You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
matrix-spec/specification/modules/sso_login.rst

348 lines
15 KiB
ReStructuredText

.. Copyright 2019-2020 The Matrix.org Foundation C.I.C.
..
.. Licensed under the Apache License, Version 2.0 (the "License");
.. you may not use this file except in compliance with the License.
.. You may obtain a copy of the License at
..
.. http://www.apache.org/licenses/LICENSE-2.0
..
.. Unless required by applicable law or agreed to in writing, software
.. distributed under the License is distributed on an "AS IS" BASIS,
.. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
.. See the License for the specific language governing permissions and
.. limitations under the License.
SSO client login/authentication
===============================
.. _module:sso_login:
Single Sign-On (SSO) is a generic term which refers to protocols which allow
users to log into applications via a single web-based authentication portal.
Examples include OpenID Connect, "Central Authentication Service" (CAS) and SAML.
This module allows a Matrix homeserver to delegate user authentication to an
external authentication server supporting one of these protocols. In this
process, there are three systems involved:
* A Matrix client, using the APIs defined this specification, which is seeking
to authenticate a user to a Matrix homeserver.
* A Matrix homeserver, implementing the APIs defined in this specification, but
which is delegating user authentication to the authentication server.
* An "authentication server", which is responsible for authenticating the
user.
This specification is concerned only with communication between the Matrix
client and the homeserver, and is independent of the SSO protocol used to
communicate with the authentication server. Different Matrix homeserver
implementations might support different SSO protocols.
Clients and homeservers implementing the SSO flow will need to consider both login_
and `user-interactive authentication`_. The flow is
similar in both cases, but there are slight differences.
Typically, SSO systems require a single "callback" URI to be configured at the
authentication server. Once the user is authenticated, their browser is
redirected to that URI. It is up to the Matrix homeserver implementation to
implement a suitable endpoint. For example, for CAS authentication the
homeserver should provide a means for the administrator to configure where the
CAS server is and the REST endpoints which consume the ticket.
Client login via SSO
---------------------
An overview of the process is as follows:
0. The Matrix client calls |GET /login|_ to find the supported login
types, and the homeserver includes a flow with ``"type": "m.login.sso"`` in the
response.
1. To initiate the ``m.login.sso`` login type, the Matrix client instructs the
user's browser to navigate to the |/login/sso/redirect|_ endpoint on the
user's homeserver.
2. The homeserver responds with an HTTP redirect to the SSO user interface,
which the browser follows.
3. The authentication server and the homeserver interact to verify the user's
identity and other authentication information, potentially using a number of
redirects.
4. The browser is directed to the ``redirectUrl`` provided by the client with
a ``loginToken`` query parameter for the client to log in with.
5. The client exchanges the login token for an access token by calling the
|/login|_ endpoint with a ``type`` of ``m.login.token``.
For native applications, typically steps 1 to 4 are carried out by opening an
embedded web view.
These steps are illustrated as follows::
Matrix Client Matrix Homeserver Auth Server
| | |
|-------------(0) GET /login----------->| |
|<-------------login types--------------| |
| | |
| Webview | |
| | | |
|----->| | |
| |--(1) GET /login/sso/redirect-->| |
| |<---------(2) 302---------------| |
| | | |
| |<========(3) Authentication process================>|
| | | |
| |<--(4) redirect to redirectUrl--| |
|<-----| | |
| | |
|---(5) POST /login with login token--->| |
|<-------------access token-------------| |
.. Note::
In the older `r0.4.0 version <https://matrix.org/docs/spec/client_server/r0.4.0.html#cas-based-client-login>`_
of this specification it was possible to authenticate via CAS when the homeserver
provides a ``m.login.cas`` login flow. This specification deprecates the use
of ``m.login.cas`` to instead prefer ``m.login.sso``, which is the same process
with the only change being which redirect endpoint to use: for ``m.login.cas``, use
``/cas/redirect`` and for ``m.login.sso`` use ``/sso/redirect`` (described below).
The endpoints are otherwise the same.
Client behaviour
~~~~~~~~~~~~~~~~
The client starts the process by instructing the browser to navigate to
|/login/sso/redirect|_ with an appropriate ``redirectUrl``. Once authentication
is successful, the browser will be redirected to that ``redirectUrl``.
