mirror of https://github.com/tailscale/tailscale/
util/rands: add Shuffle and Perm functions with on-stack RNG state
The new math/rand/v2 package includes an m-local global random number generator that can not be reseeded by the user, which is suitable for most uses without the RNG pools we have in a number of areas of the code base. The new API still does not have an allocation-free way of performing a seeded operations, due to the long term compiler bug around interface parameter escapes, and the Source interface. This change introduces the two APIs that math/rand/v2 can not yet replace efficiently: seeded Perm() and Shuffle() operations. This implementation chooses to use the PCG random source from math/rand/v2, as with sufficient compiler optimization, this source should boil down to only two on-stack registers for random state under ideal conditions. Updates #17243 Signed-off-by: James Tucker <james@tailscale.com>pull/10903/head
parent
2bb837a9cf
commit
24bac27632
@ -0,0 +1,82 @@
|
||||
// Copyright (c) Tailscale Inc & AUTHORS
|
||||
// SPDX-License-Identifier: BSD-3-Clause
|
||||
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package rands
|
||||
|
||||
import (
|
||||
"math/bits"
|
||||
|
||||
randv2 "math/rand/v2"
|
||||
)
|
||||
|
||||
// Shuffle is like rand.Shuffle, but it does not allocate or lock any RNG state.
|
||||
func Shuffle[T any](seed uint64, data []T) {
|
||||
var pcg randv2.PCG
|
||||
pcg.Seed(seed, seed)
|
||||
for i := len(data) - 1; i > 0; i-- {
|
||||
j := int(uint64n(&pcg, uint64(i+1)))
|
||||
data[i], data[j] = data[j], data[i]
|
||||
}
|
||||
}
|
||||
|
||||
// Perm is like rand.Perm, but it is seeded on the stack and does not allocate
|
||||
// or lock any RNG state.
|
||||
func Perm(seed uint64, n int) []int {
|
||||
p := make([]int, n)
|
||||
for i := range p {
|
||||
p[i] = i
|
||||
}
|
||||
Shuffle(seed, p)
|
||||
return p
|
||||
}
|
||||
|
||||
// uint64n is the no-bounds-checks version of rand.Uint64N from the standard
|
||||
// library. 32-bit optimizations have been elided.
|
||||
func uint64n(pcg *randv2.PCG, n uint64) uint64 {
|
||||
if n&(n-1) == 0 { // n is power of two, can mask
|
||||
return pcg.Uint64() & (n - 1)
|
||||
}
|
||||
|
||||
// Suppose we have a uint64 x uniform in the range [0,2⁶⁴)
|
||||
// and want to reduce it to the range [0,n) preserving exact uniformity.
|
||||
// We can simulate a scaling arbitrary precision x * (n/2⁶⁴) by
|
||||
// the high bits of a double-width multiply of x*n, meaning (x*n)/2⁶⁴.
|
||||
// Since there are 2⁶⁴ possible inputs x and only n possible outputs,
|
||||
// the output is necessarily biased if n does not divide 2⁶⁴.
|
||||
// In general (x*n)/2⁶⁴ = k for x*n in [k*2⁶⁴,(k+1)*2⁶⁴).
|
||||
// There are either floor(2⁶⁴/n) or ceil(2⁶⁴/n) possible products
|
||||
// in that range, depending on k.
|
||||
// But suppose we reject the sample and try again when
|
||||
// x*n is in [k*2⁶⁴, k*2⁶⁴+(2⁶⁴%n)), meaning rejecting fewer than n possible
|
||||
// outcomes out of the 2⁶⁴.
|
||||
// Now there are exactly floor(2⁶⁴/n) possible ways to produce
|
||||
// each output value k, so we've restored uniformity.
|
||||
// To get valid uint64 math, 2⁶⁴ % n = (2⁶⁴ - n) % n = -n % n,
|
||||
// so the direct implementation of this algorithm would be:
|
||||
//
|
||||
// hi, lo := bits.Mul64(r.Uint64(), n)
|
||||
// thresh := -n % n
|
||||
// for lo < thresh {
|
||||
// hi, lo = bits.Mul64(r.Uint64(), n)
|
||||
// }
|
||||
//
|
||||
// That still leaves an expensive 64-bit division that we would rather avoid.
|
||||
// We know that thresh < n, and n is usually much less than 2⁶⁴, so we can
|
||||
// avoid the last four lines unless lo < n.
