util/cstruct: add package for decoding padded C structures (#5429)

I was working on my "dump iptables rules using only syscalls" branch and
had a bunch of C structure decoding to do. Rather than manually
calculating the padding or using unsafe trickery to actually cast
variable-length structures to Go types, I'd rather use a helper package
that deals with padding for me.

Padding rules were taken from the following article:
  http://www.catb.org/esr/structure-packing/

Signed-off-by: Andrew Dunham <andrew@du.nham.ca>
pull/5406/head
Andrew Dunham 2 years ago committed by GitHub
parent 9b77ac128a
commit 58cc049a9f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,179 @@
// Copyright (c) 2022 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package cstruct provides a helper for decoding binary data that is in the
// form of a padded C structure.
package cstruct
import (
"errors"
"io"
"tailscale.com/util/endian"
)
// Size of a pointer-typed value, in bits
const pointerSize = 32 << (^uintptr(0) >> 63)
// We assume that non-64-bit platforms are 32-bit; we don't expect Go to run on
// a 16- or 8-bit architecture any time soon.
const is64Bit = pointerSize == 64
// Decoder reads and decodes padded fields from a slice of bytes. All fields
// are decoded with native endianness.
//
// Methods of a Decoder do not return errors, but rather store any error within
// the Decoder. The first error can be obtained via the Err method; after the
// first error, methods will return the zero value for their type.
type Decoder struct {
b []byte
off int
err error
dbuf [8]byte // for decoding
}
// NewDecoder creates a Decoder from a byte slice.
func NewDecoder(b []byte) *Decoder {
return &Decoder{b: b}
}
var errUnsupportedSize = errors.New("unsupported size")
func padBytes(offset, size int) int {
if offset == 0 || size == 1 {
return 0
}
remainder := offset % size
return size - remainder
}
func (d *Decoder) getField(b []byte) error {
size := len(b)
// We only support fields that are multiples of 2 (or 1-sized)
if size != 1 && size&1 == 1 {
return errUnsupportedSize
}
// Fields are aligned to their size
padBytes := padBytes(d.off, size)
if d.off+size+padBytes > len(d.b) {
return io.EOF
}
d.off += padBytes
copy(b, d.b[d.off:d.off+size])
d.off += size
return nil
}
// Err returns the first error that was encountered by this Decoder.
func (d *Decoder) Err() error {
return d.err
}
// Offset returns the current read offset for data in the buffer.
func (d *Decoder) Offset() int {
return d.off
}
// Byte returns a single byte from the buffer.
func (d *Decoder) Byte() byte {
if d.err != nil {
return 0
}
if err := d.getField(d.dbuf[0:1]); err != nil {
d.err = err
return 0
}
return d.dbuf[0]
}
// Byte returns a number of bytes from the buffer based on the size of the
// input slice. No padding is applied.
//
// If an error is encountered or this Decoder has previously encountered an
// error, no changes are made to the provided buffer.
func (d *Decoder) Bytes(b []byte) {
if d.err != nil {
return
}
// No padding for byte slices
size := len(b)
if d.off+size >= len(d.b) {
d.err = io.EOF
return
}
copy(b, d.b[d.off:d.off+size])
d.off += size
}
// Uint16 returns a uint16 decoded from the buffer.
func (d *Decoder) Uint16() uint16 {
if d.err != nil {
return 0
}
if err := d.getField(d.dbuf[0:2]); err != nil {
d.err = err
return 0
}
return endian.Native.Uint16(d.dbuf[0:2])
}
// Uint32 returns a uint32 decoded from the buffer.
func (d *Decoder) Uint32() uint32 {
if d.err != nil {
return 0
}
if err := d.getField(d.dbuf[0:4]); err != nil {
d.err = err
return 0
}
return endian.Native.Uint32(d.dbuf[0:4])
}
// Uint64 returns a uint64 decoded from the buffer.
func (d *Decoder) Uint64() uint64 {
if d.err != nil {
return 0
}
if err := d.getField(d.dbuf[0:8]); err != nil {
d.err = err
return 0
}
return endian.Native.Uint64(d.dbuf[0:8])
}
// Uintptr returns a uintptr decoded from the buffer.
func (d *Decoder) Uintptr() uintptr {
if d.err != nil {
return 0
}
if is64Bit {
return uintptr(d.Uint64())
} else {
return uintptr(d.Uint32())
}
}
// Int16 returns a int16 decoded from the buffer.
func (d *Decoder) Int16() int16 {
return int16(d.Uint16())
}
// Int32 returns a int32 decoded from the buffer.
func (d *Decoder) Int32() int32 {
return int32(d.Uint32())
}
// Int64 returns a int64 decoded from the buffer.
func (d *Decoder) Int64() int64 {
return int64(d.Uint64())
}

