup.
return
}
// st.delete reduced st's refcount by one, so we may be hanging onto a chain
// of redundant strideTables. Walk back up the path we recorded in the
// descent loop, deleting tables until we encounter one that still has other
// refs (or we hit the root strideTable, which is never deleted).
for i > 0 && strideTables[i].refs == 0 {
strideTables[i-1].deleteChild(strideIndexes[i-1])
i--
}
}
// debugSummary prints the tree of allocated strideTables in t, with each
// strideTable's refcount.
func (t *Table[T]) debugSummary() string {
var ret bytes.Buffer
fmt.Fprintf(&ret, "v4: ")
strideSummary(&ret, &t.v4, 0)
fmt.Fprintf(&ret, "v6: ")
strideSummary(&ret, &t.v6, 0)
return ret.String()
}
func strideSummary[T any](w io.Writer, st *strideTable[T], indent int) {
fmt.Fprintf(w, "%d refs\n", st.refs)
indent += 2
for i := firstHostIndex; i <= lastHostIndex; i++ {
if child := st.entries[i].child; child != nil {
addr, len := inversePrefixIndex(i)
fmt.Fprintf(w, "%s%d/%d: ", strings.Repeat(" ", indent), addr, len)
strideSummary(w, child, indent)
}
}
}

@ -0,0 +1,542 @@
// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package art
import (
crand "crypto/rand"
"fmt"
"math/rand"
"net/netip"
"runtime"
"strconv"
"testing"
"time"
"tailscale.com/types/ptr"
)
func TestInsert(t *testing.T) {
t.Parallel()
pfxs := randomPrefixes(10_000)
slow := slowPrefixTable[int]{pfxs}
fast := Table[int]{}
for _, pfx := range pfxs {
fast.Insert(pfx.pfx, pfx.val)
}
t.Logf(fast.debugSummary())
seenVals4 := map[*int]bool{}
seenVals6 := map[*int]bool{}
for i := 0; i < 10_000; i++ {
a := randomAddr()
slowVal := slow.get(a)
fastVal := fast.Get(a)
if a.Is6() {
seenVals6[fastVal] = true
} else {
seenVals4[fastVal] = true
}
if slowVal != fastVal {
t.Errorf("get(%q) = %p, want %p", a, fastVal, slowVal)
}
}
// Empirically, 10k probes into 5k v4 prefixes and 5k v6 prefixes results in
// ~1k distinct values for v4 and ~300 for v6. distinct routes. This sanity
// check that we didn't just return a single route for everything should be
// very generous indeed.
if cnt := len(seenVals4); cnt < 10 {
t.Fatalf("saw %d distinct v4 route results, statistically expected ~1000", cnt)
}
if cnt := len(seenVals6); cnt < 10 {
t.Fatalf("saw %d distinct v6 route results, statistically expected ~300", cnt)
}
}
func TestInsertShuffled(t *testing.T) {
t.Parallel()
pfxs := randomPrefixes(10_000)
rt := Table[int]{}
for _, pfx := range pfxs {
rt.Insert(pfx.pfx, pfx.val)
}
for i := 0; i < 10; i++ {
pfxs2 := append([]slowPrefixEntry[int](nil), pfxs...)
rand.Shuffle(len(pfxs2), func(i, j int) { pfxs2[i], pfxs2[j] = pfxs2[j], pfxs2[i] })
rt2 := Table[int]{}
for _, pfx := range pfxs2 {
rt2.Insert(pfx.pfx, pfx.val)
}
// Diffing a deep tree of tables gives cmp.Diff a nervous breakdown, so
// test for equivalence statistically with random probes instead.
