wgengine/packet: refactor and expose UDP header marshaling (#408)

Signed-off-by: Dmytro Shynkevych <dmytro@tailscale.com>
reviewable/pr436/r2
Dmytro Shynkevych 4 years ago committed by GitHub
parent 5e0ff494a5
commit 059b1d10bb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -137,7 +137,7 @@ func maybeHexdump(flag RunFlags, b []byte) string {
var acceptBucket = rate.NewLimiter(rate.Every(10*time.Second), 3)
var dropBucket = rate.NewLimiter(rate.Every(5*time.Second), 10)
func (f *Filter) logRateLimit(runflags RunFlags, b []byte, q *packet.QDecode, r Response, why string) {
func (f *Filter) logRateLimit(runflags RunFlags, b []byte, q *packet.ParsedPacket, r Response, why string) {
var verdict string
if r == Drop && (runflags&LogDrops) != 0 && dropBucket.Allow() {
@ -161,7 +161,7 @@ func (f *Filter) logRateLimit(runflags RunFlags, b []byte, q *packet.QDecode, r
}
}
func (f *Filter) RunIn(b []byte, q *packet.QDecode, rf RunFlags) Response {
func (f *Filter) RunIn(b []byte, q *packet.ParsedPacket, rf RunFlags) Response {
r := f.pre(b, q, rf)
if r == Accept || r == Drop {
// already logged
@ -173,7 +173,7 @@ func (f *Filter) RunIn(b []byte, q *packet.QDecode, rf RunFlags) Response {
return r
}
func (f *Filter) RunOut(b []byte, q *packet.QDecode, rf RunFlags) Response {
func (f *Filter) RunOut(b []byte, q *packet.ParsedPacket, rf RunFlags) Response {
r := f.pre(b, q, rf)
if r == Drop || r == Accept {
// already logged
@ -184,7 +184,7 @@ func (f *Filter) RunOut(b []byte, q *packet.QDecode, rf RunFlags) Response {
return r
}
func (f *Filter) runIn(q *packet.QDecode) (r Response, why string) {
func (f *Filter) runIn(q *packet.ParsedPacket) (r Response, why string) {
// A compromised peer could try to send us packets for
// destinations we didn't explicitly advertise. This check is to
// prevent that.
@ -239,7 +239,7 @@ func (f *Filter) runIn(q *packet.QDecode) (r Response, why string) {
return Drop, "no rules matched"
}
func (f *Filter) runOut(q *packet.QDecode) (r Response, why string) {
func (f *Filter) runOut(q *packet.ParsedPacket) (r Response, why string) {
if q.IPProto == packet.UDP {
t := tuple{q.DstIP, q.SrcIP, q.DstPort, q.SrcPort}
var ti interface{} = t // allocate once, rather than twice inside mutex
@ -251,7 +251,7 @@ func (f *Filter) runOut(q *packet.QDecode) (r Response, why string) {
return Accept, "ok out"
}
func (f *Filter) pre(b []byte, q *packet.QDecode, rf RunFlags) Response {
func (f *Filter) pre(b []byte, q *packet.ParsedPacket, rf RunFlags) Response {
if len(b) == 0 {
// wireguard keepalive packet, always permit.
return Accept
@ -262,13 +262,17 @@ func (f *Filter) pre(b []byte, q *packet.QDecode, rf RunFlags) Response {
}
q.Decode(b)
if q.IPProto == packet.Junk {
// Junk packets are dangerous; always drop them.
f.logRateLimit(rf, b, q, Drop, "junk")
switch q.IPProto {
case packet.Unknown:
// Unknown packets are dangerous; always drop them.
f.logRateLimit(rf, b, q, Drop, "unknown")
return Drop
case packet.IPv6:
f.logRateLimit(rf, b, q, Drop, "ipv6")
return Drop
} else if q.IPProto == packet.Fragment {
case packet.Fragment:
// Fragments after the first always need to be passed through.
// Very small fragments are considered Junk by QDecode.
// Very small fragments are considered Junk by ParsedPacket.
f.logRateLimit(rf, b, q, Accept, "fragment")
return Accept
}

@ -14,10 +14,10 @@ import (
)
// Type aliases only in test code: (but ideally nowhere)
type QDecode = packet.QDecode
type ParsedPacket = packet.ParsedPacket
type IP = packet.IP
var Junk = packet.Junk
var Unknown = packet.Unknown
var ICMP = packet.ICMP
var TCP = packet.TCP
var UDP = packet.UDP
@ -84,34 +84,34 @@ func TestFilter(t *testing.T) {
type InOut struct {
want Response
p QDecode
p ParsedPacket
}
tests := []InOut{
// Basic
{Accept, qdecode(TCP, 0x08010101, 0x01020304, 999, 22)},
{Accept, qdecode(UDP, 0x08010101, 0x01020304, 999, 22)},
{Accept, qdecode(ICMP, 0x08010101, 0x01020304, 0, 0)},
{Drop, qdecode(TCP, 0x08010101, 0x01020304, 0, 0)},
{Accept, qdecode(TCP, 0x08010101, 0x01020304, 0, 22)},
{Drop, qdecode(TCP, 0x08010101, 0x01020304, 0, 21)},
{Accept, qdecode(TCP, 0x11223344, 0x08012233, 0, 443)},
{Drop, qdecode(TCP, 0x11223344, 0x08012233, 0, 444)},
{Accept, qdecode(TCP, 0x11223344, 0x647a6232, 0, 999)},
{Accept, qdecode(TCP, 0x11223344, 0x647a6232, 0, 0)},
{Accept, parsed(TCP, 0x08010101, 0x01020304, 999, 22)},
{Accept, parsed(UDP, 0x08010101, 0x01020304, 999, 22)},
{Accept, parsed(ICMP, 0x08010101, 0x01020304, 0, 0)},
{Drop, parsed(TCP, 0x08010101, 0x01020304, 0, 0)},
{Accept, parsed(TCP, 0x08010101, 0x01020304, 0, 22)},
{Drop, parsed(TCP, 0x08010101, 0x01020304, 0, 21)},
{Accept, parsed(TCP, 0x11223344, 0x08012233, 0, 443)},
{Drop, parsed(TCP, 0x11223344, 0x08012233, 0, 444)},
{Accept, parsed(TCP, 0x11223344, 0x647a6232, 0, 999)},
{Accept, parsed(TCP, 0x11223344, 0x647a6232, 0, 0)},
// localNets prefilter - accepted by policy filter, but
// unexpected dst IP.
