tstun: tolerate zero reads

Signed-off-by: Dmytro Shynkevych <dmytro@tailscale.com>
reviewable/pr417/r1
Dmytro Shynkevych 5 years ago
parent 7317e73bf4
commit 737124ef70

@ -29,11 +29,14 @@ const (
const MaxPacketSize = device.MaxContentSize
var (
ErrClosed = errors.New("device closed")
ErrFiltered = errors.New("packet dropped by filter")
ErrPacketTooBig = errors.New("packet too big")
// ErrClosed is returned when attempting an operation on a closed TUN.
ErrClosed = errors.New("device closed")
// ErrFiltered is returned when the acted-on packet is rejected by a filter.
ErrFiltered = errors.New("packet dropped by filter")
)
var errPacketTooBig = errors.New("packet too big")
// TUN wraps a tun.Device from wireguard-go,
// augmenting it with filtering and packet injection.
// All the added work happens in Read and Write:
@ -54,11 +57,15 @@ type TUN struct {
// errors is the error queue populated by poll.
errors chan error
// outbound is the queue by which packets leave the TUN device.
//
// The directions are relative to the network, not the device:
// inbound packets arrive via UDP and are written into the TUN device;
// outbound packets are read from the TUN device and sent out via UDP.
// This queue is needed because although inbound writes are synchronous,
// the other direction must wait on a Wireguard goroutine to poll it.
//
// Empty reads are skipped by Wireguard, so it is always legal
// to discard an empty packet instead of sending it through t.outbound.
outbound chan []byte
// fitler stores the currently active package filter
@ -142,13 +149,21 @@ func (t *TUN) poll() {
// In principle, read errors are not fatal (but wireguard-go disagrees).
t.bufferConsumed <- struct{}{}
}
} else {
select {
case <-t.closed:
return
case t.outbound <- t.buffer[readOffset : readOffset+n]:
// continue
}
continue
}
// Wireguard will skip an empty read,
// so we might as well do it here to avoid the send through t.outbound.
if n == 0 {
t.bufferConsumed <- struct{}{}
continue
}
select {
case <-t.closed:
return
case t.outbound <- t.buffer[readOffset : readOffset+n]:
// continue
}
}
}
@ -180,6 +195,7 @@ func (t *TUN) Read(buf []byte, offset int) (int, error) {
n = copy(buf[offset:], packet)
// t.buffer has a fixed location in memory,
// so this is the easiest way to tell when it has been consumed.
// &packet[0] can be used because empty packets do not reach t.outbound.
if &packet[0] == &t.buffer[readOffset] {
t.bufferConsumed <- struct{}{}
}
@ -240,9 +256,13 @@ func (t *TUN) SetFilter(filt *filter.Filter) {
// InjectInbound makes the TUN device behave as if a packet
// with the given contents was received from the network.
// It blocks and does not take ownership of the packet.
// Injecting an empty packet is a no-op.
func (t *TUN) InjectInbound(packet []byte) error {
if len(packet) > MaxPacketSize {
return ErrPacketTooBig
return errPacketTooBig
}
if len(packet) == 0 {
return nil
}
_, err := t.Write(packet, 0)
return err
@ -251,9 +271,13 @@ func (t *TUN) InjectInbound(packet []byte) error {
// InjectOutbound makes the TUN device behave as if a packet
// with the given contents was sent to the network.
// It does not block, but takes ownership of the packet.
// Injecting an empty packet is a no-op.
func (t *TUN) InjectOutbound(packet []byte) error {
if len(packet) > MaxPacketSize {
return ErrPacketTooBig
return errPacketTooBig
}
if len(packet) == 0 {
return nil
}
select {
case <-t.closed:

Loading…
Cancel
Save