# Proposal for Matrix "spaces" (formerly known as "groups as rooms (take 2)") This MSC, and related proposals, supercede [MSC1215](https://github.com/matrix-org/matrix-doc/issues/1215). ## Background and objectives Collecting rooms together into groups is useful for a number of purposes. Examples include: * Allowing users to discover different rooms related to a particular topic: for example "official matrix.org rooms". * Allowing administrators to manage permissions across a number of rooms: for example "a new employee has joined my company and needs access to all of our rooms". * Letting users classify their rooms: for example, separating "work" from "personal" rooms. We refer to such collections of rooms as "spaces". Synapse and Element-Web currently implement an unspecced "groups" API (referred to as "`/r0/groups`" in this document) which attempts to provide this functionality (see [MSC971](https://github.com/matrix-org/matrix-doc/issues/971)). However, this is a complex API which has various problems (see [appendix](#appendix-problems-with-the-r0groups-api)). This proposal suggests a new approach where spaces are themselves represented by rooms, rather than a custom first-class entity. This requires few server changes, other than better support for peeking (see Dependencies below). The existing `/r0/groups` API would be deprecated in Synapse and remain unspecified. ## Proposal Each space is represented by its own room, known as a "space-room". The rooms within the space are determined by state events within the space-room. Space-rooms are distinguished from regular messaging rooms by the presence of a `type: m.space` property in the content of the `m.room.create` event. This allows clients to offer slightly customised user experience depending on the purpose of the room. Currently, no server-side behaviour is expected to depend on this property. As with regular rooms, public spaces are expected to have an alias, for example `#foo:matrix.org`, which can be used to refer to the space. Space-rooms may have `m.room.name` and `m.room.topic` state events in the same way as a normal room. Normal messages within a space-room are discouraged (but not blocked by the server): user interfaces are not expected to have a way to enter or display such messages. Space-rooms should be created with a power level for `events_default` of 100, to prevent the rooms accidentally/maliciously clogging up with messages from random members of the space. ### Membership of spaces Users can be members of spaces (represented by `m.room.member` state events as normal). The existing [`m.room.history_visibility` mechanism](https://matrix.org/docs/spec/client_server/r0.6.1#room-history-visibility) controls whether membership of the space is required to view the room list, membership list, etc. "Public" or "community" spaces would be set to `world_readable` to allow clients to see the directory of rooms within the space by peeking into the space-room (thus avoiding the need to add `m.room.member` events to the event graph within the room). Join rules, invites and 3PID invites work as for a normal room, with the exception that `invite_state` sent along with invites should be amended to include the `m.room.create` event, to allow clients to discern whether an invite is to a space-room or not. ### Relationship between rooms and spaces The intention is that rooms and spaces form a hierarchy, which clients can use to structure the user's room list into a tree view. The parent/child relationship can be expressed in one of two ways: 1. The admins of a space can advertise rooms and subspaces for their space by setting `m.space.child` state events. The `state_key` is the ID of a child room or space, and the content must contain a `via` key which gives a list of candidate servers that can be used to join the room. Something like: ```jsonc // a child room { "type": "m.space.child", "state_key": "!abcd:example.com", "content": { "via": ["example.com", "test.org"] } } // a child room with an ordering. { "type": "m.space.child", "state_key": "!efgh:example.com", "content": { "via": ["example.com"], "order": "abcd" } } // no longer a child room { "type": "m.space.child", "state_key": "!jklm:example.com", "content": {} } ``` Children where `via` is not present are ignored. The `order` key is a string which is used to provide a default ordering of siblings in the room list. (Rooms are sorted based on a lexicographic ordering of the characters in `order` values; rooms with no `order` come last. `order`s which are not strings, or do not consist solely of ascii characters in the range `\x20` (space) to `\x7F` (`~`), or consist of more than 50 characters, are forbidden and should be ignored if received.) 2. Separately, rooms can claim parents via the `m.space.parent` state event. Similar to `m.space.child`, the `state_key` is the ID of the parent space, and the content must contain a `via` key which gives a list of candidate servers that can be used to join the parent. ```jsonc { "type": "m.space.parent", "state_key": "!space:example.com", "content": { "via": ["example.com"], "canonical": true } } ``` Parents where `via` is not present are ignored. `canonical` determines whether this is the main parent for the space. When a user joins a room with a canonical parent, clients may switch to view the room in the context of that space, peeking into it in order to find other rooms and group them together. In practice, well behaved rooms should only have one `canonical` parent, but given this is not enforced: if multiple are present the client should select the one with the lowest room ID, as determined via a lexicographic ordering of the Unicode code-points. To avoid abuse where a room admin falsely