The OpenShift installer modifies /etc/resolv.conf then tests the new
resolver configuration, however, there was no mechanism to reload
resolv.conf in our reuseable interpreter.
https://github.com/openshift/openshift-ansible/blob/release-3.9/roles/openshift_web_console/tasks/install.yml#L137
This inserts an explicit call to res_init() for every new style
invocation, with an approximate cost of ~1usec on Linux since glibc
verifies resolv.conf has changed before reloading it.
There is little to be done for users of the thread-safe resolver APIs,
their state is hidden from us. If bugs like that manifest, whack-a-mole
style 'del sys.modules[thatmod]' patches may suffice.
Traced git log all the way back to beginning of time, and checked
Ansible versions starting Jan 2016. Zero clue where this came from, but
the convention suggests it came from Ansible at some point.
While adding support for non-new style module types, NewStyleRunner
began writing modules to a temporary file, and sys.argv was patched to
actually include the script filename. The argv change was never required
to fix any particular bug, and a search of the standard modules reveals
no argv users. Update argv[0] to be '', like an interactive interpreter
would have.
While fixing #210, new style runner began setting __file__ to the
temporary file path in order to allow apt.py to discover the Ansiballz
temporary directory. 5 out of 1,516 standard modules follow this
pattern, but in each case, none actually attempt to access __file__,
they just call dirname on it. Therefore do not write the contents of
file, simply set it to the path as it would exist, within a real
temporary directory.
Finally move temporary directory creation out of runner and into target.
Now a single directory exists for the duration of a run, and is emptied
by runner.py as necessary after each task invocation.
This could be further extended to stop rewriting non-new-style modules
in a with_items loop, but that's another step.
Finally the last bullet point in the documentation almost isn't a lie
again.
Ideally it would be possible to specify a callback function, but this is
not possible for proxied connections. So simply provide the 3 most
useful modes, defaulting to the most secure.
Closes#127. Closes#134.
mitogen/master.py:
Annotate forwarded log entries with their original source, logger
name, and message.
ansible:
mark stderr in red with -vvv
Tempting to make this appaer 100% of the time, but some crappy
bashrcs may cause lots of junk to be printed.
This implements the first edition of Connection Delegation, where
delegating connection establishment is initially single-threaded.
ansible_mitogen/strategy.py:
ansible_mitogen/plugins/connection/*:
Begin splitting connection.Connection into subclasses, exposing them
directly as "mitogen_ssh", "mitogen_local", etc. connection types.
This is far from removing strategy.py, but it's a tiny start.
ansible_mitogen/connection.py:
* config_from_play_context() and config_from_host_vars() build up a
huge dictionary containing either more or less PlayContext contents,
or our best attempt at reconstructing a host's connection config
from its hostvars, where that config is not the current
WorkerProcess target.
They both produce the same format with the same keys, allowing
remaining code to have a single input format.
These dicts contain fields named after how Ansible refers to them,
e.g. "sudo_exe".
* _config_from_via() parses a basic connection specification like
"username@inventory_name" into one of the aforementioned dicts.
* _stack_from_config() produces a list of dicts describing the order
in which (Mitogen) connections should be established, such that each
element is proxied via= the previous element. The dicts produced by
this function use Mitogen keyword arguments, the former di.
These dicts contain fields named after how Mitogen refers to them,
e.g. "sudo_path".
* Pass the stack to ContextService, which is responsible for actual
setup of the full chain.
ansible_mitogen/services.py:
Teach get() to walk the supplied stack, establishing each connection
in turn, creating refounts for it before continuing.
TODO: refcounting is broken in a variety of cases.
This commit only uses it for the target.get_file() helper, which is only
used for transferring modules. The next commit wires it into the
Connection.transfer_file() API, which is the method the copy module
uses.