|
||||
//
|
||||
// See also:
|
||||
// https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction
|
||||
// https://lemire.me/blog/2016/06/30/fast-random-shuffling
|
||||
hi, lo := bits.Mul64(pcg.Uint64(), n)
|
||||
if lo < n {
|
||||
thresh := -n % n
|
||||
for lo < thresh {
|
||||
hi, lo = bits.Mul64(pcg.Uint64(), n)
|
||||
}
|
||||
}
|
||||
return hi
|
||||
}
|
@ -0,0 +1,96 @@
|
||||
// Copyright (c) Tailscale Inc & AUTHORS
|
||||
// SPDX-License-Identifier: BSD-3-Clause
|
||||
|
||||
package rands
|
||||
|
||||
import (
|
||||
"slices"
|
||||
"testing"
|
||||
|
||||
randv2 "math/rand/v2"
|
||||
)
|
||||
|
||||
func TestShuffleNoAllocs(t *testing.T) {
|
||||
seed := randv2.Uint64()
|
||||
data := make([]int, 100)
|
||||
for i := range data {
|
||||
data[i] = i
|
||||
}
|
||||
if n := testing.AllocsPerRun(1000, func() {
|
||||
Shuffle(seed, data)
|
||||
}); n > 0 {
|
||||
t.Errorf("Rand got %v allocs per run", n)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkStdRandV2Shuffle(b *testing.B) {
|
||||
seed := randv2.Uint64()
|
||||
data := make([]int, 100)
|
||||
for i := range data {
|
||||
data[i] = i
|
||||
}
|
||||
b.ReportAllocs()
|
||||
for range b.N {
|
||||
// PCG is the lightest source, taking just two uint64s, the chacha8
|
||||
// source has much larger state.
|
||||
rng := randv2.New(randv2.NewPCG(seed, seed))
|
||||
rng.Shuffle(len(data), func(i, j int) { data[i], data[j] = data[j], data[i] })
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkLocalShuffle(b *testing.B) {
|
||||
seed := randv2.Uint64()
|
||||
data := make([]int, 100)
|
||||
for i := range data {
|
||||
data[i] = i
|
||||
}
|
||||
b.ReportAllocs()
|
||||
for range b.N {
|
||||
Shuffle(seed, data)
|
||||
}
|
||||
}
|
||||
|
||||
func TestPerm(t *testing.T) {
|
||||
seed := uint64(12345)
|
||||
p := Perm(seed, 100)
|
||||
if len(p) != 100 {
|
||||
t.Errorf("got %v; want 100", len(p))
|
||||
}
|
||||
expect := [][]int{
|
||||
{5, 7, 1, 4, 0, 9, 2, 3, 6, 8},
|
||||
{0, 5, 9, 8, 1, 6, 2, 4, 3, 7},
|
||||
{5, 2, 3, 1, 9, 7, 6, 8, 4, 0},
|
||||
{4, 5, 7, 1, 6, 3, 8, 2, 0, 9},
|
||||
{5, 7, 0, 9, 2, 1, 8, 4, 6, 3},
|
||||
}
|
||||
for i := range 5 {
|
||||
got := Perm(seed+uint64(i), 10)
|
||||
want := expect[i]
|
||||
if !slices.Equal(got, want) {
|
||||
t.Errorf("got %v; want %v", got, want)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestShuffle(t *testing.T) {
|
||||
seed := uint64(12345)
|
||||
p := Perm(seed, 10)
|
||||
if len(p) != 10 {
|
||||
t.Errorf("got %v; want 10", len(p))
|
||||
}
|
||||
|
||||
expect := [][]int{
|
||||
{9, 3, 7, 0, 5, 8, 1, 4, 2, 6},
|
||||
{9, 8, 6, 2, 3, 1, 7, 5, 0, 4},
|
||||
{1, 6, 2, 8, 4, 5, 7, 0, 3, 9},
|
||||
{4, 5, 0, 6, 7, 8, 3, 2, 1, 9},
|
||||
{8, 2, 4, 9, 0, 5, 1, 7, 3, 6},
|
||||
}
|
||||
for i := range 5 {
|
||||
Shuffle(seed+uint64(i), p)
|
||||
want := expect[i]
|
||||
if !slices.Equal(p, want) {
|
||||
t.Errorf("got %v; want %v", p, want)
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue