When running any kind of script, rewrite the hashbang like Ansible does,
but subsequently ignore it and explicitly use a fragment of shell from
the ansible_*_interpreter variable to call the interpreter, just like
Ansible does.
This fixes hashbangs containing '/usr/bin/env A=1 bash' on Linux, where
putting that into a hashbang line results in an infinite loop.
* ansible: use unicode_literals everywhere since it only needs to be
compatible back to 2.6.
* compat/collections.py: delete this entirely and rip out the parts of
functools that require it.
* Introduce serializable Kwargs dict subclass that translates keys to
Unicode on instantiation.
* enable_debug_logging() must set _v/_vv globals.
* cStringIO does not exist in 3.x.
* Treat IOLogger and LogForwarder input as latin-1.
* Avoid ResourceWarnings in first stage by explicitly closing fps.
* Fix preamble_size.py syntax errors.
The controller must know the ID of the forked child in order to
propagate dependencies to it, so forking+starting the module run cannot
happen entirely on the target, without some additional mechanism to
wait-and-repropagate the deps as they arrive on the target.
Rework things so that init_child() also handles starting the fork parent,
and returns it along with the context's home directory in a single round
trip.
Now master knows the identity of the fork parent, it can directly create
fork children and call run_module_async() in them. This necessitates 2
roundtrips to start an asynchronous task.
This whole thing sucks and entirely needs simplified, but for now things
almost work, so keeping it.
connection.py:
* Expect ContextService to return the entire dict return value of
init_child(). Store the fork_contxt from the return value.
planner.py:
* Rework Planner to store the invocation as an instance attribute, to
simplify method calls.
* Add Planner.get_push_files() and Planner.get_module_deps().
* Add _propagate_deps() which takes a Planner and ensures the deps it
describes are sent to a (non forked or forked) context.
* Move async task logic out of target.py and into invoke() /
_invoke_*().
process.py:
* Services no longer need references to each other. planner.py handles
sending module deps with one extra RPC.
services.py:
* Return "init_child_result" key instead of simple "home_dir" key.
* Get rid of dep propagation from ModuleDepService, it lives in
planner.py now.
target.py:
* Get rid of async task start logic, lives in planner.py now.
Ideally it would be possible to specify a callback function, but this is
not possible for proxied connections. So simply provide the 3 most
useful modes, defaulting to the most secure.
Closes#127. Closes#134.
This implements the first edition of Connection Delegation, where
delegating connection establishment is initially single-threaded.
ansible_mitogen/strategy.py:
ansible_mitogen/plugins/connection/*:
Begin splitting connection.Connection into subclasses, exposing them
directly as "mitogen_ssh", "mitogen_local", etc. connection types.
This is far from removing strategy.py, but it's a tiny start.
ansible_mitogen/connection.py:
* config_from_play_context() and config_from_host_vars() build up a
huge dictionary containing either more or less PlayContext contents,
or our best attempt at reconstructing a host's connection config
from its hostvars, where that config is not the current
WorkerProcess target.
They both produce the same format with the same keys, allowing
remaining code to have a single input format.
These dicts contain fields named after how Ansible refers to them,
e.g. "sudo_exe".
* _config_from_via() parses a basic connection specification like
"username@inventory_name" into one of the aforementioned dicts.
* _stack_from_config() produces a list of dicts describing the order
in which (Mitogen) connections should be established, such that each
element is proxied via= the previous element. The dicts produced by
this function use Mitogen keyword arguments, the former di.
These dicts contain fields named after how Mitogen refers to them,
e.g. "sudo_path".
* Pass the stack to ContextService, which is responsible for actual
setup of the full chain.
ansible_mitogen/services.py:
Teach get() to walk the supplied stack, establishing each connection
in turn, creating refounts for it before continuing.
TODO: refcounting is broken in a variety of cases.
Now Connection.close() *must* be called in the worker, to ensure the
reference count for a context drops correctly.