{Drop, qdecode(TCP, 0x08010101, 0x10203040, 0, 443)},
{Drop, parsed(TCP, 0x08010101, 0x10203040, 0, 443)},
// Stateful UDP. Note each packet is run through the input
// filter, then the output filter (which sets conntrack
// state).
// Initially empty cache
{Drop, qdecode(UDP, 0x77777777, 0x66666666, 4242, 4343)},
{Drop, parsed(UDP, 0x77777777, 0x66666666, 4242, 4343)},
// Return packet from previous attempt is allowed
{Accept, qdecode(UDP, 0x66666666, 0x77777777, 4343, 4242)},
{Accept, parsed(UDP, 0x66666666, 0x77777777, 4343, 4242)},
// Because of the return above, initial attempt is allowed now
{Accept, qdecode(UDP, 0x77777777, 0x66666666, 4242, 4343)},
{Accept, parsed(UDP, 0x77777777, 0x66666666, 4242, 4343)},
}
for i, test := range tests {
if got, _ := acl.runIn(&test.p); test.want != got {
@ -144,7 +144,7 @@ func TestNoAllocs(t *testing.T) {
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
got := int(testing.AllocsPerRun(1000, func() {
var q QDecode
var q ParsedPacket
if test.in {
acl.RunIn(test.packet, &q, 0)
} else {
@ -187,7 +187,7 @@ func BenchmarkFilter(b *testing.B) {
for _, bench := range benches {
b.Run(bench.name, func(b *testing.B) {
for i := 0; i < b.N; i++ {
var q QDecode
var q ParsedPacket
// This branch seems to have no measurable impact on performance.
if bench.in {
acl.RunIn(bench.packet, &q, 0)
@ -207,7 +207,7 @@ func TestPreFilter(t *testing.T) {
}{
{"empty", Accept, []byte{}},
{"short", Drop, []byte("short")},
{"junk", Drop, rawdefault(Junk, 10)},
{"junk", Drop, rawdefault(Unknown, 10)},
{"fragment", Accept, rawdefault(Fragment, 40)},
{"tcp", noVerdict, rawdefault(TCP, 200)},
{"udp", noVerdict, rawdefault(UDP, 200)},
@ -215,15 +215,15 @@ func TestPreFilter(t *testing.T) {
}
f := NewAllowNone(t.Logf)
for _, testPacket := range packets {
got := f.pre([]byte(testPacket.b), &QDecode{}, LogDrops|LogAccepts)
got := f.pre([]byte(testPacket.b), &ParsedPacket{}, LogDrops|LogAccepts)
if got != testPacket.want {
t.Errorf("%q got=%v want=%v packet:\n%s", testPacket.desc, got, testPacket.want, packet.Hexdump(testPacket.b))
}
}
}
func qdecode(proto packet.IPProto, src, dst packet.IP, sport, dport uint16) QDecode {
return QDecode{
func parsed(proto packet.IPProto, src, dst packet.IP, sport, dport uint16) ParsedPacket {
return ParsedPacket{
IPProto: proto,
SrcIP: src,
DstIP: dst,
@ -277,7 +277,7 @@ func rawpacket(proto packet.IPProto, src, dst packet.IP, sport, dport uint16, tr
hdr[9] = 6
// flags + fragOff
bin.PutUint16(hdr[6:8], (1<<13)|1234)
case Junk:
case Unknown:
default:
panic("unknown protocol")
}

@ -133,7 +133,7 @@ func ipInList(ip packet.IP, netlist []Net) bool {
return false
}
func matchIPPorts(mm Matches, q *packet.QDecode) bool {
func matchIPPorts(mm Matches, q *packet.ParsedPacket) bool {
for _, acl := range mm {
for _, dst := range acl.Dsts {
if !dst.Net.Includes(q.DstIP) {
@ -153,7 +153,7 @@ func matchIPPorts(mm Matches, q *packet.QDecode) bool {
return false
}
func matchIPWithoutPorts(mm Matches, q *packet.QDecode) bool {
func matchIPWithoutPorts(mm Matches, q *packet.ParsedPacket) bool {
for _, acl := range mm {
for _, dst := range acl.Dsts {
if !dst.Net.Includes(q.DstIP) {

@ -0,0 +1,48 @@
// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"errors"
"math"
)
const tcpHeaderLength = 20
// maxPacketLength is the largest length that all headers support.
// IPv4 headers using uint16 for this forces an upper bound of 64KB.
const maxPacketLength = math.MaxUint16
var (
errSmallBuffer = errors.New("buffer too small")
errLargePacket = errors.New("packet too large")
)
// Header is a packet header capable of marshaling itself into a byte buffer.
type Header interface {
// Len returns the length of the header after marshaling.
Len() int
// Marshal serializes the header into buf in wire format.
