You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
matrix-spec/specification/00_basis.rst

581 lines
24 KiB
ReStructuredText

Matrix Specification
====================
$GIT_VERSION
Table of Contents
=================
.. contents:: Table of Contents
.. sectnum::
Introduction
============
Matrix is a new set of open APIs for open-federated Instant Messaging and VoIP
functionality, designed to create and support a new global real-time
communication ecosystem on the internet. This specification is the ongoing
result of standardising the APIs used by the various components of the Matrix
ecosystem to communicate with one another.
.. WARNING::
The Matrix specification is still evolving: the APIs are not yet frozen
and this document is in places a work in progress or stale. We have made every
effort to clearly flag areas which are still being finalised.
We're publishing it at this point because it's complete enough to be more than
useful and provide a canonical reference to how Matrix is evolving. Our end
goal is to mirror WHATWG's `Living Standard
<http://wiki.whatwg.org/wiki/FAQ#What_does_.22Living_Standard.22_mean.3F>`_.
The principles that Matrix attempts to follow are:
- Pragmatic Web-friendly APIs (i.e. JSON over REST)
- Keep It Simple & Stupid
+ provide a simple architecture with minimal third-party dependencies.
- Fully open:
+ Fully open federation - anyone should be able to participate in the global
Matrix network
+ Fully open standard - publicly documented standard with no IP or patent
licensing encumbrances
+ Fully open source reference implementation - liberally-licensed example
implementations with no IP or patent licensing encumbrances
- Empowering the end-user
+ The user should be able to choose the server and clients they use
+ The user should be control how private their communication is
+ The user should know precisely where their data is stored
- Fully decentralised - no single points of control over conversations or the
network as a whole
- Learning from history to avoid repeating it
+ Trying to take the best aspects of XMPP, SIP, IRC, SMTP, IMAP and NNTP
whilst trying to avoid their failings
The functionality that Matrix provides includes:
- Creation and management of fully distributed chat rooms with no
single points of control or failure
- Eventually-consistent cryptographically secure synchronisation of room
state across a global open network of federated servers and services
- Sending and receiving extensible messages in a room with (optional)
end-to-end encryption
- Extensible user management (inviting, joining, leaving, kicking, banning)
mediated by a power-level based user privilege system.
- Extensible room state management (room naming, aliasing, topics, bans)
- Extensible user profile management (avatars, displaynames, etc)
- Managing user accounts (registration, login, logout)
- Use of 3rd Party IDs (3PIDs) such as email addresses, phone numbers,
Facebook accounts to authenticate, identify and discover users on Matrix.
- Trusted federation of Identity servers for:
+ Publishing user public keys for PKI
+ Mapping of 3PIDs to Matrix IDs
The end goal of Matrix is to be a ubiquitous messaging layer for synchronising
arbitrary data between sets of people, devices and services - be that for
instant messages, VoIP call setups, or any other objects that need to be
reliably and persistently pushed from A to B in an interoperable and federated
manner.
Version
=======
The Matrix spec is currently rapidly evolving, and there have been no versioned
releases as yet. Versions should be identified by git revision, or failing that
timestamp.
Overview
========
Architecture
------------
Clients transmit data to other clients through home servers (HSes). Clients do
not communicate with each other directly.
::
How data flows between clients
==============================
{ Matrix client A } { Matrix client B }
^ | ^ |
| events | | events |
| V | V
+------------------+ +------------------+
| |---------( HTTPS )--------->| |
| Home Server | | Home Server |
| |<--------( HTTPS )----------| |
+------------------+ Federation +------------------+
A "Client" typically represents a human using a web application or mobile app.
Clients use the "Client-to-Server" (C-S) API to communicate with their home
server, which stores their profile data and their record of the conversations
in which they participate. Each client is associated with a user account (and
may optionally support multiple user accounts). A user account is represented
by a unique "User ID". This ID is namespaced to the home server which allocated
the account and looks like::
@localpart:domain
The ``localpart`` of a user ID may be a user name, or an opaque ID identifying
this user. They are case-insensitive.
.. TODO-spec
- Need to specify precise grammar for Matrix IDs
A "Home Server" is a server which provides C-S APIs and has the ability to
federate with other HSes. It is typically responsible for multiple clients.
"Federation" is the term used to describe the sharing of data between two or
more home servers.
Events
~~~~~~
Data in Matrix is encapsulated in an "event". An event is an action within the
system. Typically each action (e.g. sending a message) correlates with exactly
one event. Each event has a ``type`` which is used to differentiate different
kinds of data. ``type`` values MUST be uniquely globally namespaced following
Java's `package naming conventions
<http://docs.oracle.com/javase/specs/jls/se5.0/html/packages.html#7.7>`, e.g.
