* Use identical logic to select when stdout/stderr are merged, so
'stdout', 'stdout_lines', 'stderr', 'stderr_lines' contain the same
output before/after the extension.
* When stdout/stderr are merged, synthesize carriage returns just like
the TTY layer.
* Mimic the SSH connection multiplexing message on stderr. Not really
for user code, but so compare_output_test.sh needs fewer fixups.
This permits graceful shutdown of individual contexts, without tearing
down everything.
Update mitogen.parent.Stream to also wait for the child to exit, to
prevent the buildup of zombie processes. This introduces a blocking wait
for process exit on the Broker thread, let's see if we can get away with
it. Chances are reasonable that it'll cause needless hangs on heavily
loaded machines.
The Context and Router APIs for constructing children and making
function calls should be available in every parent context, as user code
wants to have access to the same API.
* IDs are allocated by the parent responsible for contructing a new
child, using ALLOCATE_ID to the master as necessary to allocate new ID
ranges.
* ADD_ROUTE is sent up the tree rather than down. This permits
construction of the new context to complete concurrent to parent
contexts learning about its existence. Since all streams are strictly
ordered, it's not possible for any parent to observe messages from the
new context prior to arrival of an ADD_ROUTE from the parent notifying
of its existence.
If the new context, for example, implements an Ansible async task, its
parent can start executing that without waiting for any synchronous
confirmation from any parent or the master.
* Since routes propagate up, it's no longer possible for a plain
non-parent child to ever receive ADD_ROUTE, so that code can be moved
out of core.py and into parent.py (-0.2kb compressed).
* Add a .routes attribute to parent.Stream, and respond to disconnection
signal on the stream by propagating DEL_ROUTE for any ADD_ROUTE ever
received from that stream.
* Centralize route management in a new parent.RouteMonitor class
* Don't need to sleep if queue>sleepers, can just pop the right queue
element and return it.
* If queue>sleeping and waking==sleeping, no mechanism existed to ensure
a thread newly added to sleeping would ever be woken. Above change
fixes that.
* Cannot trust select() return value, scheduler might sleep us
indefinitely while put() writes a byte.
* Sleeping threads didn't pop FIFO, they popped in whatever order
scheduler woke them up. Must recover index and use it to pick the pop
index.