@ -0,0 +1,75 @@
// Copyright (c) 2022 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Only built on 64-bit platforms to avoid complexity
//go:build amd64 || arm64 || mips64le || ppc64le || riscv64
// +build amd64 arm64 mips64le ppc64le riscv64
package cstruct
import "fmt"
// This test provides a semi-realistic example of how you can
// use this package to decode a C structure.
func ExampleDecoder() {
// Our example C structure:
// struct mystruct {
// char *p;
// char c;
// /* implicit: char _pad[3]; */
// int x;
// };
//
// The Go structure definition:
type myStruct struct {
Ptr uintptr
Ch byte
Intval uint32
}
// Our "in-memory" version of the above structure
buf := []byte{
1, 2, 3, 4, 0, 0, 0, 0, // ptr
5, // ch
99, 99, 99, // padding
78, 6, 0, 0, // x
}
d := NewDecoder(buf)
// Decode the structure; if one of these function returns an error,
// then subsequent decoder functions will return the zero value.
var x myStruct
x.Ptr = d.Uintptr()
x.Ch = d.Byte()
x.Intval = d.Uint32()
// Note that per the Go language spec:
// [...] when evaluating the operands of an expression, assignment,
// or return statement, all function calls, method calls, and
// (channel) communication operations are evaluated in lexical
// left-to-right order
//
// Since each field is assigned via a function call, one could use the
// following snippet to decode the struct.
// x := myStruct{
// Ptr: d.Uintptr(),
// Ch: d.Byte(),
// Intval: d.Uint32(),
// }
//
// However, this means that reordering the fields in the initialization
// statementnormally a semantically identical operationwould change
// the way the structure is parsed. Thus we do it as above with
// explicit ordering.
// After finishing with the decoder, check errors
if err := d.Err(); err != nil {
panic(err)
}
// Print the decoder offset and structure
fmt.Printf("off=%d struct=%#v\n", d.Offset(), x)
// Output: off=16 struct=cstruct.myStruct{Ptr:0x4030201, Ch:0x5, Intval:0x64e}
}

@ -0,0 +1,151 @@
// Copyright (c) 2022 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cstruct
import (
"errors"
"fmt"
"io"
"testing"
)
func TestPadBytes(t *testing.T) {
testCases := []struct {
offset int
size int
want int
}{
// No padding at beginning of structure
{0, 1, 0},
{0, 2, 0},
{0, 4, 0},
{0, 8, 0},
// No padding for single bytes
{1, 1, 0},
// Single byte padding
{1, 2, 1},
{3, 4, 1},
// Multi-byte padding
{1, 4, 3},
{2, 8, 6},
}
for _, tc := range testCases {
t.Run(fmt.Sprintf("%d_%d_%d", tc.offset, tc.size, tc.want), func(t *testing.T) {
got := padBytes(tc.offset, tc.size)
if got != tc.want {
t.Errorf("got=%d; want=%d", got, tc.want)
}
})
}
}
func TestDecoder(t *testing.T) {
t.Run("UnsignedTypes", func(t *testing.T) {
dec := func(n int) *Decoder {
buf := make([]byte, n)
buf[0] = 1
d := NewDecoder(buf)
// Use t.Cleanup to perform an assertion on this
// decoder after the test code is finished with it.
t.Cleanup(func() {
if err := d.Err(); err != nil {
t.Fatal(err)
}
})
return d
}
if got := dec(2).Uint16(); got != 1 {
t.Errorf("uint16: got=%d; want=1", got)
}
if got := dec(4).Uint32(); got != 1 {
t.Errorf("uint32: got=%d; want=1", got)
}
if got := dec(8).Uint64(); got != 1 {
t.Errorf("uint64: got=%d; want=1", got)
}
if got := dec(pointerSize / 8).Uintptr(); got != 1 {
t.Errorf("uintptr: got=%d; want=1", got)
}
})
t.Run("SignedTypes", func(t *testing.T) {
dec := func(n int) *Decoder {
// Make a buffer of the exact size that consists of 0xff bytes
buf := make([]byte, n)
for i := 0; i < n; i++ {
buf[i] = 0xff
}
d := NewDecoder(buf)
// Use t.Cleanup to perform an assertion on this
// decoder after the test code is finished with it.
t.Cleanup(func() {
if err := d.Err(); err != nil {
t.Fatal(err)
}
})
return d
}
if got := dec(2).Int16(); got != -1 {
t.Errorf("int16: got=%d; want=-1", got)
}
if got := dec(4).Int32(); got != -1 {
t.Errorf("int32: got=%d; want=-1", got)
}
if got := dec(8).Int64(); got != -1 {
t.Errorf("int64: got=%d; want=-1", got)
}
})
t.Run("InsufficientData", func(t *testing.T) {
dec := func(n int) *Decoder {
// Make a buffer that's too small and contains arbitrary bytes
buf := make([]byte, n-1)
for i := 0; i < n-1; i++ {
buf[i] = 0xAD
}
// Use t.Cleanup to perform an assertion on this
// decoder after the test code is finished with it.
d := NewDecoder(buf)
t.Cleanup(func() {
if err := d.Err(); err == nil || !errors.Is(err, io.EOF) {
t.Errorf("(n=%d) expected io.EOF; got=%v", n, err)
}
})
return d
}
dec(2).Uint16()
dec(4).Uint32()
dec(8).Uint64()
dec(pointerSize / 8).Uintptr()
dec(2).Int16()
dec(4).Int32()
dec(8).Int64()
})
t.Run("Bytes", func(t *testing.T) {
d := NewDecoder([]byte("hello worldasdf"))
t.Cleanup(func() {
if err := d.Err(); err != nil {
t.Fatal(err)
}
})
buf := make([]byte, 11)
d.Bytes(buf)
if got := string(buf); got != "hello world" {
t.Errorf("bytes: got=%q; want=%q", got, "hello world")
}
})
}
Loading…
Cancel
Save