Federation API ============== Matrix home servers use the Federation APIs (also known as server-server APIs) to communicate with each other. Home servers use these APIs to push messages to each other in real-time, to request historic messages from each other, and to query profile and presence information about users on each other's servers. The APIs are implemented using HTTPS GETs and PUTs between each of the servers. These HTTPS requests are strongly authenticated using public key signatures at the TLS transport layer and using public key signatures in HTTP Authorization headers at the HTTP layer. There are three main kinds of communication that occur between home servers: Persisted Data Units (PDUs): These events are broadcast from one home server to any others that have joined the same "context" (namely, a Room ID). They are persisted in long-term storage and record the history of messages and state for a context. Like email, it is the responsibility of the originating server of a PDU to deliver that event to its recepient servers. However PDUs are signed using the originating server's public key so that it is possible to deliver them through third-party servers. Ephemeral Data Units (EDUs): These events are pushed between pairs of home servers. They are not persisted and are not part of the history of a "context", nor does the receiving home server have to reply to them. Queries: These are single request/response interactions between a given pair of servers, initiated by one side sending an HTTPS GET request to obtain some information, and responded by the other. They are not persisted and contain no long-term significant history. They simply request a snapshot state at the instant the query is made. EDUs and PDUs are further wrapped in an envelope called a Transaction, which is transferred from the origin to the destination home server using an HTTPS PUT request. Server Discovery ---------------- Resolving Server Names ~~~~~~~~~~~~~~~~~~~~~~ Each matrix home server is identified by a server name consisting of a DNS name and an optional TLS port. .. code:: server_name = dns_name [ ":" tls_port] dns_name = tls_port = *DIGIT .. ** If the port is present then the server is discovered by looking up an A record for the DNS name and connecting to the specified TLS port. If the port is absent then the server is discovered by looking up a ``_matrix._tcp`` SRV record for the DNS name. Home servers may use SRV records to load balance requests between multiple TLS endpoints or to failover to another endpoint if an endpoint fails. Retrieving Server Keys ~~~~~~~~~~~~~~~~~~~~~~ Home servers publish their TLS certificates and signing keys in a JSON object at ``/_matrix/key/v1``. ==================== =================== ====================================== Key Type Description ==================== =================== ====================================== ``server_name`` String DNS name of the home server. ``verify_keys`` Object Public keys of the home server for verifying digital signatures. ``signatures`` Object Digital signatures for this object signed using the ``verify_keys``. ``tls_certificate`` String The X.509 TLS certificate used by this this server encoded as base64. ==================== =================== ====================================== .. code:: json { "server_name": "example.org", "signatures": { "example.org": { "ed25519:auto": "Base+64+Encoded+Signature" } }, "tls_certificate": "Base+64+Encoded+DER+Encoded+X509+TLS+Certificate" "verify_keys": { "ed25519:auto": "Base+64+Encoded+Signature+Verification+Key" } } When fetching the keys for a server the client should check that the TLS certificate in the JSON matches the TLS server certificate for the connection and should check that the JSON signatures are correct for the supplied ``verify_keys`` Transactions ------------ .. WARNING:: This section may be misleading or inaccurate. The transfer of EDUs and PDUs between home servers is performed by an exchange of Transaction messages, which are encoded as JSON objects, passed over an HTTP PUT request. A Transaction is meaningful only to the pair of home servers that exchanged it; they are not globally-meaningful. Each transaction has: - An opaque transaction ID. - A timestamp (UNIX epoch time in milliseconds) generated by its origin server. - An origin and destination server name. - A list of "previous IDs". - A list of PDUs and EDUs - the actual message payload that the Transaction carries. Transaction Fields ~~~~~~~~~~~~~~~~~~ ==================== =================== ====================================== Key Type Description ==================== =================== ====================================== ``origin`` String DNS name of homeserver making this transaction. ``origin_server_ts`` Integer Timestamp in milliseconds on originating homeserver