// It clobbers the header region, which is the first h.Length() bytes of buf.
// It explicitly initializes every byte of the header region,
// so pre-zeroing it on reuse is not required. It does not allocate memory.
// It fails if and only if len(buf) < Length().
Marshal(buf []byte) error
// ToResponse transforms the header into one for a response packet.
// For instance, this swaps the source and destination IPs.
ToResponse()
}
// Generate generates a new packet with the given header and payload.
// Unlike Header.Marshal, this does allocate memory.
func Generate(h Header, payload []byte) []byte {
hlen := h.Len()
buf := make([]byte, hlen+len(payload))
copy(buf[hlen:], payload)
h.Marshal(buf)
return buf
}

@ -0,0 +1,78 @@
// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
type ICMPType uint8
const (
ICMPEchoReply ICMPType = 0x00
ICMPEchoRequest ICMPType = 0x08
ICMPUnreachable ICMPType = 0x03
ICMPTimeExceeded ICMPType = 0x0b
)
func (t ICMPType) String() string {
switch t {
case ICMPEchoReply:
return "EchoReply"
case ICMPEchoRequest:
return "EchoRequest"
case ICMPUnreachable:
return "Unreachable"
case ICMPTimeExceeded:
return "TimeExceeded"
default:
return "Unknown"
}
}
type ICMPCode uint8
const (
ICMPNoCode ICMPCode = 0
)
// ICMPHeader represents an ICMP packet header.
type ICMPHeader struct {
IPHeader
Type ICMPType
Code ICMPCode
}
const (
icmpHeaderLength = 4
// icmpTotalHeaderLength is the length of all headers in a ICMP packet.
icmpAllHeadersLength = ipHeaderLength + icmpHeaderLength
)
func (ICMPHeader) Len() int {
return icmpAllHeadersLength
}
func (h ICMPHeader) Marshal(buf []byte) error {
if len(buf) < icmpAllHeadersLength {
return errSmallBuffer
}
if len(buf) > maxPacketLength {
return errLargePacket
}
// The caller does not need to set this.
h.IPProto = ICMP
buf[20] = uint8(h.Type)
buf[21] = uint8(h.Code)
h.IPHeader.Marshal(buf)
put16(buf[22:24], ipChecksum(buf))
return nil
}
func (h *ICMPHeader) ToResponse() {
h.Type = ICMPEchoReply
h.Code = ICMPNoCode
h.IPHeader.ToResponse()
}

@ -0,0 +1,127 @@
// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"fmt"
"net"
)
// IP is an IPv4 address.
type IP uint32
// NewIP converts a standard library IP address into an IP.
// It panics if b is not an IPv4 address.
func NewIP(b net.IP) IP {
b4 := b.To4()
if b4 == nil {
panic(fmt.Sprintf("To4(%v) failed", b))
}
return IP(get32(b4))
}
func (ip IP) String() string {
return fmt.Sprintf("%d.%d.%d.%d", byte(ip>>24), byte(ip>>16), byte(ip>>8), byte(ip))
}
// IPProto is either a real IP protocol (ITCP, UDP, ...) or an special value like Unknown.
// If it is a real IP protocol, its value corresponds to its IP protocol number.
type IPProto uint8
const (
// Unknown represents an unknown or unsupported protocol; it's deliberately the zero value.
Unknown IPProto = 0x00
ICMP IPProto = 0x01
TCP IPProto = 0x06
UDP IPProto = 0x11
// IPv6 and Fragment are special values. They're not really IPProto values
// so we're using the unassigned 0xFE and 0xFF values for them.
// TODO(dmytro): special values should be taken out of here.
IPv6 IPProto = 0xFE
Fragment IPProto = 0xFF
)
func (p IPProto) String() string {
switch p {
case Fragment:
return "Frag"
case ICMP:
return "ICMP"
case UDP:
return "UDP"
case TCP:
return "TCP"
case IPv6:
return "IPv6"
default:
return "Unknown"
}
}
// IPHeader represents an IP packet header.
type IPHeader struct {
IPProto IPProto
IPID uint16
SrcIP IP
DstIP IP
}
const ipHeaderLength = 20
func (IPHeader) Len() int {
return ipHeaderLength
}
func (h IPHeader) Marshal(buf []byte) error {
if len(buf) < ipHeaderLength {
return errSmallBuffer
}
if len(buf) > maxPacketLength {
return errLargePacket
}
buf[0] = 0x40 | (ipHeaderLength >> 2) // IPv4
buf[1] = 0x00 // DHCP, ECN
put16(buf[2:4], uint16(len(buf)))
put16(buf[4:6], h.IPID)
put16(buf[6:8], 0) // flags, offset
buf[8] = 64 // TTL
buf[9] = uint8(h.IPProto)
put16(buf[10:12], 0) // blank IP header checksum
put32(buf[12:16], uint32(h.SrcIP))
put32(buf[16:20], uint32(h.DstIP))
put16(buf[10:12], ipChecksum(buf[0:20]))
return nil
}
// MarshalPseudo serializes the header into buf in pseudo format.
// It clobbers the header region, which is the first h.Length() bytes of buf.
