util/deephash: rely on direct memory hashing for primitive kinds (#5457)

Rather than separate functions to hash each kind,
just rely on the fact that these are direct memory hashable,
thus simplifying the code.

Signed-off-by: Joe Tsai <joetsai@digital-static.net>
pull/5460/head
Joe Tsai 2 years ago committed by GitHub
parent f1c9812188
commit 70f9fc8c7a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -24,7 +24,6 @@ import (
"crypto/sha256"
"encoding/binary"
"encoding/hex"
"math"
"net/netip"
"reflect"
"sync"
@ -238,46 +237,6 @@ func (ti *typeInfo) buildHashFuncOnce() {
ti.hashFuncLazy = genTypeHasher(ti)
}
func (h *hasher) hashBoolv(v addressableValue) {
var b byte
if v.Bool() {
b = 1
}
h.HashUint8(b)
}
func (h *hasher) hashUint8v(v addressableValue) {
h.HashUint8(uint8(v.Uint()))
}
func (h *hasher) hashInt8v(v addressableValue) {
h.HashUint8(uint8(v.Int()))
}
func (h *hasher) hashUint16v(v addressableValue) {
h.HashUint16(uint16(v.Uint()))
}
func (h *hasher) hashInt16v(v addressableValue) {
h.HashUint16(uint16(v.Int()))
}
func (h *hasher) hashUint32v(v addressableValue) {
h.HashUint32(uint32(v.Uint()))
}
func (h *hasher) hashInt32v(v addressableValue) {
h.HashUint32(uint32(v.Int()))
}
func (h *hasher) hashUint64v(v addressableValue) {
h.HashUint64(v.Uint())
}
func (h *hasher) hashInt64v(v addressableValue) {
h.HashUint64(uint64(v.Int()))
}
// fieldInfo describes a struct field.
type fieldInfo struct {
index int // index of field for reflect.Value.Field(n); -1 if invalid
@ -358,33 +317,21 @@ func genHashPtrToMemoryRange(eleType reflect.Type) typeHasherFunc {
func genTypeHasher(ti *typeInfo) typeHasherFunc {
t := ti.rtype
// Types with specific hashing.
switch t {
case timeTimeType:
return (*hasher).hashTimev
case netipAddrType:
return (*hasher).hashAddrv
}
// Types that can have their memory representation directly hashed.
if typeIsMemHashable(t) {
return makeMemHasher(t.Size())
}
switch t.Kind() {
case reflect.Bool:
return (*hasher).hashBoolv
case reflect.Int8:
return (*hasher).hashInt8v
case reflect.Int16:
return (*hasher).hashInt16v
case reflect.Int32:
return (*hasher).hashInt32v
case reflect.Int, reflect.Int64:
return (*hasher).hashInt64v
case reflect.Uint8:
return (*hasher).hashUint8v
case reflect.Uint16:
return (*hasher).hashUint16v
case reflect.Uint32:
return (*hasher).hashUint32v
case reflect.Uint, reflect.Uintptr, reflect.Uint64:
return (*hasher).hashUint64v
case reflect.Float32:
return (*hasher).hashFloat32v
case reflect.Float64:
return (*hasher).hashFloat64v
case reflect.Complex64:
return (*hasher).hashComplex64v
case reflect.Complex128:
return (*hasher).hashComplex128v
case reflect.String:
return (*hasher).hashString
case reflect.Slice:
@ -399,14 +346,7 @@ func genTypeHasher(ti *typeInfo) typeHasherFunc {
eti := getTypeInfo(et)
return genHashArray(t, eti)
case reflect.Struct:
switch t {
case timeTimeType:
return (*hasher).hashTimev
case netipAddrType:
return (*hasher).hashAddrv
default:
return genHashStructFields(t)
}
return genHashStructFields(t)
case reflect.Map:
return func(h *hasher, v addressableValue) {
if v.IsNil() {
@ -476,26 +416,6 @@ func (h *hasher) hashString(v addressableValue) {
h.HashString(s)
}
func (h *hasher) hashFloat32v(v addressableValue) {
h.HashUint32(math.Float32bits(float32(v.Float())))
}
func (h *hasher) hashFloat64v(v addressableValue) {
h.HashUint64(math.Float64bits(v.Float()))
}
func (h *hasher) hashComplex64v(v addressableValue) {
c := complex64(v.Complex())
h.HashUint32(math.Float32bits(real(c)))
h.HashUint32(math.Float32bits(imag(c)))
}
func (h *hasher) hashComplex128v(v addressableValue) {
c := v.Complex()
h.HashUint64(math.Float64bits(real(c)))
h.HashUint64(math.Float64bits(imag(c)))
}
// hashTimev hashes v, of kind time.Time.
func (h *hasher) hashTimev(v addressableValue) {
// Include the zone offset (but not the name) to keep
@ -531,6 +451,12 @@ func (h *hasher) hashAddrv(v addressableValue) {
}
}
func makeMemHasher(n uintptr) typeHasherFunc {
return func(h *hasher, v addressableValue) {
h.HashBytes(unsafe.Slice((*byte)(v.Addr().UnsafePointer()), n))
}
}
// hashSliceMem hashes v, of kind Slice, with a memhash-able element type.
func (h *hasher) hashSliceMem(v addressableValue) {
vLen := v.Len()

@ -11,6 +11,7 @@ import (
"fmt"
"hash"
"math"
"math/bits"
"math/rand"
"net/netip"
"reflect"
@ -342,6 +343,13 @@ func u8(n uint8) string { return string([]byte{n}) }
func u16(n uint16) string { return string(binary.LittleEndian.AppendUint16(nil, n)) }
func u32(n uint32) string { return string(binary.LittleEndian.AppendUint32(nil, n)) }
func u64(n uint64) string { return string(binary.LittleEndian.AppendUint64(nil, n)) }
func ux(n uint) string {
if bits.UintSize == 32 {
return u32(uint32(n))
} else {
return u64(uint64(n))
}
}
func TestGetTypeHasher(t *testing.T) {
switch runtime.GOARCH {
@ -367,12 +375,12 @@ func TestGetTypeHasher(t *testing.T) {
{
name: "int",
val: int(1),
out: "\x01\x00\x00\x00\x00\x00\x00\x00",
out: ux(1),
},
{
name: "int_negative",
val: int(-1),
out: "\xff\xff\xff\xff\xff\xff\xff\xff",
out: ux(math.MaxUint),
},
{
name: "int8",

Loading…
Cancel
Save