``com.example.myapp.event``. The special top-level namespace ``m.`` is reserved
for events defined in the Matrix specification - for instance ``m.room.message``
is the event type for instant messages. Events are usually sent in the context
of a "Room".
Event Graphs
~~~~~~~~~~~~
Each event has a list of zero or more `parent` events. These relations form
directed acyclic graphs of events called `event graphs`. Every event graph has a single root event, and each event graph forms the
basis of the history of a matrix room.
Event graphs give a partial ordering of events, i.e. given two events one may
be considered to have come before the other if one is an ancestor of the other.
Since two events may be on separate branches, not all events can be compared in
this manner.
Every event has a metadata `depth` field that is a positive integer that is
strictly greater than the depths of any of its parents. The root event should
have a depth of 1.
[Note: if one event is before another, then it must have a strictly smaller
depth]
Room structure
~~~~~~~~~~~~~~
A room is a conceptual place where users can send and receive events.
Events are sent to a room, and all participants in
that room with sufficient access will receive the event. Rooms are uniquely
identified internally via a "Room ID", which look like::
!opaque_id:domain
There is exactly one room ID for each room. Whilst the room ID does contain a
domain, it is simply for globally namespacing room IDs. The room does NOT
reside on the domain specified. Room IDs are not meant to be human readable.
They ARE case-sensitive.
The following conceptual diagram shows an ``m.room.message`` event being sent to
the room ``!qporfwt:matrix.org``::
{ @alice:matrix.org } { @bob:domain.com }
| ^
| |
Room ID: !qporfwt:matrix.org Room ID: !qporfwt:matrix.org
Event type: m.room.message Event type: m.room.message
Content: { JSON object } Content: { JSON object }
| |
V |
+------------------+ +------------------+
| Home Server | | Home Server |
| matrix.org | | domain.com |
+------------------+ +------------------+
| ^
| |
| Room ID: !qporfwt:matrix.org |
| Event type: m.room.message |
| Content: { JSON object } |
`-------> Pointer to the preceding message ------`
PKI signature from matrix.org
Transaction-layer metadata
PKI Authorization header
...................................
| Shared Data |
| State: |
| Room ID: !qporfwt:matrix.org |
| Servers: matrix.org, domain.com |
| Members: |
| - @alice:matrix.org |
| - @bob:domain.com |
| Messages: |
| - @alice:matrix.org |
| Content: { JSON object } |
|...................................|
Federation maintains shared data structures per-room between multiple home
servers. The data is split into ``message events`` and ``state events``.
``Message events`` describe transient 'once-off' activity in a room such as an
instant messages, VoIP call setups, file transfers, etc. They generally describe
communication activity.
``State events`` describe updates to a given piece of persistent information
('state') related to a room, such as the room's name, topic, membership,
participating servers, etc. State is modelled as a lookup table of key/value
pairs per room, with each key being a tuple of ``state_key`` and ``event type``.
Each state event updates the value of a given key.
The state of the room at a given point is calculated by considering all events
preceding and including a given event in the graph. Where events describe the
same state, a merge conflict algorithm is applied. The state resolution
algorithm is transitive and does not depend on server state, as it must
consistently select the same event irrespective of the server or the order the
events were received in.
Events are signed by the originating server (the signature includes the parent
relations, type, depth and payload hash) and are pushed over federation to the
participating servers in a room, currently using full mesh topology. Servers may
also request backfill of events over federation from the other servers
participating in a room.
Room Aliases
++++++++++++
Each room can also have multiple "Room Aliases", which looks like::
#room_alias:domain
.. TODO
- Need to specify precise grammar for Room Aliases
A room alias "points" to a room ID and is the human-readable label by which
rooms are publicised and discovered. The room ID the alias is pointing to can
be obtained by visiting the domain specified. They are case-insensitive. Note
that the mapping from a room alias to a room ID is not fixed, and may change
over time to point to a different room ID. For this reason, Clients SHOULD
resolve the room alias to a room ID once and then use that ID on subsequent
requests.
When resolving a room alias the server will also respond with a list of servers
that are in the room that can be used to join via.
::
GET
#matrix:domain.com !aaabaa:matrix.org
| ^
| |
_______V____________________|____
| domain.com |
| Mappings: |
| #matrix >> !aaabaa:matrix.org |
| #golf >> !wfeiofh:sport.com |
| #bike >> !4rguxf:matrix.org |
|________________________________|
Identity
++++++++
Users in Matrix are identified via their matrix user ID (MXID). However,
existing 3rd party ID namespaces can also be used in order to identify Matrix
users. A Matrix "Identity" describes both the user ID and any other existing IDs
from third party namespaces *linked* to their account.