when this transaction started. ``previous_ids`` List of Strings List of transactions that were sent immediately prior to this transaction. ``pdus`` List of Objects List of persistent updates to rooms. ``edus`` List of Objects List of ephemeral messages. ==================== =================== ====================================== .. code:: json { "transaction_id":"916d630ea616342b42e98a3be0b74113", "ts":1404835423000, "origin":"red", "prev_ids":["e1da392e61898be4d2009b9fecce5325"], "pdus":[...], "edus":[...] } The ``prev_ids`` field contains a list of previous transaction IDs that the ``origin`` server has sent to this ``destination``. Its purpose is to act as a sequence checking mechanism - the destination server can check whether it has successfully received that Transaction, or ask for a re-transmission if not. The ``pdus`` field of a transaction is a list, containing zero or more PDUs.[*] Each PDU is itself a JSON object containing a number of keys, the exact details of which will vary depending on the type of PDU. Similarly, the ``edus`` field is another list containing the EDUs. This key may be entirely absent if there are no EDUs to transfer. (* Normally the PDU list will be non-empty, but the server should cope with receiving an "empty" transaction, as this is useful for informing peers of other transaction IDs they should be aware of. This effectively acts as a push mechanism to encourage peers to continue to replicate content.) PDUs ---- All PDUs have: - An ID - A context - A declaration of their type - A list of other PDU IDs that have been seen recently on that context (regardless of which origin sent them) Required PDU Fields ~~~~~~~~~~~~~~~~~~~ ==================== ================== ======================================= Key Type Description ==================== ================== ======================================= ``context`` String Event context identifier ``user_id`` String The ID of the user sending the PDU ``origin`` String DNS name of homeserver that created this PDU ``pdu_id`` String Unique identifier for PDU on the originating homeserver ``origin_server_ts`` Integer Timestamp in milliseconds on origin homeserver when this PDU was created. ``pdu_type`` String PDU event type ``content`` Object The content of the PDU. ``prev_pdus`` List of (String, The originating homeserver, PDU ids and String, Object) hashes of the most recent PDUs the Triplets homeserver was aware of for the context when it made this PDU ``depth`` Integer The maximum depth of the previous PDUs plus one ``is_state`` Boolean True if this PDU is updating room state ==================== ================== ======================================= .. code:: json { "context":"#example:green.example.com", "origin":"green.example.com", "pdu_id":"a4ecee13e2accdadf56c1025af232176", "origin_server_ts":1404838188000, "pdu_type":"m.room.message", "prev_pdus":[ ["blue.example.com","99d16afbc8", {"sha256":"abase64encodedsha256hashshouldbe43byteslong"}] ], "hashes":{"sha256":"thishashcoversallfieldsincasethisisredacted"}, "signatures":{ "green.example.com":{ "ed25519:key_version:":"these86bytesofbase64signaturecoveressentialfieldsincludinghashessocancheckredactedpdus" } }, "is_state":false, "content": {...} } In contrast to Transactions, it is important to note that the ``prev_pdus`` field of a PDU refers to PDUs that any origin server has sent, rather than previous IDs that this ``origin`` has sent. This list may refer to other PDUs sent by the same origin as the current one, or other origins. Because of the distributed nature of participants in a Matrix conversation, it is impossible to establish a globally-consistent total ordering on the events. However, by annotating each outbound PDU at its origin with IDs of other PDUs it has received, a partial ordering can be constructed allowing causality relationships to be preserved. A client can then display these messages to the end-user in some order consistent with their content and ensure that no message that is semantically in reply of an earlier one is ever displayed before it. State Update PDU Fields ~~~~~~~~~~~~~~~~~~~~~~~ PDUs fall into two main categories: those that deliver Events, and those that synchronise State. For PDUs that relate to State synchronisation, additional keys exist to support this: ======================== ============ ========================================= Key Type Description ======================== ============ ========================================= ``state_key`` String Combined with the ``pdu_type`` this identifies the which part of the room state is updated ``required_power_level`` Integer The required power level needed to replace this update. ``prev_state_id`` String The homeserver of the update this replaces ``prev_state_origin`` String The PDU id of the update this replaces. ``user_id`` String