for i := 0; i < 10_000; i++ {
a := randomAddr()
val1 := rt.Get(a)
val2 := rt2.Get(a)
if (val1 == nil && val2 != nil) || (val1 != nil && val2 == nil) || (*val1 != *val2) {
t.Errorf("get(%q) = %s, want %s", a, printIntPtr(val2), printIntPtr(val1))
}
}
}
}
func TestDelete(t *testing.T) {
t.Parallel()
const (
numPrefixes = 10_000 // total prefixes to insert (test deletes 50% of them)
numPerFamily = numPrefixes / 2
deleteCut = numPerFamily / 2
numProbes = 10_000 // random addr lookups to do
)
// We have to do this little dance instead of just using allPrefixes,
// because we want pfxs and toDelete to be non-overlapping sets.
all4, all6 := randomPrefixes4(numPerFamily), randomPrefixes6(numPerFamily)
pfxs := append([]slowPrefixEntry[int](nil), all4[:deleteCut]...)
pfxs = append(pfxs, all6[:deleteCut]...)
toDelete := append([]slowPrefixEntry[int](nil), all4[deleteCut:]...)
toDelete = append(toDelete, all6[deleteCut:]...)
slow := slowPrefixTable[int]{pfxs}
fast := Table[int]{}
for _, pfx := range pfxs {
fast.Insert(pfx.pfx, pfx.val)
}
for _, pfx := range toDelete {
fast.Insert(pfx.pfx, pfx.val)
}
for _, pfx := range toDelete {
fast.Delete(pfx.pfx)
}
seenVals4 := map[*int]bool{}
seenVals6 := map[*int]bool{}
for i := 0; i < numProbes; i++ {
a := randomAddr()
slowVal := slow.get(a)
fastVal := fast.Get(a)
if a.Is6() {
seenVals6[fastVal] = true
} else {
seenVals4[fastVal] = true
}
if slowVal != fastVal {
t.Fatalf("get(%q) = %p, want %p", a, fastVal, slowVal)
}
}
// Empirically, 10k probes into 5k v4 prefixes and 5k v6 prefixes results in
// ~1k distinct values for v4 and ~300 for v6. distinct routes. This sanity
// check that we didn't just return a single route for everything should be
// very generous indeed.
if cnt := len(seenVals4); cnt < 10 {
t.Fatalf("saw %d distinct v4 route results, statistically expected ~1000", cnt)
}
if cnt := len(seenVals6); cnt < 10 {
t.Fatalf("saw %d distinct v6 route results, statistically expected ~300", cnt)
}
}
func TestDeleteShuffled(t *testing.T) {
t.Parallel()
const (
numPrefixes = 10_000 // prefixes to insert (test deletes 50% of them)
numPerFamily = numPrefixes / 2
deleteCut = numPerFamily / 2
numProbes = 10_000 // random addr lookups to do
)
// We have to do this little dance instead of just using allPrefixes,
// because we want pfxs and toDelete to be non-overlapping sets.
all4, all6 := randomPrefixes4(numPerFamily), randomPrefixes6(numPerFamily)
pfxs := append([]slowPrefixEntry[int](nil), all4[:deleteCut]...)
pfxs = append(pfxs, all6[:deleteCut]...)
toDelete := append([]slowPrefixEntry[int](nil), all4[deleteCut:]...)
toDelete = append(toDelete, all6[deleteCut:]...)
rt := Table[int]{}
for _, pfx := range pfxs {
rt.Insert(pfx.pfx, pfx.val)
}
for _, pfx := range toDelete {
rt.Insert(pfx.pfx, pfx.val)
}
for _, pfx := range toDelete {
rt.Delete(pfx.pfx)
}
for i := 0; i < 10; i++ {
pfxs2 := append([]slowPrefixEntry[int](nil), pfxs...)
toDelete2 := append([]slowPrefixEntry[int](nil), toDelete...)
