.. image:: images/ansible/cell_division.png
:align: right
Mitogen for Ansible
===================
An extension to `Ansible`_ is included that implements connections over
Mitogen, replacing embedded shell invocations with pure-Python equivalents
invoked via highly efficient remote procedure calls to persistent interpreters
tunnelled over SSH. No changes are required to target hosts.
The extension is approaching stability and real-world testing is now
encouraged. `Bug reports`_ are welcome: Ansible is huge, and only wide testing
will ensure soundness.
.. _Ansible: https://www.ansible.com/
.. _Bug reports: https://goo.gl/yLKZiJ
Overview
--------
**Expect a 1.25x - 7x speedup** and a **CPU usage reduction of at least 2x**,
depending on network conditions, modules executed, and time already spent by
targets on useful work. Mitogen cannot improve a module once it is executing,
it can only ensure the module executes as quickly as possible.
* **One connection is used per target**, in addition to one sudo invocation per
user account. This is much better than SSH multiplexing combined with
pipelining, as significant state can be maintained in RAM between steps, and
system logs aren't spammed with repeat authentication events.
* **A single network roundtrip is used** to execute a step whose code already
exists in RAM on the target. Eliminating multiplexed SSH channel creation
saves 4 ms runtime per 1 ms of network latency for every playbook step.
* **Processes are aggressively reused**, avoiding the cost of invoking Python
and recompiling imports, saving 300-800 ms for every playbook step.
* Code is ephemerally cached in RAM, **reducing bandwidth usage by an order
of magnitude** compared to SSH pipelining, with around 5x fewer frames
traversing the network in a typical run.
* **Fewer writes to the target filesystem occur**. In typical configurations,
Ansible repeatedly rewrites and extracts ZIP files to multiple temporary
directories on the target. Security issues relating to temporarily files in
cross-account scenarios are entirely avoided.
Installation
------------
1. Thoroughly review the documented behavioural differences.
2. Verify Ansible 2.3/2.4/2.5 and Python 2.7 are listed in ``ansible --version``
output.
3. Download and extract https://github.com/dw/mitogen/archive/master.zip
4. Modify ``ansible.cfg``:
.. code-block:: dosini
[defaults]
strategy_plugins = /path/to/mitogen-master/ansible_mitogen/plugins/strategy
strategy = mitogen_linear
The ``strategy`` key is optional. If omitted, the
``ANSIBLE_STRATEGY=mitogen_linear`` environment variable can be set on a
per-run basis. Like ``mitogen_linear``, the ``mitogen_free`` strategy exists
to mimic the ``free`` strategy.
5. If targets have a restrictive ``sudoers`` file, add a rule like:
.. code-block:: plain
deploy = (ALL) NOPASSWD:/usr/bin/python -c*
Demo
~~~~
This demonstrates Ansible running a subset of the Mitogen integration tests
concurrent to an equivalent run using the extension.
.. raw:: html
Testimonials
~~~~~~~~~~~~
* "With mitogen **my playbook runtime went from 45 minutes to just under 3
minutes**. Awesome work!"
* "The runtime was reduced from **1.5 hours on 4 servers to just under 3
minutes**. Thanks!"
* "Oh, performance improvement using Mitogen is *huge*. As mentioned before,
running with Mitogen enables takes 7m36 (give or take a few seconds). Without
Mitogen, the same run takes 19m49! **I'm not even deploying without Mitogen
anymore** :)"
* "**Works like a charm**, thank you for your quick response"
* "I tried it out. **He is not kidding about the speed increase**."
* "I don't know what kind of dark magic @dmw_83 has done, but his Mitogen
strategy took Clojars' Ansible runs from **14 minutes to 2 minutes**. I still
can't quite believe it."
Noteworthy Differences
----------------------
* Ansible 2.3, 2.4 and 2.5 are supported on Python 2.7.
* The ``su`` and ``sudo`` become methods are available. File bugs to register
interest in more.
* The `docker `_,
`jail `_,
`local `_,
`lxc `_,
`lxd `_,
and `ssh `_
built-in connection types are supported, along with Mitogen-specific
:ref:`machinectl `, :ref:`mitogen_su `, :ref:`mitogen_sudo
`, and :ref:`setns ` types. File bugs to register interest in
others.
* Local commands execute in a reuseable interpreter created identically to
interpreters on targets. Presently one interpreter per ``become_user``
exists, and so only one local action may execute simultaneously.