// It explicitly initializes every byte of the header region,
// so pre-zeroing it on reuse is not required. It does not allocate memory.
func (h IPHeader) MarshalPseudo(buf []byte) error {
if len(buf) < ipHeaderLength {
return errSmallBuffer
}
if len(buf) > maxPacketLength {
return errLargePacket
}
length := len(buf) - ipHeaderLength
put32(buf[8:12], uint32(h.SrcIP))
put32(buf[12:16], uint32(h.DstIP))
buf[16] = 0x0
buf[17] = uint8(h.IPProto)
put16(buf[18:20], uint16(length))
return nil
}
func (h *IPHeader) ToResponse() {
h.SrcIP, h.DstIP = h.DstIP, h.SrcIP
// Flip the bits in the IPID. If incoming IPIDs are distinct, so are these.
h.IPID = ^h.IPID
}

@ -7,75 +7,39 @@ package packet
import (
"encoding/binary"
"fmt"
"log"
"net"
"strings"
"tailscale.com/types/strbuilder"
)
type IPProto int
const (
Junk IPProto = iota
Fragment
ICMP
UDP
TCP
)
// RFC1858: prevent overlapping fragment attacks.
const minFrag = 60 + 20 // max IPv4 header + basic TCP header
func (p IPProto) String() string {
switch p {
case Fragment:
return "Frag"
case ICMP:
return "ICMP"
case UDP:
return "UDP"
case TCP:
return "TCP"
default:
return "Junk"
}
}
// IP is an IPv4 address.
type IP uint32
// NewIP converts a standard library IP address into an IP.
// It panics if b is not an IPv4 address.
func NewIP(b net.IP) IP {
b4 := b.To4()
if b4 == nil {
panic(fmt.Sprintf("To4(%v) failed", b))
}
return IP(binary.BigEndian.Uint32(b4))
}
func (ip IP) String() string {
return fmt.Sprintf("%d.%d.%d.%d", byte(ip>>24), byte(ip>>16), byte(ip>>8), byte(ip))
}
// ICMP types.
const (
ICMPEchoReply = 0x00
ICMPEchoRequest = 0x08
ICMPUnreachable = 0x03
ICMPTimeExceeded = 0x0b
)
const (
TCPSyn = 0x02
TCPAck = 0x10
TCPSynAck = TCPSyn | TCPAck
)
type QDecode struct {
b []byte // Packet buffer that this decodes
subofs int // byte offset of IP subprotocol
var (
get16 = binary.BigEndian.Uint16
get32 = binary.BigEndian.Uint32
put16 = binary.BigEndian.PutUint16
put32 = binary.BigEndian.PutUint32
)
// ParsedPacket is a minimal decoding of a packet suitable for use in filters.
type ParsedPacket struct {
// b is the byte buffer that this decodes.
b []byte
// subofs is the offset of IP subprotocol.
subofs int
// dataofs is the offset of IP subprotocol payload.
dataofs int
// length is the total length of the packet.
// This is not the same as len(b) because b can have trailing zeros.
length int
IPProto IPProto // IP subprotocol (UDP, TCP, etc)
SrcIP IP // IP source address
@ -85,9 +49,12 @@ type QDecode struct {
TCPFlags uint8 // TCP flags (SYN, ACK, etc)
}
func (q *QDecode) String() string {
if q.IPProto == Junk {
return "Junk{}"
func (q *ParsedPacket) String() string {
switch q.IPProto {
case IPv6:
return "IPv6{???}"
case Unknown:
return "Unknown{???}"
}
sb := strbuilder.Get()
sb.WriteString(q.IPProto.String())
@ -117,7 +84,7 @@ func ipChecksum(b []byte) uint16 {
i := 0
n := len(b)
for n >= 2 {
ac += uint32(binary.BigEndian.Uint16(b[i : i+2]))
ac += uint32(get16(b[i : i+2]))
n -= 2
i += 2
}
@ -130,71 +97,44 @@ func ipChecksum(b []byte) uint16 {
return uint16(^ac)
}
var put16 = binary.BigEndian.PutUint16
var put32 = binary.BigEndian.PutUint32
// GenICMP returns the bytes of an ICMP packet.
// If payload is too short or too long, it returns nil.
func GenICMP(srcIP, dstIP IP, ipid uint16, icmpType, icmpCode uint8, payload []byte) []byte {
if len(payload) < 4 {
return nil
}
if len(payload) > 65535-24 {
return nil
}
sz := 24 + len(payload)
out := make([]byte, 24+len(payload))
out[0] = 0x45 // IPv4, 20-byte header
out[1] = 0x00 // DHCP, ECN
put16(out[2:4], uint16(sz))
put16(out[4:6], ipid)
put16(out[6:8], 0) // flags, offset
out[8] = 64 // TTL
out[9] = 0x01 // ICMPv4
// out[10:12] = 0x00 // blank IP header checksum
put32(out[12:16], uint32(srcIP))
put32(out[16:20], uint32(dstIP))
out[20] = icmpType
out[21] = icmpCode
//out[22:24] = 0x00 // blank ICMP checksum
copy(out[24:], payload)
put16(out[10:12], ipChecksum(out[0:20]))
put16(out[22:24], ipChecksum(out))
return out
}
// An extremely simple packet decoder for basic IPv4 packet types.
// Decode extracts data from the packet in b into q.
// It performs extremely simple packet decoding for basic IPv4 packet types.
// It extracts only the subprotocol id, IP addresses, and (if any) ports,
// and shouldn't need any memory allocation.
func (q *QDecode) Decode(b []byte) {
func (q *ParsedPacket) Decode(b []byte) {
q.b = nil
if len(b) < 20 {
q.IPProto = Junk
if len(b) < ipHeaderLength {
q.IPProto = Unknown
return
}
// Check that it's IPv4.