rand.Shuffle(len(toDelete2), func(i, j int) { toDelete2[i], toDelete2[j] = toDelete2[j], toDelete2[i] })
rt2 := Table[int]{}
for _, pfx := range pfxs2 {
rt2.Insert(pfx.pfx, pfx.val)
}
for _, pfx := range toDelete2 {
rt2.Insert(pfx.pfx, pfx.val)
}
for _, pfx := range toDelete2 {
rt2.Delete(pfx.pfx)
}
// Diffing a deep tree of tables gives cmp.Diff a nervous breakdown, so
// test for equivalence statistically with random probes instead.
for i := 0; i < numProbes; i++ {
a := randomAddr()
val1 := rt.Get(a)
val2 := rt2.Get(a)
if val1 == nil && val2 == nil {
continue
}
if (val1 == nil && val2 != nil) || (val1 != nil && val2 == nil) || (*val1 != *val2) {
t.Errorf("get(%q) = %s, want %s", a, printIntPtr(val2), printIntPtr(val1))
}
}
}
}
var benchRouteCount = []int{10, 100, 1000, 10_000, 100_000}
// forFamilyAndCount runs the benchmark fn with different sets of
// routes.
//
// fn is called once for each combination of {addr_family, num_routes},
// where addr_family is ipv4 or ipv6, num_routes is the values in
// benchRouteCount.
func forFamilyAndCount(b *testing.B, fn func(b *testing.B, routes []slowPrefixEntry[int])) {
for _, fam := range []string{"ipv4", "ipv6"} {
rng := randomPrefixes4
if fam == "ipv6" {
rng = randomPrefixes6
}
b.Run(fam, func(b *testing.B) {
for _, nroutes := range benchRouteCount {
routes := rng(nroutes)
b.Run(fmt.Sprint(nroutes), func(b *testing.B) {
fn(b, routes)
})
}
})
}
}
func BenchmarkTableInsertion(b *testing.B) {
forFamilyAndCount(b, func(b *testing.B, routes []slowPrefixEntry[int]) {
b.StopTimer()
b.ResetTimer()
var startMem, endMem runtime.MemStats
runtime.ReadMemStats(&startMem)
b.StartTimer()
for i := 0; i < b.N; i++ {
var rt Table[int]
for _, route := range routes {
rt.Insert(route.pfx, route.val)
}
}
b.StopTimer()
runtime.ReadMemStats(&endMem)
inserts := float64(b.N) * float64(len(routes))
allocs := float64(endMem.Mallocs - startMem.Mallocs)
bytes := float64(endMem.TotalAlloc - startMem.TotalAlloc)
elapsed := float64(b.Elapsed().Nanoseconds())
elapsedSec := b.Elapsed().Seconds()
b.ReportMetric(elapsed/inserts, "ns/op")
b.ReportMetric(inserts/elapsedSec, "routes/s")
b.ReportMetric(roundFloat64(allocs/inserts), "avg-allocs/op")
b.ReportMetric(roundFloat64(bytes/inserts), "avg-B/op")
})
}
func BenchmarkTableDelete(b *testing.B) {
forFamilyAndCount(b, func(b *testing.B, routes []slowPrefixEntry[int]) {
// Collect memstats for one round of insertions, so we can remove it
// from the total at the end and get only the deletion alloc count.