Matrix users can *link* third-party IDs (3PIDs) such as email addresses, social
network accounts and phone numbers to their user ID. Linking 3PIDs creates a
mapping from a 3PID to a user ID. This mapping can then be used by Matrix
users in order to discover the MXIDs of their contacts.
In order to ensure that the mapping from 3PID to user ID is genuine, a globally
federated cluster of trusted "Identity Servers" (IS) are used to verify the 3PID
and persist and replicate the mappings.
Usage of an IS is not required in order for a client application to be part of
the Matrix ecosystem. However, without one clients will not be able to look up
user IDs using 3PIDs.
Presence
++++++++
Each user has the concept of presence information. This encodes the
"availability" of that user, suitable for display on other user's clients. This
is transmitted as an ``m.presence`` event and is one of the few events which
are sent *outside the context of a room*. The basic piece of presence
information is represented by the ``presence`` key, which is an enum of one of
the following:
- ``online`` : The default state when the user is connected to an event
stream.
- ``unavailable`` : The user is not reachable at this time.
- ``offline`` : The user is not connected to an event stream.
- ``free_for_chat`` : The user is generally willing to receive messages
moreso than default.
- ``hidden`` : Behaves as offline, but allows the user to see the client
state anyway and generally interact with client features. (Not yet
implemented in synapse).
.. TODO-spec
This seems like a very constrained list of states - surely presence states
should be extensible, with us providing a baseline, and possibly a scale of
availability? For instance, do-not-disturb is missing here, as well as a
distinction between 'away' and 'busy'.
This basic ``presence`` field applies to the user as a whole, regardless of how
many client devices they have connected. The presence state is pushed by the homeserver to all connected clients for a user to ensure a consistent experience for the user.
.. TODO-spec
We need per-device presence in order to handle push notification semantics and similar.
In addition, the server maintains a timestamp of the last time it saw a
pro-active event from the user; either sending a message to a room, or changing
presence state from a lower to a higher level of availability (thus: changing
state from ``unavailable`` to ``online`` counts as a proactive event, whereas in
the other direction it will not). This timestamp is presented via a key called
``last_active_ago``, which gives the relative number of milliseconds since the
message is generated/emitted that the user was last seen active.
Presence List
~~~~~~~~~~~~~
Each user's home server stores a "presence list". This stores a list of user IDs
whose presence the user wants to follow.
To be added to this list, the user being added must be invited by the list owner
and accept the invitation. Once accepted, both user's HSes track the
subscription.
Presence and Permissions
~~~~~~~~~~~~~~~~~~~~~~~~
For a viewing user to be allowed to see the presence information of a target
user, either:
- The target user has allowed the viewing user to add them to their presence
list, or
- The two users share at least one room in common
In the latter case, this allows for clients to display some minimal sense of
presence information in a user list for a room.
Profiles
++++++++
.. TODO-spec
- Metadata extensibility
Internally within Matrix users are referred to by their user ID, which is
typically a compact unique identifier. Profiles grant users the ability to see
human-readable names for other users that are in some way meaningful to them.
Additionally, profiles can publish additional information, such as the user's
age or location.
A Profile consists of a display name, an avatar picture, and a set of other
metadata fields that the user may wish to publish (email address, phone
numbers, website URLs, etc...). This specification puts no requirements on the
display name other than it being a valid unicode string. Avatar images are not
stored directly; instead the home server stores an ``http``-scheme URL from which clients may fetch the image.
API Standards
-------------
The mandatory baseline for communication in Matrix is exchanging JSON objects
over HTTP APIs. HTTPS is mandated as the baseline for server-server
(federation) communication. HTTPS is recommended for client-server
communication, although HTTP may be supported as a fallback to support basic
HTTP clients. More efficient optional transports for client-server
communication will in future be supported as optional extensions - e.g. a
packed binary encoding over stream-cipher encrypted TCP socket for
low-bandwidth/low-roundtrip mobile usage.
.. TODO
We need to specify capability negotiation for extensible transports
For the default HTTP transport, all API calls use a Content-Type of
``application/json``. In addition, all strings MUST be encoded as UTF-8.
Clients are authenticated using opaque ``access_token`` strings (see
`Registration and Login`_ for details), passed as a query string parameter on
all requests.
.. TODO
Need to specify any HMAC or access_token lifetime/ratcheting tricks
Any errors which occur at the Matrix API level MUST return a "standard error
response". This is a JSON object which looks like::
{
"errcode": "<error code>",
"error": "<error message>"
}
The ``error`` string will be a human-readable error message, usually a sentence
explaining what went wrong. The ``errcode`` string will be a unique string
which can be used to handle an error message e.g. ``M_FORBIDDEN``. These error
codes should have their namespace first in ALL CAPS, followed by a single _.