// TODO(apenwarr): consider IPv6 support
if ((b[0] & 0xF0) >> 4) != 4 {
q.IPProto = Junk
switch (b[0] & 0xF0) >> 4 {
case 4:
q.IPProto = IPProto(b[9])
// continue
case 6:
q.IPProto = IPv6
return
default:
q.IPProto = Unknown
return
}
n := int(binary.BigEndian.Uint16(b[2:4]))
if len(b) < n {
q.length = int(get16(b[2:4]))
if len(b) < q.length {
// Packet was cut off before full IPv4 length.
q.IPProto = Junk
q.IPProto = Unknown
return
}
// If it's valid IPv4, then the IP addresses are valid
q.SrcIP = IP(binary.BigEndian.Uint32(b[12:16]))
q.DstIP = IP(binary.BigEndian.Uint32(b[16:20]))
q.SrcIP = IP(get32(b[12:16]))
q.DstIP = IP(get32(b[16:20]))
q.subofs = int((b[0] & 0x0F) * 4)
q.subofs = int((b[0] & 0x0F) << 2)
sub := b[q.subofs:]
// We don't care much about IP fragmentation, except insofar as it's
@ -207,57 +147,56 @@ func (q *QDecode) Decode(b []byte) {
// A "perfectly correct" implementation would have to reassemble
// fragments before deciding what to do. But the truth is there's
// zero reason to send such a short first fragment, so we can treat
// it as Junk. We can also treat any subsequent fragment that starts
// at such a low offset as Junk.
fragFlags := binary.BigEndian.Uint16(b[6:8])
// it as Unknown. We can also treat any subsequent fragment that starts
// at such a low offset as Unknown.
fragFlags := get16(b[6:8])
moreFrags := (fragFlags & 0x20) != 0
fragOfs := fragFlags & 0x1FFF
if fragOfs == 0 {
// This is the first fragment
if moreFrags && len(sub) < minFrag {
// Suspiciously short first fragment, dump it.
log.Printf("junk1!\n")
q.IPProto = Junk
q.IPProto = Unknown
return
}
// otherwise, this is either non-fragmented (the usual case)
// or a big enough initial fragment that we can read the
// whole subprotocol header.
proto := b[9]
switch proto {
case 1: // ICMPv4
if len(sub) < 8 {
q.IPProto = Junk
switch q.IPProto {
case ICMP:
if len(sub) < icmpHeaderLength {
q.IPProto = Unknown
return
}
q.IPProto = ICMP
q.SrcPort = 0
q.DstPort = 0
q.b = b
q.dataofs = q.subofs + icmpHeaderLength
return
case 6: // TCP
if len(sub) < 20 {
q.IPProto = Junk
case TCP:
if len(sub) < tcpHeaderLength {
q.IPProto = Unknown
return
}
q.IPProto = TCP
q.SrcPort = binary.BigEndian.Uint16(sub[0:2])
q.DstPort = binary.BigEndian.Uint16(sub[2:4])
q.SrcPort = get16(sub[0:2])
q.DstPort = get16(sub[2:4])
q.TCPFlags = sub[13] & 0x3F
q.b = b
headerLength := (sub[12] & 0xF0) >> 2
q.dataofs = q.subofs + int(headerLength)
return
case 17: // UDP
if len(sub) < 8 {
q.IPProto = Junk
case UDP:
if len(sub) < udpHeaderLength {
q.IPProto = Unknown
return
}
q.IPProto = UDP
q.SrcPort = binary.BigEndian.Uint16(sub[0:2])
q.DstPort = binary.BigEndian.Uint16(sub[2:4])
q.SrcPort = get16(sub[0:2])
q.DstPort = get16(sub[2:4])
q.b = b
q.dataofs = q.subofs + udpHeaderLength
return
default:
q.IPProto = Junk
q.IPProto = Unknown
return
}
} else {
@ -265,7 +204,7 @@ func (q *QDecode) Decode(b []byte) {
if fragOfs < minFrag {
// First frag was suspiciously short, so we can't
// trust the followup either.
q.IPProto = Junk
q.IPProto = Unknown
return
}
// otherwise, we have to permit the fragment to slide through.
@ -279,29 +218,59 @@ func (q *QDecode) Decode(b []byte) {
}
}
// Returns a subset of the IP subprotocol section.
func (q *QDecode) Sub(begin, n int) []byte {
func (q *ParsedPacket) IPHeader() IPHeader {
ipid := get16(q.b[4:6])
return IPHeader{
IPID: ipid,
IPProto: q.IPProto,
SrcIP: q.SrcIP,
DstIP: q.DstIP,
}
}
func (q *ParsedPacket) ICMPHeader() ICMPHeader {
return ICMPHeader{
IPHeader: q.IPHeader(),
Type: ICMPType(q.b[q.subofs+0]),
Code: ICMPCode(q.b[q.subofs+1]),
}
}
func (q *ParsedPacket) UDPHeader() UDPHeader {
return UDPHeader{
IPHeader: q.IPHeader(),
SrcPort: q.SrcPort,
DstPort: q.DstPort,
}
}
// Sub returns the IP subprotocol section.
func (q *ParsedPacket) Sub(begin, n int) []byte {
return q.b[q.subofs+begin : q.subofs+begin+n]
}
// Payload returns the payload of the IP subprotocol section.
func (q *ParsedPacket) Payload() []byte {
return q.b[q.dataofs:q.length]
}
// Trim trims the buffer to its IPv4 length.
// Sometimes packets arrive from an interface with extra bytes on the end.