claims that a room is part of a space that it should not be, clients could ignore such `m.space.parent` events unless either (a) there is a corresponding `m.space.child` event in the claimed parent, or (b) the sender of the `m.space.child` event has a sufficient power-level to send such an `m.space.child` event in the parent. (It is not necessarily required that that user currently be a member of the parent room - only the `m.room.power_levels` event is inspected.) [Checking the power-level rather than requiring an *actual* `m.space.child` event in the parent allows for "secret" rooms (see below).] Where the parent space also claims a parent, clients can recursively peek into the grandparent space, and so on. This structure means that rooms can end up appearing multiple times in the room list hierarchy, given they can be children of multiple different spaces (or have multiple parents in different spaces). In a typical hierarchy, we expect *both* parent->child and child->parent relationships to exist, so that the space can be discovered from the room, and vice versa. Occasions when the relationship only exists in one direction include: * User-curated lists of rooms: in this case the space will not be listed as a parent of the room. * "Secret" rooms: rooms where the admin does not want the room to be advertised as part of a given space, but *does* want the room to form part of the hierarchy of that space for those in the know. Cycles in the parent->child and child->parent relationships are *not* permitted, but clients (and servers) should be aware that they may be encountered, and MUST spot and break cycles rather than infinitely looping. In order for UI to be consistent across different clients, any cycles must be cut deterministically. For instance, if space A points to space B as a child but space B also points to space A as a child, then clients must be consistent on whether A is shown in the UI as the parent of B (or vice versa). Therefore when a client spots a loop in parent->child or child->parent relationships, it MUST ignore the cycle by cutting it such that the oldest space-room is the root (i.e. oldest parent). 'Oldest' means the room whose `m.room.create` event has the numerically smallest `origin_server_ts`. If the oldest rooms are precisely the same age, we select the root as the room with the lexicographically smallest `room_id`. ### Suggested children Space admins can mark particular children of a space as "suggested". This mainly serves as a hint to clients that that they can be displayed differently (for example by showing them eagerly in the room list), though future server-side interfaces (such as the summary API proposed in [MSC2946](https://github.com/matrix-org/matrix-doc/pull/2946)) might also make use of it. A suggested child is identified by a `"suggested": true` property in the `m.space.child` event: ```jsonc { "type": "m.space.child", "state_key": "!abcd:example.com", "content": { "via": ["example.com", "test.org"], "suggested": true } } ``` A child which is missing the `suggested` property is treated identically to a child with `"suggested": false`. A suggested child may be a room or a subspace. ### Extended "room invite state" The specification is currently vague about what room state should be available to users that have been invited to a room, though the Federation API spec does recommend that the `invite_room_state` sent over federation via [PUT `/_matrix/federation/v2/invite`](https://matrix.org/docs/spec/server_server/r0.1.4#put-matrix-federation-v2-invite-roomid-eventid) should include "the join rules, canonical alias, avatar, and name of the room". This MSC proposes adding `m.room.create` to that list, so that the recipient of an invite can distinguish invites to spaces from other invites. ## Future extensions The following sections are not blocking parts of this proposal, but are included as a useful reference for how we imagine it will be extended in future. ### Auto-joined children We could add an `auto_join` flag to `m.space.child` events to allow a space admin to list the sub-spaces and rooms in that space which should be automatically joined by members of that space. This would be distinct from a force-join: the user could subsequently part any auto-joined room if they desire. Joining would be performed by the client. This could possibly be sped up by using a summary API (such as that proposed in [MSC2946](https://github.com/matrix-org/matrix-doc/pull/2946)) to get a summary of the spacetree to be joined, and then using a batch join API to join whichever subset of it makes most sense for the client's UX. Obviously auto-joining can be a DoS vector, and we consider it to be antisocial for a space to try to autojoin its members to more than 100 children (in total). Clients could display the auto-joined children in the room list whenever the space appears in the list - thus helping users discover other rooms in a space even if they're not joined to that space. For instance, if you join `#matrix:matrix.org`, your client could show that room in the context of its parent space, with that space's auto-joined children shown alongside it as siblings. ### Restricting access to the spaces membership list In the existing `/r0/groups` API, the group server has total control over the visibility of group membership, as seen by a given querying user. In other words, arbitrary users can see entirely different views of a group at the server's discretion. Whilst this is very powerful for mapping arbitrary organisational structures into Matrix, it may be overengineered. Instead, the common case is (we believe) a space where some users are publicly visible as members, and others are not. One way to of achieving this would be