The user updating the state. ======================== ============ ========================================= .. code:: json {..., "is_state":true, "state_key":TODO-doc "required_power_level":TODO-doc "prev_state_id":TODO-doc "prev_state_origin":TODO-doc } EDUs ---- EDUs, by comparison to PDUs, do not have an ID, a context, or a list of "previous" IDs. The only mandatory fields for these are the type, origin and destination home server names, and the actual nested content. ======================== ============ ========================================= Key Type Description ======================== ============ ========================================= ``edu_type`` String The type of the ephemeral message. ``content`` Object Content of the ephemeral message. ======================== ============ ========================================= .. code:: json { "edu_type":"m.presence", "origin":"blue", "destination":"orange", "content":{...} } Protocol URLs ------------- .. WARNING:: This section may be misleading or inaccurate. All these URLs are name-spaced within a prefix of:: /_matrix/federation/v1/... For active pushing of messages representing live activity "as it happens":: PUT .../send/:transaction_id/ Body: JSON encoding of a single Transaction Response: TODO-doc The transaction_id path argument will override any ID given in the JSON body. The destination name will be set to that of the receiving server itself. Each embedded PDU in the transaction body will be processed. To fetch a particular PDU:: GET .../pdu/:origin/:pdu_id/ Response: JSON encoding of a single Transaction containing one PDU Retrieves a given PDU from the server. The response will contain a single new Transaction, inside which will be the requested PDU. To fetch all the state of a given context:: GET .../state/:context/ Response: JSON encoding of a single Transaction containing multiple PDUs Retrieves a snapshot of the entire current state of the given context. The response will contain a single Transaction, inside which will be a list of PDUs that encode the state. To backfill events on a given context:: GET .../backfill/:context/ Query args: v, limit Response: JSON encoding of a single Transaction containing multiple PDUs Retrieves a sliding-window history of previous PDUs that occurred on the given context. Starting from the PDU ID(s) given in the "v" argument, the PDUs that preceeded it are retrieved, up to a total number given by the "limit" argument. These are then returned in a new Transaction containing all of the PDUs. To stream events all the events:: GET .../pull/ Query args: origin, v Response: JSON encoding of a single Transaction consisting of multiple PDUs Retrieves all of the transactions later than any version given by the "v" arguments. To make a query:: GET .../query/:query_type Query args: as specified by the individual query types Response: JSON encoding of a response object Performs a single query request on the receiving home server. The Query Type part of the path specifies the kind of query being made, and its query arguments have a meaning specific to that kind of query. The response is a JSON-encoded object whose meaning also depends on the kind of query. Backfilling ----------- .. NOTE:: This section is a work in progress. .. TODO-doc - What it is, when is it used, how is it done Authentication -------------- Request Authentication ~~~~~~~~~~~~~~~~~~~~~~ Every HTTP request made by a homesever is authenticated using public key digital signatures. The request method, target and body are signed by wrapping them in a JSON object and signing it using the JSON signing algorithm. The resulting signatures are added as an Authorization header with an auth scheme of X-Matrix. Step 1 sign JSON: .. code:: { "method": "GET", "uri": "/target", "origin": "origin.hs.example.com", "destintation": "destination.hs.example.com", "content": { JSON content ... }, "signatures": { "origin.hs.example.com": { "ed25519:key1": "ABCDEF..." } } } Step 2 add Authorization header: .. code:: GET /target HTTP/1.1 Authorization: X-Matrix origin=origin.example.com,key="ed25519:key1",sig="ABCDEF..." Content-Type: application/json { JSON content ... } Example python code: .. code:: python def authorization_headers(origin_name, origin_signing_key, destination_name, request_method, request_target, content_json=None): request_json = { "method": request_method, "uri": request_target, "origin": origin_name, "destination": destination_name, } if content_json is not None: request["content"] = content_json signed_json = sign_json(request_json, origin_name, origin_signing_key) authorization_headers = [] for key, sig in signed_json["signatures"][origin_name].items(): authorization_headers.append(bytes( "X-Matrix origin=%s,key=\"%s\",sig=\"%s\"" % ( origin_name, key, sig, ) )) return ("Authorization", authorization_headers) Response Authentication ~~~~~~~~~~~~~~~~~~~~~~~ Responses are authenticated by the TLS server certificate. A homeserver should not send a request until it has authenticated the connected server to avoid leaking messages to eavesdroppers. Client TLS Certificates ~~~~~~~~~~~~~~~~~~~~~~~ Requests are authenticated at the HTTP layer rather than at the TLS layer because HTTP services like Matrix are often deployed behind load balancers that handle the TLS and these load balancers make it difficult to check TLS client certificates. A home server may provide a TLS client certficate and the receiving home server may check that the client certificate matches the certificate of the origin home server. Server-Server Authorization --------------------------- .. TODO-doc - PDU signing (see the Event signing section earlier) - State conflict resolution (see below) State Conflict Resolution ------------------------- .. NOTE:: This section is a work in progress. .. TODO-doc - How do conflicts arise (diagrams?) - How are they resolved (incl tie breaks) - How does this work with deleting current state - How do we reject invalid federation traffic? [[TODO(paul): At this point we should probably have a long description of how State management works, with descriptions of clobbering rules, power levels, etc etc... But some of that detail is rather up-in-the-air, on the whiteboard, and so on. This part needs refining. And writing in its own document as the details relate to the server/system as a whole, not specifically to server-server federation.]] Presence -------- The server API for presence is based entirely on exchange of the following EDUs. There are no PDUs or Federation Queries involved. Performing a presence update and poll subscription request:: EDU type: m.presence Content keys: push: (optional): list of push operations. Each should be an object with the following keys: user_id: string containing a User ID presence: "offline"|"unavailable"|"online"|"free_for_chat" status_msg: (optional) string of freeform text last_active_ago: miliseconds since the last activity by the user poll: (optional): list of strings giving User IDs unpoll: (optional): list of strings giving User IDs The presence of this combined message is two-fold: it informs the recipient server of the current status of one or more users on the sending server (by the ``push`` key), and it maintains the list of users on the recipient server that the sending server is interested in receiving updates for, by adding (by the ``poll`` key) or removing them (by the ``unpoll`` key). The ``poll`` and ``unpoll`` lists apply *changes* to the implied list of users; any existing IDs that the server sent as ``poll`` operations in a previous message are not removed until explicitly requested by a later ``unpoll``. On receipt of a message containing a non-empty ``poll`` list, the receiving server should immediately send the sending server a presence update EDU of its own, containing in a ``push`` list the current state of every user that was in the orginal EDU's ``poll`` list. Sending a presence invite:: EDU type: m.presence_invite Content keys: observed_user: string giving the User ID of the user whose presence is requested (i.e. the recipient of the invite) observer_user: string giving the User ID of the user who is requesting to observe the presence (i.e. the sender of the invite) Accepting a presence invite:: EDU type: m.presence_accept Content keys - as for m.presence_invite Rejecting a presence invite:: EDU type: m.presence_deny Content keys - as for m.presence_invite .. TODO-doc - Explain the timing-based roundtrip reduction mechanism for presence messages - Explain the zero-byte presence inference logic See also: docs/client-server/model/presence Profiles -------- The server API for profiles is based entirely on the following Federation Queries. There are no additional EDU or PDU types involved, other than the implicit ``m.presence`` and ``m.room.member`` events (see section below). Querying profile information:: Query type: profile Arguments: user_id: the ID of the user whose profile to return field: (optional) string giving a field name Returns: JSON object containing the following keys: displayname: string of freeform text avatar_url: string containing an http-scheme URL If the query contains the optional ``field`` key, it should give the name of a result field. If such is present, then the result should contain only a field of that name, with no others present. If not, the result should contain as much of the user's profile as the home server has available and can make public. Policy Servers ============== .. NOTE:: This section is a work in progress. .. TODO-spec We should mention them in the Architecture section at least: how they fit into the picture. Enforcing policies ------------------