// This removes them.
func (q *QDecode) Trim() []byte {
n := binary.BigEndian.Uint16(q.b[2:4])
return q.b[:n]
func (q *ParsedPacket) Trim() []byte {
return q.b[:q.length]
}
// IsTCPSyn reports whether q is a TCP SYN packet (i.e. the
// first packet in a new connection).
func (q *QDecode) IsTCPSyn() bool {
// IsTCPSyn reports whether q is a TCP SYN packet
// (i.e. the first packet in a new connection).
func (q *ParsedPacket) IsTCPSyn() bool {
return (q.TCPFlags & TCPSynAck) == TCPSyn
}
// IsError reports whether q is an IPv4 ICMP "Error" packet.
func (q *QDecode) IsError() bool {
func (q *ParsedPacket) IsError() bool {
if q.IPProto == ICMP && len(q.b) >= q.subofs+8 {
switch q.b[q.subofs] {
switch ICMPType(q.b[q.subofs]) {
case ICMPUnreachable, ICMPTimeExceeded:
return true
}
@ -310,28 +279,23 @@ func (q *QDecode) IsError() bool {
}
// IsEchoRequest reports whether q is an IPv4 ICMP Echo Request.
func (q *QDecode) IsEchoRequest() bool {
func (q *ParsedPacket) IsEchoRequest() bool {
if q.IPProto == ICMP && len(q.b) >= q.subofs+8 {
return q.b[q.subofs] == ICMPEchoRequest && q.b[q.subofs+1] == 0
return ICMPType(q.b[q.subofs]) == ICMPEchoRequest &&
ICMPCode(q.b[q.subofs+1]) == ICMPNoCode
}
return false
}
// IsEchoRequest reports whether q is an IPv4 ICMP Echo Response.
func (q *QDecode) IsEchoResponse() bool {
func (q *ParsedPacket) IsEchoResponse() bool {
if q.IPProto == ICMP && len(q.b) >= q.subofs+8 {
return q.b[q.subofs] == ICMPEchoReply && q.b[q.subofs+1] == 0
return ICMPType(q.b[q.subofs]) == ICMPEchoReply &&
ICMPCode(q.b[q.subofs+1]) == ICMPNoCode
}
return false
}
// EchoResponse returns an IPv4 ICMP echo reply to the request in q.
func (q *QDecode) EchoRespond() []byte {
icmpid := binary.BigEndian.Uint16(q.Sub(4, 2))
b := q.Trim()
return GenICMP(q.DstIP, q.SrcIP, icmpid, ICMPEchoReply, 0, b[q.subofs+4:])
}
func Hexdump(b []byte) string {
out := new(strings.Builder)
for i := 0; i < len(b); i += 16 {

@ -5,7 +5,9 @@
package packet
import (
"bytes"
"net"
"reflect"
"testing"
)
@ -26,24 +28,312 @@ func TestIPString(t *testing.T) {
}
}
func TestQDecodeString(t *testing.T) {
q := QDecode{
IPProto: TCP,
SrcIP: NewIP(net.ParseIP("1.2.3.4")),
SrcPort: 123,
DstIP: NewIP(net.ParseIP("5.6.7.8")),
DstPort: 567,
var icmpRequestBuffer = []byte{
// IP header up to checksum
0x45, 0x00, 0x00, 0x27, 0xde, 0xad, 0x00, 0x00, 0x40, 0x01, 0x8c, 0x15,
// source ip
0x01, 0x02, 0x03, 0x04,
// destination ip
0x05, 0x06, 0x07, 0x08,
// ICMP header
0x08, 0x00, 0x7d, 0x22,
// "request_payload"
0x72, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x5f, 0x70, 0x61, 0x79, 0x6c, 0x6f, 0x61, 0x64,
}
var icmpRequestDecode = ParsedPacket{
b: icmpRequestBuffer,
subofs: 20,
dataofs: 24,
length: len(icmpRequestBuffer),
IPProto: ICMP,
SrcIP: NewIP(net.ParseIP("1.2.3.4")),
DstIP: NewIP(net.ParseIP("5.6.7.8")),
SrcPort: 0,
DstPort: 0,
}
var icmpReplyBuffer = []byte{
0x45, 0x00, 0x00, 0x25, 0x21, 0x52, 0x00, 0x00, 0x40, 0x01, 0x49, 0x73,
// source ip
0x05, 0x06, 0x07, 0x08,
// destination ip
0x01, 0x02, 0x03, 0x04,
// ICMP header
0x00, 0x00, 0xe6, 0x9e,
// "reply_payload"
0x72, 0x65, 0x70, 0x6c, 0x79, 0x5f, 0x70, 0x61, 0x79, 0x6c, 0x6f, 0x61, 0x64,
}
var icmpReplyDecode = ParsedPacket{
b: icmpReplyBuffer,
subofs: 20,
dataofs: 24,
length: len(icmpReplyBuffer),
IPProto: ICMP,
SrcIP: NewIP(net.ParseIP("1.2.3.4")),
DstIP: NewIP(net.ParseIP("5.6.7.8")),
SrcPort: 0,
DstPort: 0,
}
// IPv6 Router Solicitation
var ipv6PacketBuffer = []byte{
0x60, 0x00, 0x00, 0x00, 0x00, 0x08, 0x3a, 0xff,
0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xfb, 0x57, 0x1d, 0xea, 0x9c, 0x39, 0x8f, 0xb7,
0xff, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02,
0x85, 0x00, 0x38, 0x04, 0x00, 0x00, 0x00, 0x00,
}
var ipv6PacketDecode = ParsedPacket{
IPProto: IPv6,
}
// This is a malformed IPv4 packet.
// Namely, the string "tcp_payload" follows the first byte of the IPv4 header.
var unknownPacketBuffer = []byte{
0x45, 0x74, 0x63, 0x70, 0x5f, 0x70, 0x61, 0x79, 0x6c, 0x6f, 0x61, 0x64,
}
var unknownPacketDecode = ParsedPacket{
IPProto: Unknown,
}
var tcpPacketBuffer = []byte{
// IP header up to checksum
0x45, 0x00, 0x00, 0x37, 0xde, 0xad, 0x00, 0x00, 0x40, 0x06, 0x49, 0x5f,
// source ip
0x01, 0x02, 0x03, 0x04,
// destination ip
0x05, 0x06, 0x07, 0x08,
// TCP header with SYN, ACK set
0x00, 0x7b, 0x02, 0x37, 0x00, 0x00, 0x12, 0x34, 0x00, 0x00, 0x00, 0x00,
0x50, 0x12, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
// "request_payload"
0x72, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x5f, 0x70, 0x61, 0x79, 0x6c, 0x6f, 0x61, 0x64,
}
var tcpPacketDecode = ParsedPacket{
b: tcpPacketBuffer,
subofs: 20,
dataofs: 40,
length: len(tcpPacketBuffer),
IPProto: TCP,
SrcIP: NewIP(net.ParseIP("1.2.3.4")),
DstIP: NewIP(net.ParseIP("5.6.7.8")),
SrcPort: 123,
DstPort: 567,
TCPFlags: TCPSynAck,
}
var udpRequestBuffer = []byte{
// IP header up to checksum
0x45, 0x00, 0x00, 0x2b, 0xde, 0xad, 0x00, 0x00, 0x40, 0x11, 0x8c, 0x01,
// source ip
0x01, 0x02, 0x03, 0x04,
// destination ip
0x05, 0x06, 0x07, 0x08,
// UDP header
0x00, 0x7b, 0x02, 0x37, 0x00, 0x17, 0x72, 0x1d,
// "request_payload"
0x72, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x5f, 0x70, 0x61, 0x79, 0x6c, 0x6f, 0x61, 0x64,
}
var udpRequestDecode = ParsedPacket{
b: udpRequestBuffer,
subofs: 20,
dataofs: 28,
length: len(udpRequestBuffer),
IPProto: UDP,
SrcIP: NewIP(net.ParseIP("1.2.3.4")),
DstIP: NewIP(net.ParseIP("5.6.7.8")),
SrcPort: 123,
DstPort: 567,
}
var udpReplyBuffer = []byte{
// IP header up to checksum
0x45, 0x00, 0x00, 0x29, 0x21, 0x52, 0x00, 0x00, 0x40, 0x11, 0x49, 0x5f,
// source ip
0x05, 0x06, 0x07, 0x08,
// destination ip
0x01, 0x02, 0x03, 0x04,
// UDP header
0x02, 0x37, 0x00, 0x7b, 0x00, 0x15, 0xd3, 0x9d,
// "reply_payload"
0x72, 0x65, 0x70, 0x6c, 0x79, 0x5f, 0x70, 0x61, 0x79, 0x6c, 0x6f, 0x61, 0x64,
}
var udpReplyDecode = ParsedPacket{
b: udpReplyBuffer,
subofs: 20,
dataofs: 28,
length: len(udpReplyBuffer),
IPProto: UDP,
SrcIP: NewIP(net.ParseIP("1.2.3.4")),
DstIP: NewIP(net.ParseIP("5.6.7.8")),
SrcPort: 567,
DstPort: 123,
}
func TestParsedPacket(t *testing.T) {
tests := []struct {
name string
qdecode ParsedPacket
want string
}{
{"tcp", tcpPacketDecode, "TCP{1.2.3.4:123 > 5.6.7.8:567}"},
{"icmp", icmpRequestDecode, "ICMP{1.2.3.4:0 > 5.6.7.8:0}"},
{"unknown", unknownPacketDecode, "Unknown{???}"},
{"ipv6", ipv6PacketDecode, "IPv6{???}"},
}
got := q.String()
want := "TCP{1.2.3.4:123 > 5.6.7.8:567}"
if got != want {
t.Errorf("got %q; want %q", got, want)
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := tt.qdecode.String()
if got != tt.want {
t.Errorf("got %q; want %q", got, tt.want)
}
})
}
allocs := testing.AllocsPerRun(1000, func() {
got = q.String()
tests[0].qdecode.String()
})
if allocs != 1 {
t.Errorf("allocs = %v; want 1", allocs)
}
}
func TestDecode(t *testing.T) {
tests := []struct {
name string
buf []byte
want ParsedPacket
}{
{"icmp", icmpRequestBuffer, icmpRequestDecode},
{"ipv6", ipv6PacketBuffer, ipv6PacketDecode},
{"unknown", unknownPacketBuffer, unknownPacketDecode},
{"tcp", tcpPacketBuffer, tcpPacketDecode},
{"udp", udpRequestBuffer, udpRequestDecode},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
var got ParsedPacket
got.Decode(tt.buf)
if !reflect.DeepEqual(got, tt.want) {
t.Errorf("got %v; want %v", got, tt.want)
}
})
}
allocs := testing.AllocsPerRun(1000, func() {
var got ParsedPacket
got.Decode(tests[0].buf)
})
if allocs != 0 {
t.Errorf("allocs = %v; want 0", allocs)
}
}
func BenchmarkDecode(b *testing.B) {
benches := []struct {
name string
buf []byte
}{
{"icmp", icmpRequestBuffer},
{"unknown", unknownPacketBuffer},
{"tcp", tcpPacketBuffer},
}
for _, bench := range benches {
b.Run(bench.name, func(b *testing.B) {
for i := 0; i < b.N; i++ {
var p ParsedPacket
p.Decode(bench.buf)
}
})
}
}
func TestMarshalRequest(t *testing.T) {
// Too small to hold our packets, but only barely.