insertAllocs, insertBytes := getMemCost(func() {
var rt Table[int]
for _, route := range routes {
rt.Insert(route.pfx, route.val)
}
})
insertAllocs *= float64(b.N)
insertBytes *= float64(b.N)
var t runningTimer
allocs, bytes := getMemCost(func() {
for i := 0; i < b.N; i++ {
var rt Table[int]
for _, route := range routes {
rt.Insert(route.pfx, route.val)
}
t.Start()
for _, route := range routes {
rt.Delete(route.pfx)
}
t.Stop()
}
})
inserts := float64(b.N) * float64(len(routes))
allocs -= insertAllocs
bytes -= insertBytes
elapsed := float64(t.Elapsed().Nanoseconds())
elapsedSec := t.Elapsed().Seconds()
b.ReportMetric(elapsed/inserts, "ns/op")
b.ReportMetric(inserts/elapsedSec, "routes/s")
b.ReportMetric(roundFloat64(allocs/inserts), "avg-allocs/op")
b.ReportMetric(roundFloat64(bytes/inserts), "avg-B/op")
})
}
var addrSink netip.Addr
func BenchmarkTableGet(b *testing.B) {
forFamilyAndCount(b, func(b *testing.B, routes []slowPrefixEntry[int]) {
genAddr := randomAddr4
if routes[0].pfx.Addr().Is6() {
genAddr = randomAddr6
}
var rt Table[int]
for _, route := range routes {
rt.Insert(route.pfx, route.val)
}
addrAllocs, addrBytes := getMemCost(func() {
// Have to run genAddr more than once, otherwise the reported
// cost is 16 bytes - presumably due to some amortized costs in
// the memory allocator? Either way, empirically 100 iterations
// reliably reports the correct cost.
for i := 0; i < 100; i++ {
_ = genAddr()
}
})
addrAllocs /= 100
addrBytes /= 100
var t runningTimer
allocs, bytes := getMemCost(func() {
for i := 0; i < b.N; i++ {
addr := genAddr()
t.Start()
writeSink = rt.Get(addr)
t.Stop()
}
})
b.ReportAllocs() // Enables the output, but we report manually below
allocs -= (addrAllocs * float64(b.N))
bytes -= (addrBytes * float64(b.N))
lookups := float64(b.N)
elapsed := float64(t.Elapsed().Nanoseconds())
elapsedSec := float64(t.Elapsed().Seconds())
b.ReportMetric(elapsed/lookups, "ns/op")
b.ReportMetric(lookups/elapsedSec, "addrs/s")
b.ReportMetric(allocs/lookups, "allocs/op")
b.ReportMetric(bytes/lookups, "B/op")
})
}
// getMemCost runs fn 100 times and returns the number of allocations and bytes
// allocated by each call to fn.
//
// Note that if your fn allocates very little memory (less than ~16 bytes), you
// should make fn run its workload ~100 times and divide the results of
// getMemCost yourself. Otherwise, the byte count you get will be rounded up due
// to the memory allocator's bucketing granularity.
func getMemCost(fn func()) (allocs, bytes float64) {
var start, end runtime.MemStats
runtime.ReadMemStats(&start)
fn()
runtime.ReadMemStats(&end)
return float64(end.Mallocs - start.Mallocs), float64(end.TotalAlloc - start.TotalAlloc)
}
// runningTimer is a timer that keeps track of the cumulative time it's spent
// running since creation. A newly created runningTimer is stopped.
//
// This timer exists because some of our benchmarks have to interleave costly
// ancillary logic in each benchmark iteration, rather than being able to
// front-load all the work before a single b.ResetTimer().
//
// As it turns out, b.StartTimer() and b.StopTimer() are expensive function
// calls, because they do costly memory allocation accounting on every call.
// Starting and stopping the benchmark timer in every b.N loop iteration slows
// the benchmarks down by orders of magnitude.
//
// So, rather than rely on testing.B's timing facility, we use this very
// lightweight timer combined with getMemCost to do our own accounting more
// efficiently.
type runningTimer struct {
cumulative time.Duration
start time.Time
}
func (t *runningTimer) Start() {
t.Stop()
t.start = time.Now()
}
func (t *runningTimer) Stop() {
if t.start.IsZero() {
return
}
t.cumulative += time.Since(t.start)
t.start = time.Time{}
}
func (t *runningTimer) Elapsed() time.Duration {
return t.cumulative
}
// slowPrefixTable is a routing table implemented as a set of prefixes that are
// explicitly scanned in full for every route lookup. It is very slow, but also
// reasonably easy to verify by inspection, and so a good correctness reference
// for Table.