{{sso_login_redirect_cs_http_api}}
Security considerations
+++++++++++++++++++++++
1. CSRF attacks via manipulation of parameters on the ``redirectUrl``
Clients should validate any requests to the ``redirectUrl``. In particular, it
may be possible for attackers to falsify any query parameters, leading to
cross-site request forgery (CSRF) attacks.
For example, consider a web-based client at ``https://client.example.com``,
which wants to initiate SSO login on the homeserver at ``server.example.org``.
It does this by storing the homeserver name in a query parameter for the
``redirectUrl``: it redirects to
``https://server.example.org/login/sso/redirect?redirectUrl=https://client.example.com?hs=server.example.org``.
An attacker could trick a victim into following a link to
``https://server.example.org/login/sso/redirect?redirectUrl=https://client.example.com?hs=evil.com``,
which would result in the client sending a login token for the victim's
account to the attacker-controlled site ``evil.com``.
To guard against this, clients MUST NOT store state (such as the address of
the homeserver being logged into) anywhere it can be modified by external
processes.
Instead, the state could be stored in `localStorage
<https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage>`_ or
in a cookie.
2. For added security, clients SHOULD include a unique identifier in the
``redirectUrl`` and reject any callbacks that do not contain a recognised
identifier, to guard against unsolicited login attempts and replay attacks.
Server behaviour
~~~~~~~~~~~~~~~~
Redirecting to the Authentication server
++++++++++++++++++++++++++++++++++++++++
The server should handle
``/_matrix/client/%CLIENT_MAJOR_VERSION%/login/sso/redirect`` as follows:
#. It should build a suitable request for the SSO system.
#. It should store enough state that the flow can be securely resumed after the
SSO process completes. One way to do this is by storing a cookie which is
stored in the user's browser, by adding a ``Set-Cookie`` header to the response.
#. It should redirect the user's browser to the SSO login page with the
appropriate parameters.
See also the "Security considerations" below.
.. TODO-spec:
It might be nice if the server did some validation of the ``redirectUrl``
parameter, so that we could check that aren't going to redirect to a non-TLS
endpoint, and to give more meaningful errors in the case of
faulty/poorly-configured clients.
Handling the callback from the Authentication server
++++++++++++++++++++++++++++++++++++++++++++++++++++
Note that there will normally be a single callback URI which is used for both login
and user-interactive authentication: it is up to the homeserver implementation
to distinguish which is taking place.
The homeserver should validate the response from the SSO system: this may
require additional calls to the authentication server, and/or may require
checking a signature on the response.
The homeserver then proceeds as follows:
#. The homeserver MUST map the user details received from the authentication
server to a valid `Matrix user identifier <../appendices.html#user-identifiers>`_.
The guidance in `Mapping from other character sets
<../appendices.html#mapping-from-other-character-sets>`_ may be useful.
#. If the generated user identifier represents a new user, it should be
registered as a new user.
#. The homeserver should generate a short-term login token. This is an opaque
token, suitable for use with the ``m.login.token`` type of the |/login|_
API. The lifetime of this token SHOULD be limited to around five
seconds.
#. The homeserver adds a query parameter of ``loginToken``, with the value of
the generated login token, to the ``redirectUrl`` given in the
``/_matrix/client/%CLIENT_MAJOR_VERSION%/login/sso/redirect``
request. (Note: ``redirectURL`` may or may not include existing query
parameters. If it already includes one or more ``loginToken`` parameters,
they should be removed before adding the new one.)
#. The homeserver redirects the user's browser to the URI thus built.
Security considerations
~~~~~~~~~~~~~~~~~~~~~~~
1. Homeservers should ensure that login tokens are not sent to malicious
clients.
For example, consider a homeserver at ``server.example.org``. An attacker tricks
a victim into following a link to
``https://server.example.org/login/sso/redirect?redirectUrl=https://evil.com``,
resulting in a login token being sent to the attacker-controlled site
``evil.com``. This is a form of cross-site request forgery (CSRF).
To mitigate this, Homeservers SHOULD confirm with the user that they are
happy to grant access to their matrix account to the site named in the
``redirectUrl``. This can be done either *before* redirecting to the SSO
login page when handling the
``/_matrix/client/%CLIENT_MAJOR_VERSION%/login/sso/redirect`` endpoint, or
*after* login when handling the callback from the authentication server. (If
the check is performed before redirecting, it is particularly important that
the homeserver guards against unsolicited authentication attempts as below).