Ansible usually permits up to ``forks`` simultaneous local actions. Any
long-running local actions that execute for every target will experience
artificial serialization, causing slowdown equivalent to `task_duration *
num_targets`. This will be fixed soon.
* Asynchronous jobs presently exist only for the duration of a run, and time
limits are not implemented.
* "Module Replacer" style modules are not supported. These rarely appear in
practice, and light web searches failed to reveal many examples of them.
* Ansible permits up to ``forks`` connections to be setup in parallel, whereas
in Mitogen this is handled by a fixed-size thread pool. Up to 16 connections
may be established in parallel by default, this can be modified by setting
the ``MITOGEN_POOL_SIZE`` environment variable.
* Performance does not scale perfectly linearly with target count. This will
improve over time.
* SSH and ``become`` are treated distinctly when applying timeouts, and
timeouts apply up to the point when the new interpreter is ready to accept
messages. Ansible has two timeouts: ``ConnectTimeout`` for SSH, applying up
to when authentication completes, and a separate parallel timeout up to when
``become`` authentication completes.
For busy targets, Ansible may successfully execute a module where Mitogen
would fail without increasing the timeout. For sick targets, Ansible may hang
indefinitely after authentication without executing a command, for example
due to a stuck filesystem IO appearing in ``$HOME/.profile``.
New Features & Notes
--------------------
Connection Delegation
~~~~~~~~~~~~~~~~~~~~~
.. image:: images/jumpbox.png
:align: right
Included is a preview of **Connection Delegation**, a Mitogen-specific
implementation of `stackable connection plug-ins`_. This enables connections
via a bastion, or container connections delegated via their host machine, where
reaching the host may entail further delegation.
.. _Stackable connection plug-ins: https://github.com/ansible/proposals/issues/25
Unlike with SSH forwarding Ansible has complete visibility of the final
topology, declarative configuration via static/dynamic inventory is possible,
and data can be cached and re-served, and code executed on every intermediary.
For example when targeting Docker containers on a remote machine, each module
need only be uploaded once for the first task and container that requires it,
then cached and served from the SSH account for every future task in any
container.
.. raw:: html
.. caution::
Connection delegation is a work in progress, bug reports are welcome.
* While imports are cached on intermediaries, module scripts are needlessly
reuploaded for each target. Fixing this is equivalent to implementing
**Topology-Aware File Synchronization**, so it may remain unfixed until
that feature is started.
* Delegated connection setup is single-threaded; only one connection can be
constructed in parallel per intermediary.
* Inferring the configuration of intermediaries may be buggy, manifesting
as duplicate connections between hops, due to not perfectly replicating
the configuration Ansible would normally use for the intermediary.
To enable connection delegation, set ``mitogen_via=`` on the
command line, or as host and group variables.
.. code-block:: ini
# Docker container on web1.dc1 is reachable via web1.dc1.
[app-containers.web1.dc1]
app1.web1.dc1 ansible_host=app1 ansible_connection=docker mitogen_via=web1.dc1
# Web servers in DC1 are reachable via bastion.dc1
[dc1]
web1.dc1
web2.dc1
web3.dc1
[dc1:vars]
mitogen_via = bastion.dc1
# Web servers in DC2 are reachable via bastion.dc2
[dc2]
web1.dc2
web2.dc2
web3.dc2
[dc2:vars]
mitogen_via = bastion.dc2
# Prod bastions are reachable via a magic account on a
# corporate network gateway.
[bastions]
bastion.dc1 mitogen_via=prod-ssh-access@corp-gateway.internal
bastion.dc2 mitogen_via=prod-ssh-access@corp-gateway.internal
[corp-gateway]
corp-gateway.internal
File Transfer
~~~~~~~~~~~~~
Normally `sftp `_ or
`scp `_ are used to copy files by the
`assemble `_,
`copy `_,
`patch `_,
`script `_,
`template `_, and
`unarchive `_
actions, or when uploading modules with pipelining disabled. With Mitogen
copies are implemented natively using the same interpreters, connection tree,
and routed message bus that carries RPCs.
This permits direct streaming between endpoints regardless of execution
environment, without necessitating temporary copies in intermediary accounts or
machines, for example when ``become`` is active, or in the presence of
connection delegation. It also avoids the need to securely share temporary
files between accounts and machines.
As the implementation is self-contained, it is simple to make improvements like
prioritizing transfers, supporting resume, or displaying progress bars.
Safety
^^^^^^
Transfers proceed to a hidden file in the destination directory, with content
and metadata synced using `fsync(2) `_ prior
to rename over any existing file. This ensures the file remains consistent at
all times, in the event of a crash, or when overlapping `ansible-playbook` runs
deploy differing file contents.
The `sftp `_ and `scp
`_ tools may cause undetected data corruption
in the form of truncated files, or files containing intermingled data segments
from overlapping runs. As part of normal operation, both tools expose a window
where readers may observe inconsistent file contents.
Performance
^^^^^^^^^^^
One roundtrip initiates a transfer larger than 32KiB, while smaller transfers
are embedded in the initiating RPC. For tools operating via SSH multiplexing, 4
roundtrips are required to configure the IO channel, in addition to the time to
start the local and remote processes.
An invocation of ``scp`` with an empty ``.profile`` over a 30 ms link takes
~140 ms, wasting 110 ms per invocation, rising to ~2,000 ms over a 400 ms
UK-India link, wasting 1,600 ms per invocation.
Interpreter Reuse
~~~~~~~~~~~~~~~~~
Python interpreters are aggressively reused to execute modules. While this
works well, it violates an unwritten assumption, and so it is possible an
earlier module execution could cause a subsequent module to fail, or for
unrelated modules to interact poorly due to bad hygiene, such as
monkey-patching that becomes stacked over repeat invocations.
Before reporting a bug relating to a misbehaving module, please re-run with
``-e mitogen_task_isolation=fork`` to see if the problem abates. This may be
set per-task, paying attention to the possibility an earlier task may be the
true cause of a failure.
.. code-block:: yaml
- name: My task.
broken_module:
some_option: true
vars:
mitogen_task_isolation: fork
If forking solves your problem, **please report a bug regardless**, as an
internal list can be updated to prevent others bumping into the same problem.
Interpreter Recycling
~~~~~~~~~~~~~~~~~~~~~
There is a per-target limit on the number of interpreters. Once 20 exist, the
youngest is terminated before starting any new interpreter, preventing
situations like below from triggering memory exhaustion.
.. code-block:: yaml
- hosts: corp_boxes
vars:
user_directory: [
# 10,000 corporate user accounts
]
tasks:
- name: Create user bashrc
become: true
vars:
ansible_become_user: "{{item}}"
copy:
src: bashrc
dest: "~{{item}}/.bashrc"
with_items: "{{user_directory}}"
The youngest is chosen to preserve useful accounts like ``root`` and
``postgresql`` that often appear early in a run, however it is simple to
construct a playbook that defeats this strategy. A future version will key
interpreters on the identity of their creating task, avoiding useful account
recycling in every scenario.
To modify the limit, set the ``MITOGEN_MAX_INTERPRETERS`` environment variable.
Standard IO
~~~~~~~~~~~
Ansible uses pseudo TTYs for most invocations to allow it to type interactive
passwords, however pseudo TTYs are disabled where standard input is required or
``sudo`` is not in use. Additionally when SSH multiplexing is enabled, a string
like ``Shared connection to localhost closed\r\n`` appears in ``stderr`` of
every invocation.
Mitogen does not naturally require either of these, as command output is always
embedded within framed messages, and it can simply call :py:func:`pty.openpty`
in any location an interactive password must be typed.
A major downside to Ansible's behaviour is that ``stdout`` and ``stderr`` are
merged together into a single ``stdout`` variable, with carriage returns
inserted in the output by the TTY layer. However ugly, the extension emulates
this precisely, to avoid breaking playbooks that expect text to appear in
specific variables with a particular linefeed style.
How Modules Execute
~~~~~~~~~~~~~~~~~~~
Ansible usually modifies, recompresses and reuploads modules every time they
run on a target, work that must be repeated by the controller for every
playbook step.
With the extension any modifications are done on the target, allowing pristine
copies of modules to be cached, reducing the necessity to re-transfer modules
for each invocation. Unmodified modules are uploaded once on first use and
cached in RAM for the remainder of the run.
**Binary**
Native executables detected using a complex heuristic. Arguments are
supplied as a JSON file whose path is the sole script parameter.
**Module Replacer**
Python scripts detected by the presence of
``#<>`` appearing in their source. This type
is not yet supported.
**New-Style**
Python scripts detected by the presence of ``from ansible.module_utils.``
appearing in their source. Arguments are supplied as JSON written to
``sys.stdin`` of the target interpreter.
**JSON_ARGS**
Detected by the presence of ``INCLUDE_ANSIBLE_MODULE_JSON_ARGS`` appearing
in the script source. The interpreter directive (``#!interpreter``) is
adjusted to match the corresponding value of ``{{ansible_*_interpreter}}``
if one is set. Arguments are supplied as JSON mixed into the script as a
replacement for ``INCLUDE_ANSIBLE_MODULE_JSON_ARGS``.
**WANT_JSON**
Detected by the presence of ``WANT_JSON`` appearing in the script source.
The interpreter directive is adjusted as above. Arguments are supplied as a
JSON file whose path is the sole script parameter.
**Old Style**
Files not matching any of the above tests. The interpreter directive is
adjusted as above. Arguments are supplied as a file whose path is the sole
script parameter. The format of the file is ``"key=repr(value)[
key2=repr(value2)[ ..]] "``.
Runtime Patches
~~~~~~~~~~~~~~~
Three small runtime patches are employed in ``strategy.py`` to hook into
desirable locations, in order to override uses of shell, the module executor,
and the mechanism for selecting a connection plug-in. While it is hoped the
patches can be avoided in future, for interesting versions of Ansible deployed
today this simply is not possible, and so they continue to be required.
The patches are concise and behave conservatively, including by disabling
themselves when non-Mitogen connections are in use. Additional third party
plug-ins are unlikely to attempt similar patches, so the risk to an established
configuration should be minimal.
Flag Emulation
~~~~~~~~~~~~~~
Mitogen re-parses ``sudo_flags``, ``become_flags``, and ``ssh_flags`` using
option parsers extracted from `sudo(1)` and `ssh(1)` in order to emulate their
equivalent semantics. This allows:
* robust support for common ``ansible.cfg`` tricks without reconfiguration,
such as forwarding SSH agents across ``sudo`` invocations,
* reporting on conflicting flag combinations,
* reporting on unsupported flag combinations,
* internally special-casing certain behaviour (like recursive agent forwarding)
without boring the user with the details,
* avoiding opening the extension up to untestable scenarios where users can
insert arbitrary garbage between Mitogen and the components it integrates
with,
* precise emulation by an alternative implementation, for example if Mitogen
grew support for Paramiko.
Connection Types
----------------
Matching Ansible, connection variables are treated on a per-task basis, causing
establishment of additional reuseable interpreters as necessary to match the
configuration of each task.
.. _method-docker:
Docker
~~~~~~
Like `docker
`_ except
connection delegation is supported.
* ``ansible_host``: Name of Docker container (default: inventory hostname).
* ``ansible_user``: Name of user within the container to execute as.
.. _machinectl:
Machinectl
~~~~~~~~~~
Like the `machinectl third party plugin
`_ except
connection delegation is supported. This is a light wrapper around the
:ref:`setns ` method.
* ``ansible_host``: Name of Docker container (default: inventory hostname).
* ``ansible_user``: Name of user within the container to execute as.
* ``mitogen_machinectl_path``: path to ``machinectl`` command if not available
as ``/bin/machinectl``.
FreeBSD Jail
~~~~~~~~~~~~
Like `jail
`_ except
connection delegation is supported.
* ``ansible_host``: Name of jail (default: inventory hostname).
* ``ansible_user``: Name of user within the jail to execute as.
Local
~~~~~
Like `local
`_ except
connection delegation is supported.
* ``ansible_python_interpreter``
.. _method-lxc:
LXC
~~~
Like `lxc `_
and `lxd `_
except connection delegation is supported, and ``lxc-attach`` is always used
rather than the LXC Python bindings, as is usual with ``lxc``.
The ``lxc-attach`` command must be available on the host machine.
* ``ansible_python_interpreter``
* ``ansible_host``: Name of LXC container (default: inventory hostname).
.. _setns:
Setns
~~~~~
The ``setns`` method connects to Linux containers via `setns(2)
`_. Unlike :ref:`method-docker` and
:ref:`method-lxc` the namespace transition is handled internally, ensuring
optimal throughput to the child. This is necessary for :ref:`machinectl` where
only PTY channels are supported.
A utility program must be installed to discover the PID of the container's root
process.
* ``mitogen_kind``: one of ``docker``, ``lxc`` or ``machinectl``.
* ``ansible_host``: Name of container as it is known to the corresponding tool
(default: inventory hostname).
* ``ansible_user``: Name of user within the container to execute as.
* ``mitogen_docker_path``: path to Docker if not available on the system path.
* ``mitogen_lxc_info_path``: path to ``lxc-info`` command if not available as
``/usr/bin/lxc-info``.
* ``mitogen_machinectl_path``: path to ``machinectl`` command if not available
as ``/bin/machinectl``.
.. _su:
Su
~~
Su can be used as a connection method that supports connection delegation, or
as a become method.
When used as a become method:
* ``ansible_python_interpreter``
* ``ansible_su_exe``, ``ansible_become_exe``
* ``ansible_su_user``, ``ansible_become_user`` (default: ``root``)
* ``ansible_su_pass``, ``ansible_become_pass`` (default: assume passwordless)
* ``su_flags``, ``become_flags``
* ansible.cfg: ``timeout``
When used as the ``mitogen_su`` connection method:
* The inventory hostname has no special meaning.
* ``ansible_user``: username to su as.
* ``ansible_password``: password to su as.
* ``ansible_python_interpreter``
.. _sudo:
Sudo
~~~~
Sudo can be used as a connection method that supports connection delegation, or
as a become method.
When used as a become method:
* ``ansible_python_interpreter``
* ``ansible_sudo_exe``, ``ansible_become_exe``
* ``ansible_sudo_user``, ``ansible_become_user`` (default: ``root``)
* ``ansible_sudo_pass``, ``ansible_become_pass`` (default: assume passwordless)
* ``sudo_flags``, ``become_flags``
* ansible.cfg: ``timeout``
When used as the ``mitogen_sudo`` connection method:
* The inventory hostname has no special meaning.
* ``ansible_user``: username to sudo as.
* ``ansible_password``: password to sudo as.
* ``sudo_flags``, ``become_flags``
* ``ansible_python_interpreter``
SSH
~~~
Like `ssh `_
except connection delegation is supported.
* ``ansible_ssh_timeout``
* ``ansible_host``, ``ansible_ssh_host``
* ``ansible_user``, ``ansible_ssh_user``
* ``ansible_port``, ``ssh_port``
* ``ansible_ssh_executable``, ``ssh_executable``
* ``ansible_ssh_private_key_file``
* ``ansible_ssh_pass``, ``ansible_password`` (default: assume passwordless)
* ``ssh_args``, ``ssh_common_args``, ``ssh_extra_args``
Debugging
---------
Diagnostics and use of the :py:mod:`logging` package output on the target
machine are usually discarded. With Mitogen, all of this is captured and
returned to the controller, where it can be viewed as desired with ``-vvv``.
Basic high level logs are produced with ``-vvv``, with logging of all IO on the
controller with ``-vvvv`` or higher.
Although use of standard IO and the logging package on the target is forwarded
to the controller, it is not possible to receive IO activity logs, as the
processs of receiving those logs would would itself generate IO activity. To
receive a complete trace of every process on every machine, file-based logging
is necessary. File-based logging can be enabled by setting
``MITOGEN_ROUTER_DEBUG=1`` in your environment.
When file-based logging is enabled, one file per context will be created on the
local machine and every target machine, as ``/tmp/mitogen..log``.
Getting Help
~~~~~~~~~~~~
Some users and developers hang out on the
`#mitogen `_ channel on the
FreeNode IRC network.
Sample Profiles
---------------
Local VM connection
~~~~~~~~~~~~~~~~~~~
This demonstrates Mitogen vs. connection pipelining to a local VM, executing
the 100 simple repeated steps of ``run_hostname_100_times.yml`` from the
examples directory. Mitogen requires **43x less bandwidth and 4.25x less
time**.
.. image:: images/ansible/run_hostname_100_times.png
Kathmandu to Paris
~~~~~~~~~~~~~~~~~~
This is a full Django application playbook over a ~180ms link between Kathmandu
and Paris. Aside from large pauses where the host performs useful work, the
high latency of this link means Mitogen only manages a 1.7x speedup.
Many early roundtrips are due to inefficiencies in Mitogen's importer that will
be fixed over time, however the majority, comprising at least 10 seconds, are
due to idling while the host's previous result and next command are in-flight
on the network.
The initial extension lays groundwork for exciting structural changes to the
execution model: a future version will tackle latency head-on by delegating
some control flow to the target host, melding the performance and scalability
benefits of pull-based operation with the management simplicity of push-based
operation.
.. image:: images/ansible/costapp.png