type slowPrefixTable[T any] struct {
prefixes []slowPrefixEntry[T]
}
type slowPrefixEntry[T any] struct {
pfx netip.Prefix
val *T
}
func (t *slowPrefixTable[T]) delete(pfx netip.Prefix) {
ret := make([]slowPrefixEntry[T], 0, len(t.prefixes))
for _, ent := range t.prefixes {
if ent.pfx == pfx {
continue
}
ret = append(ret, ent)
}
t.prefixes = ret
}
func (t *slowPrefixTable[T]) insert(pfx netip.Prefix, val *T) {
for _, ent := range t.prefixes {
if ent.pfx == pfx {
ent.val = val
return
}
}
t.prefixes = append(t.prefixes, slowPrefixEntry[T]{pfx, val})
}
func (t *slowPrefixTable[T]) get(addr netip.Addr) *T {
var (
ret *T
bestLen = -1
)
for _, pfx := range t.prefixes {
if pfx.pfx.Contains(addr) && pfx.pfx.Bits() > bestLen {
ret = pfx.val
bestLen = pfx.pfx.Bits()
}
}
return ret
}
// randomPrefixes returns n randomly generated prefixes and associated values,
// distributed equally between IPv4 and IPv6.
func randomPrefixes(n int) []slowPrefixEntry[int] {
pfxs := randomPrefixes4(n / 2)
pfxs = append(pfxs, randomPrefixes6(n-len(pfxs))...)
return pfxs
}
// randomPrefixes4 returns n randomly generated IPv4 prefixes and associated values.
func randomPrefixes4(n int) []slowPrefixEntry[int] {
pfxs := map[netip.Prefix]bool{}
for len(pfxs) < n {
len := rand.Intn(33)
pfx, err := randomAddr4().Prefix(len)
if err != nil {
panic(err)
}
pfxs[pfx] = true
}
ret := make([]slowPrefixEntry[int], 0, len(pfxs))
for pfx := range pfxs {
ret = append(ret, slowPrefixEntry[int]{pfx, ptr.To(rand.Int())})
}
return ret
}
// randomPrefixes6 returns n randomly generated IPv4 prefixes and associated values.
func randomPrefixes6(n int) []slowPrefixEntry[int] {
pfxs := map[netip.Prefix]bool{}
for len(pfxs) < n {
len := rand.Intn(129)
pfx, err := randomAddr6().Prefix(len)
if err != nil {
panic(err)
}
pfxs[pfx] = true
}
ret := make([]slowPrefixEntry[int], 0, len(pfxs))
for pfx := range pfxs {
ret = append(ret, slowPrefixEntry[int]{pfx, ptr.To(rand.Int())})
}
return ret
}
// randomAddr returns a randomly generated IP address.
func randomAddr() netip.Addr {
if rand.Intn(2) == 1 {
return randomAddr6()
} else {
return randomAddr4()
}
}
// randomAddr4 returns a randomly generated IPv4 address.
func randomAddr4() netip.Addr {
var b [4]byte
if _, err := crand.Read(b[:]); err != nil {
panic(err)
}
return netip.AddrFrom4(b)
}
// randomAddr6 returns a randomly generated IPv6 address.
func randomAddr6() netip.Addr {
var b [16]byte
if _, err := crand.Read(b[:]); err != nil {
panic(err)
}
return netip.AddrFrom16(b)
}
// printIntPtr returns *v as a string, or the literal "<nil>" if v is nil.
func printIntPtr(v *int) string {
if v == nil {
return "<nil>"
}
return fmt.Sprint(*v)
}
// roundFloat64 rounds f to 2 decimal places, for display.
//
// It round-trips through a float->string->float conversion, so should not be
// used in a performance critical setting.
func roundFloat64(f float64) float64 {
s := fmt.Sprintf("%.2f", f)
ret, err := strconv.ParseFloat(s, 64)
if err != nil {
panic(err)
}
return ret
}
Loading…
Cancel
Save