var small [20]byte
var large [64]byte
icmpHeader := icmpRequestDecode.ICMPHeader()
udpHeader := udpRequestDecode.UDPHeader()
tests := []struct {
name string
header Header
want []byte
}{
{"icmp", &icmpHeader, icmpRequestBuffer},
{"udp", &udpHeader, udpRequestBuffer},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
err := tt.header.Marshal(small[:])
if err != errSmallBuffer {
t.Errorf("got err: nil; want: %s", errSmallBuffer)
}
dataOffset := tt.header.Len()
dataLength := copy(large[dataOffset:], []byte("request_payload"))
end := dataOffset + dataLength
err = tt.header.Marshal(large[:end])
if err != nil {
t.Errorf("got err: %s; want nil", err)
}
if !bytes.Equal(large[:end], tt.want) {
t.Errorf("got %x; want %x", large[:end], tt.want)
}
})
}
}
func TestMarshalResponse(t *testing.T) {
var buf [64]byte
icmpHeader := icmpRequestDecode.ICMPHeader()
udpHeader := udpRequestDecode.UDPHeader()
tests := []struct {
name string
header Header
want []byte
}{
{"icmp", &icmpHeader, icmpReplyBuffer},
{"udp", &udpHeader, udpReplyBuffer},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
tt.header.ToResponse()
dataOffset := tt.header.Len()
dataLength := copy(buf[dataOffset:], []byte("reply_payload"))
end := dataOffset + dataLength
err := tt.header.Marshal(buf[:end])
if err != nil {
t.Errorf("got err: %s; want nil", err)
}
if !bytes.Equal(buf[:end], tt.want) {
t.Errorf("got %x; want %x", buf[:end], tt.want)
}
})
}
}

@ -0,0 +1,53 @@
// Copyright (c) 2020 Tailscale Inc & AUTHORS All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
// UDPHeader represents an UDP packet header.
type UDPHeader struct {
IPHeader
SrcPort uint16
DstPort uint16
}
const (
udpHeaderLength = 8
// udpTotalHeaderLength is the length of all headers in a UDP packet.
udpTotalHeaderLength = ipHeaderLength + udpHeaderLength
)
func (UDPHeader) Len() int {
return udpTotalHeaderLength
}
func (h UDPHeader) Marshal(buf []byte) error {
if len(buf) < udpTotalHeaderLength {
return errSmallBuffer
}
if len(buf) > maxPacketLength {
return errLargePacket
}
// The caller does not need to set this.
h.IPProto = UDP
length := len(buf) - h.IPHeader.Len()
put16(buf[20:22], h.SrcPort)
put16(buf[22:24], h.DstPort)
put16(buf[24:26], uint16(length))
put16(buf[26:28], 0) // blank checksum
h.IPHeader.MarshalPseudo(buf)
// UDP checksum with IP pseudo header.
put16(buf[26:28], ipChecksum(buf[8:]))
h.IPHeader.Marshal(buf)
return nil
}
func (h *UDPHeader) ToResponse() {
h.SrcPort, h.DstPort = h.DstPort, h.SrcPort
h.IPHeader.ToResponse()
}

@ -176,10 +176,11 @@ func (t *TUN) filterOut(buf []byte) filter.Response {
return filter.Drop
}
var q packet.QDecode
if filt.RunOut(buf, &q, t.filterFlags) == filter.Accept {
var p packet.ParsedPacket
if filt.RunOut(buf, &p, t.filterFlags) == filter.Accept {
return filter.Accept
}
return filter.Drop
}
@ -218,13 +219,15 @@ func (t *TUN) filterIn(buf []byte) filter.Response {
return filter.Drop
}
var q packet.QDecode
if filt.RunIn(buf, &q, t.filterFlags) == filter.Accept {
var p packet.ParsedPacket
if filt.RunIn(buf, &p, t.filterFlags) == filter.Accept {
// Only in fake mode, answer any incoming pings.
if q.IsEchoRequest() {
if p.IsEchoRequest() {
ft, ok := t.tdev.(*fakeTUN)
if ok {
packet := q.EchoRespond()
header := p.ICMPHeader()
header.ToResponse()
packet := packet.Generate(&header, p.Payload())
ft.Write(packet, 0)
// We already handled it, stop.
return filter.Drop
@ -232,6 +235,7 @@ func (t *TUN) filterIn(buf []byte) filter.Response {
}
return filter.Accept
}
return filter.Drop
}

@ -284,6 +284,14 @@ func (p *pinger) run(ctx context.Context, peerKey wgcfg.Key, ips []wgcfg.IP, src
close(p.done)
}()
header := packet.ICMPHeader{
IPHeader: packet.IPHeader{
SrcIP: srcIP,
},
Type: packet.ICMPEchoRequest,
Code: packet.ICMPNoCode,
}
// sendFreq is slightly longer than sprayFreq in magicsock to ensure
// that if these ping packets are the only source of early packets
// sent to the peer, that each one will be sprayed.
@ -298,7 +306,7 @@ func (p *pinger) run(ctx context.Context, peerKey wgcfg.Key, ips []wgcfg.IP, src
payload := []byte("magicsock_spray") // no meaning
ipid := uint16(1)
header.IPID = 1
t := time.NewTicker(sendFreq)
defer t.Stop()
for {
@ -311,12 +319,13 @@ func (p *pinger) run(ctx context.Context, peerKey wgcfg.Key, ips []wgcfg.IP, src
return
}
for _, dstIP := range dstIPs {
b := packet.GenICMP(srcIP, dstIP, ipid, packet.ICMPEchoRequest, 0, payload)
header.DstIP = dstIP
// InjectOutbound take ownership of the packet, so we allocate.
b := packet.Generate(&header, payload)
p.e.tundev.InjectOutbound(b)
}
ipid++
header.IPID++
}
}
// pinger sends ping packets for a few seconds.

Loading…
Cancel
Save