It may be appropriate to whitelist a set of known-trusted client URLs in
this process. In particular, the homeserver's own `login fallback`_
implementation could be excluded.
2. For added security, homeservers SHOULD guard against unsolicited
authentication attempts by tracking pending requests. One way to do this is
to set a cookie when handling
``/_matrix/client/%CLIENT_MAJOR_VERSION%/login/sso/redirect``, which is
checked and cleared when handling the callback from the authentication
server.
SSO during User-Interactive Authentication
------------------------------------------
`User-interactive authentication`_ is used by client-server
endpoints which require additional confirmation of the user's identity (beyond
holding an access token). Typically this means that the user must re-enter
their password, but for homeservers which delegate to an SSO server, this means
redirecting to the authentication server during user-interactive auth.
The implemementation of this is based on the `Fallback`_ mechanism for
user-interactive auth.
Client behaviour
----------------
Clients do not need to take any particular additional steps beyond ensuring
that the fallback mechanism has been implemented, and treating the
``m.login.sso`` authentication type the same as any other unknown type
(i.e. they should open a browser window for
``/_matrix/client/%CLIENT_MAJOR_VERSION%/auth/m.login.sso/fallback/web?session=<session_id>``.
Once the flow has completed, the client retries the request with the session
only.)
Server behaviour
----------------
Redirecting to the Authentication server
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The server should handle
``/_matrix/client/%CLIENT_MAJOR_VERSION%/auth/m.login.sso/fallback/web`` in
much the same way as
``/_matrix/client/%CLIENT_MAJOR_VERSION%/login/sso/redirect``, which is to say:
#. It should build a suitable request for the SSO system.
#. It should store enough state that the flow can be securely resumed after the
SSO process completes. One way to do this is by storing a cookie which is
stored in the user's browser, by adding a ``Set-Cookie`` header to the response.
#. It should redirect the user's browser to the SSO login page with the
appropriate parameters.
See also the "Security considerations" below.
Handling the callback from the Authentication server
++++++++++++++++++++++++++++++++++++++++++++++++++++
Note that there will normally be a single callback URI which is used for both login
and user-interactive authentication: it is up to the homeserver implementation
to distinguish which is taking place.
The homeserver should validate the response from the SSO system: this may
require additional calls to the authentication server, and/or may require
checking a signature on the response.
The homeserver then returns the `user-interactive authentication fallback
completion`_ page to the user's browser.
Security considerations
+++++++++++++++++++++++
1. Confirming the operation
The homeserver SHOULD confirm that the user is happy for the operation to go
ahead. The goal of the user-interactive authentication operation is to guard
against a compromised ``access_token`` being used to take over the user's
account. Simply redirecting the user to the SSO system is insufficient,
since they may not realise what is being asked of them, or the SSO system
may even confirm the authentication automatically.
For example, the homeserver might serve a page with words to the effect of:
A client is trying to remove a device from your account. To confirm this
action, re-authenticate with single sign-on. If you did not expect this, your
account may be compromised!
This confirmation could take place before redirecting to the SSO
authentication page (when handling the
``/_matrix/client/%CLIENT_MAJOR_VERSION%/auth/m.login.sso/fallback/web``
endpoint), or *after* authentication when handling the callback from the
authentication server. (If the check is performed before redirecting, it is
particularly important that the homeserver guards against unsolicited
authentication attempts as below).
2. For added security, homeservers SHOULD guard against unsolicited
authentication attempts by tracking pending requests. One way to do this is
to set a cookie when handling
``/_matrix/client/%CLIENT_MAJOR_VERSION%/auth/m.login.sso/fallback/web``,
which is checked and cleared when handling the callback from the
authentication server.
.. |GET /login| replace:: ``GET /login``
.. _GET /login: #get-matrix-client-%CLIENT_MAJOR_VERSION%-login
.. |/login| replace:: ``/login``
.. _/login: #post-matrix-client-%CLIENT_MAJOR_VERSION%-login
.. |/login/sso/redirect| replace:: ``/login/sso/redirect``
.. _/login/sso/redirect: #get-matrix-client-%CLIENT_MAJOR_VERSION%-login-sso-redirect