to create a separate space for the private members - e.g. have `#foo:matrix.org` and `#foo-private:matrix.org`. `#foo-private:matrix.org` is set up with `m.room.history_visibility` to not to allow peeking; you have to be joined to see the members. ### Flair ("Flair" is a term we use to describe a small badge which appears next to a user's displayname to advertise their membership of a space.) The flair image for a group is given by the room avatar. (In future it might preferable to use hand-crafted small resolution images: see [matrix-doc#1778](https://github.com/matrix-org/matrix-doc/issues/1778). One way this might be implemented is: * User publishes the spaces they wish to announce on their profile ([MSC1769](https://github.com/matrix-org/matrix-doc/issues/1769) as an `m.flair` state event: it lists the spaces which they are advertising. * When a client wants to know the current flair for a set of users (i.e. those which it is currently displaying in the timeline), it peeks the profile rooms of those users. (Ideally there would be an API to support peeking multiple rooms at once to facilitate this.) * The client must check that the user is *actually* a member of the advertised spaces. Nominally it can do this by peeking the membership list of the space; however for efficiency we could expose a dedicated Client-Server API to do this check (and both servers and clients can cache the results fairly aggressively.) ## Related MSCs * [MSC2946](https://github.com/matrix-org/matrix-doc/issues/2946): Spaces Summary API. * [MSC2962](https://github.com/matrix-org/matrix-doc/issues/2962): Managing power levels via Spaces. * [MSC3083](https://github.com/matrix-org/matrix-doc/issues/3083): Restricting room membership based on space membership. * [MSC2753](https://github.com/matrix-org/matrix-doc/issues/2753) for effective peeking over the C/S API. * [MSC2444](https://github.com/matrix-org/matrix-doc/issues/2444) (or similar) for effective peeking over Federation. ## Security considerations None at present. ## Potential issues * If the membership of a space would be large (for example: an organisation of several thousand people), this membership has to be copied entirely into the room, rather than querying/searching incrementally. * If the membership list is based on an external service such as LDAP, it is hard to keep the space membership in sync with the LDAP directory. In practice, it might be possible to do so via a nightly "synchronisation" job which searches the LDAP directory, or via "AD auditing". * No allowance is made for exposing different 'views' of the membership list to different querying users. (It may be possible to simulate this behaviour using smaller spaces). * The requirement that `m.room.parent` links be ignored unless the sender has a high PL in the parent room could lead to suprising effects where a parent link suddenly ceases to take effect because a user loses their PL in the parent room. This is mitigated in the general case by honouring the parent link when there is a corresponding `m.room.child` event, however it remains a problem for "secret" rooms. * The `via` servers listed in the `m.room.child` and `m.room.parent` events could get out of date, and will need to be updated from time to time. This remains an unsolved problem. ## Rejected alternatives ### Use a separate state event for type of room [MSC1840](https://github.com/matrix-org/matrix-doc/pull/1840) proposes the use of a separate `m.room.type` state event to distinguish different room types. This implies that rooms can dynamically switch between being a Space, and being a regular non-Space room. That is not a usecase we consider useful, and allowing it would impose significant complexity on client implementations. ## Unstable prefix The following mapping will be used for identifiers in this MSC during development: Proposed final identifier | Purpose | Development identifier ------------------------------- | ------- | ---- `type` | property in `m.room.create` | `org.matrix.msc1772.type` `m.space` | value of `type` in `m.room.create` | `org.matrix.msc1772.space` `m.space.child` | event type | `org.matrix.msc1772.space.child` `m.space.parent` | event type | `org.matrix.msc1772.space.parent` ## History * This replaces [MSC1215](https://docs.google.com/document/d/1ZnAuA_zti-K2-RnheXII1F1-oyVziT4tJffdw1-SHrE). * Other thoughts that led into this are [documented](https://docs.google.com/document/d/1hljmD-ytdCRL37t-D_LvGDA3a0_2MwowSPIiZRxcabs). ## Appendix: problems with the `/r0/groups` API The existing `/r0/groups` API, as proposed in [MSC971](https://github.com/matrix-org/matrix-doc/issues/971), has various problems, including: * It is a large API surface to implement, maintain and spec - particularly for all the different clients out there. * Much of the API overlaps significantly with mechanisms we already have for managing rooms: * Tracking membership identity * Tracking membership hierarchy * Inviting/kicking/banning user * Tracking key/value metadata * There are membership management features which could benefit rooms which would also benefit groups and vice versa (e.g. "auditorium mode") * The current implementations on Riot Web/iOS/Android all suffer bugs and issues which have been solved previously for rooms. * no local-echo of invites * failures to set group avatars * ability to specify multiple admins * It doesn't support pushing updates to clients (particularly for flair membership): https://github.com/vector-im/riot-web/issues/5235 * It doesn't support third-party invites. * Groups could benefit from other features which already exist today for rooms * e.g. Room Directories * Groups are centralised, rather than being replicated across all participating servers.