For example, if there was a custom namespace ``com.mydomain.here``, and a
``FORBIDDEN`` code, the error code should look like
``COM.MYDOMAIN.HERE_FORBIDDEN``. There may be additional keys depending on the
error, but the keys ``error`` and ``errcode`` MUST always be present.
Some standard error codes are below:
:``M_FORBIDDEN``:
Forbidden access, e.g. joining a room without permission, failed login.
:``M_UNKNOWN_TOKEN``:
The access token specified was not recognised.
:``M_BAD_JSON``:
Request contained valid JSON, but it was malformed in some way, e.g. missing
required keys, invalid values for keys.
:``M_NOT_JSON``:
Request did not contain valid JSON.
:``M_NOT_FOUND``:
No resource was found for this request.
:``M_LIMIT_EXCEEDED``:
Too many requests have been sent in a short period of time. Wait a while then
try again.
Some requests have unique error codes:
:``M_USER_IN_USE``:
Encountered when trying to register a user ID which has been taken.
:``M_ROOM_IN_USE``:
Encountered when trying to create a room which has been taken.
:``M_BAD_PAGINATION``:
Encountered when specifying bad pagination query parameters.
:``M_LOGIN_EMAIL_URL_NOT_YET``:
Encountered when polling for an email link which has not been clicked yet.
The C-S API typically uses ``HTTP POST`` to submit requests. This means these
requests are not idempotent. The C-S API also allows ``HTTP PUT`` to make
requests idempotent. In order to use a ``PUT``, paths should be suffixed with
``/{txnId}``. ``{txnId}`` is a unique client-generated transaction ID which
identifies the request, and is scoped to a given Client (identified by that
client's ``access_token``). Crucially, it **only** serves to identify new
requests from retransmits. After the request has finished, the ``{txnId}``
value should be changed (how is not specified; a monotonically increasing
integer is recommended). It is preferable to use ``HTTP PUT`` to make sure
requests to send messages do not get sent more than once should clients need to
retransmit requests.
Valid requests look like::
POST /some/path/here?access_token=secret
{
"key": "This is a post."
}
PUT /some/path/here/11?access_token=secret
{
"key": "This is a put with a txnId of 11."
}
In contrast, these are invalid requests::
POST /some/path/here/11?access_token=secret
{
"key": "This is a post, but it has a txnId."
}
PUT /some/path/here?access_token=secret
{
"key": "This is a put but it is missing a txnId."
}
Glossary
--------
Backfilling:
The process of synchronising historic state from one home server to another,
to backfill the event storage so that scrollback can be presented to the
client(s). Not to be confused with pagination.
Context:
A single human-level entity of interest (currently, a chat room)
EDU (Ephemeral Data Unit):
A message that relates directly to a given pair of home servers that are
exchanging it. EDUs are short-lived messages that related only to one single
pair of servers; they are not persisted for a long time and are not forwarded
on to other servers. Because of this, they have no internal ID nor previous
EDUs reference chain.
Event:
A record of activity that records a single thing that happened on to a context
(currently, a chat room). These are the "chat messages" that Synapse makes
available.
PDU (Persistent Data Unit):
A message that relates to a single context, irrespective of the server that
is communicating it. PDUs either encode a single Event, or a single State
change. A PDU is referred to by its PDU ID; the pair of its origin server
and local reference from that server.
PDU ID:
The pair of PDU Origin and PDU Reference, that together globally uniquely
refers to a specific PDU.
PDU Origin:
The name of the origin server that generated a given PDU. This may not be the
server from which it has been received, due to the way they are copied around
from server to server. The origin always records the original server that
created it.
PDU Reference:
A local ID used to refer to a specific PDU from a given origin server. These
references are opaque at the protocol level, but may optionally have some
structured meaning within a given origin server or implementation.
Presence:
The concept of whether a user is currently online, how available they declare
they are, and so on. See also: doc/model/presence
Profile:
A set of metadata about a user, such as a display name, provided for the
benefit of other users. See also: doc/model/profiles
Room ID:
An opaque string (of as-yet undecided format) that identifies a particular
room and used in PDUs referring to it.
Room Alias:
A human-readable string of the form #name:some.domain that users can use as a
pointer to identify a room; a Directory Server will map this to its Room ID
State:
A set of metadata maintained about a Context, which is replicated among the
servers in addition to the history of Events.
User ID:
A string of the form @localpart:domain.name that identifies a user for
wire-protocol purposes. The localpart is meaningless outside of a particular
home server. This takes a human-readable form that end-users can use directly
if they so wish, avoiding the 3PIDs.
Transaction:
A message which relates to the communication between a given pair of servers.
A transaction contains possibly-empty lists of PDUs and EDUs.
.. TODO
This glossary contradicts the terms used above - especially on State Events v. "State"
and Non-State Events v. "Events". We need better consistent names.