Remove 'discriminator' for now, I'm not using it for testing any more
and it complicated this code.
This code is a car crash, it needs rewritten again. Ideally some/most of
this behaviour could live on services.DeduplicatingService somehow, but
I couldn't come up with a sensible design.
Elements of a with_items loop reuse one WorkerProcess to execute every
iteration, requiring us to reset Connection's idea of the connection on
each iteration, otherwise the tasks will erroneously execute in the
wrong context.
Closes#105.
References #155.
mitogen/service.py:
Refactor services to support individually exposed methods with
different security policies for each method.
- @mitogen.service.expose() to expose a method and set its policy
- @mitogen.service.arg_spec() to validate input.
- Require basic service message format to be a tuple of
`(method, kwargs)`, where kwargs is always a dict.
- Update DeduplicatingService to match the new scheme.
ansible_mitogen/connection.py:
- Rename 'method' to 'method_name' to disambiguate it from the
service.call()'s method= argument.
ansible_mitogen/planner.py:
- Generate an ID for every job, sync or not, and fetch job results
from JobResultService rather than via the initiating function
call's return value.
- Planner subclasses now get to select whether their Runner should
run in a forked process. The base implementation requests this if
the 'mitogen_isolation_mode=fork' task variable is present.
ansible_mitogen/runner.py:
Teach runners to deliver their result via JobResultService executing
in their indirect parent mux process.
ansible_mitogen/plugins/actions/mitogen_async_status.py:
Split the implementation up into methods, and more compatibly
emulate Ansible's existing output.
ansible_mitogen/process.py:
Mux processes now host JobResultService.
ansible_mitogen/services.py:
Update existing services to the new mitogen.service scheme, and
implement JobResultService:
* listen() method for synchronous jobs. planner.invoke() registers a
Sender with the service prior to invoking the job, then sleeps
waiting for the service to write the job result to the
corresponding Receiver.
* Non-blocking get() method for implementing mitogen_async_status
action.
* Child-accessible push() method for delivering task results.
ansible_mitogen/target.py:
New helpers for spawning a virginal subprocess on startup, from
which asynchronous and mitogen_task_isolation=fork jobs are forked.
Necessary to avoid a task inheriting potentially
polluted/monkey-patched parent environment, since remaining jobs
continue to run in the original child process.
docs/ansible.rst:
Add/merge/remove some behaviours/risks.
tests/ansible/integration:
New tests for forking/async.
Before:
$ ANSIBLE_STRATEGY=mitogen ansible -i derp, derp -m setup
An exception occurred during task execution. To see the full traceback, use -vvv. The error was: (''.join(bits)[-300:],)
derp | FAILED! => {
"msg": "Unexpected failure during module execution.",
"stdout": ""
}
After:
$ ANSIBLE_STRATEGY=mitogen ansible -i derp, derp -m setup
derp | UNREACHABLE! => {
"changed": false,
"msg": "EOF on stream; last 300 bytes received: 'ssh: Could not resolve hostname derp: nodename nor servname provided, or not known\\r\\n'",
"unreachable": true
}
* Use identical logic to select when stdout/stderr are merged, so
'stdout', 'stdout_lines', 'stderr', 'stderr_lines' contain the same
output before/after the extension.
* When stdout/stderr are merged, synthesize carriage returns just like
the TTY layer.
* Mimic the SSH connection multiplexing message on stderr. Not really
for user code, but so compare_output_test.sh needs fewer fixups.
Implement Connection.__del__, which is almost certainly going to trigger
more bugs down the line, because the state of the Connection instance is
not guranteed during __del__. Meanwhile, it is temporarily needed for
deployed-today Ansibles that have a buggy synchronize action that does
not call Connection.close().
A better approach to this would be to virtualize the guts of Connection,
and move its management to one central place where we can guarantee
resource destruction happens reliably, but that may entail another
Ansible monkey-patch to give us such a reliable hook.