You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
matrix-spec-proposals/specification/20_client_server_api.rst

1132 lines
39 KiB
ReStructuredText

Client-Server API
=================
Registration and Login
----------------------
Clients must register with a home server in order to use Matrix. After
registering, the client will be given an access token which must be used in ALL
requests to that home server as a query parameter 'access_token'.
If the client has already registered, they need to be able to login to their
account. The home server may provide many different ways of logging in, such as
user/password auth, login via a social network (OAuth2), login by confirming a
token sent to their email address, etc. This specification does not define how
home servers should authorise their users who want to login to their existing
accounts, but instead defines the standard interface which implementations
should follow so that ANY client can login to ANY home server. Clients login
using the |login|_ API. Clients register using the |register|_ API.
Registration follows the same general procedure as login, but the path requests
are sent to and the details contained in them are different.
In both registration and login cases, the process takes the form of one or more
stages, where at each stage the client submits a set of data for a given stage
type and awaits a response from the server, which will either be a final
success or a request to perform an additional stage. This exchange continues
until the final success.
In order to determine up-front what the server's requirements are, the client
can request from the server a complete description of all of its acceptable
flows of the registration or login process. It can then inspect the list of
returned flows looking for one for which it believes it can complete all of the
required stages, and perform it. As each home server may have different ways of
logging in, the client needs to know how they should login. All distinct login
stages MUST have a corresponding ``type``. A ``type`` is a namespaced string
which details the mechanism for logging in.
A client may be able to login via multiple valid login flows, and should choose
a single flow when logging in. A flow is a series of login stages. The home
server MUST respond with all the valid login flows when requested by a simple
``GET`` request directly to the ``/login`` or ``/register`` paths::
{
"flows": [
{
"type": "<login type1a>",
"stages": [ "<login type 1a>", "<login type 1b>" ]
},
{
"type": "<login type2a>",
"stages": [ "<login type 2a>", "<login type 2b>" ]
},
{
"type": "<login type3>"
}
]
}
The client can now select which flow it wishes to use, and begin making
``POST`` requests to the ``/login`` or ``/register`` paths with JSON body
content containing the name of the stage as the ``type`` key, along with
whatever additional parameters are required for that login or registration type
(see below). After the flow is completed, the client's fully-qualified user
ID and a new access token MUST be returned::
{
"user_id": "@user:matrix.org",
"access_token": "abcdef0123456789"
}
The ``user_id`` key is particularly useful if the home server wishes to support
localpart entry of usernames (e.g. "user" rather than "@user:matrix.org"), as
the client may not be able to determine its ``user_id`` in this case.
If the flow has multiple stages to it, the home server may wish to create a
session to store context between requests. If a home server responds with a
``session`` key to a request, clients MUST submit it in subsequent requests
until the flow is completed::
{
"session": "<session id>"
}
This specification defines the following login types:
- ``m.login.password``
- ``m.login.oauth2``
- ``m.login.email.code``
- ``m.login.email.url``
- ``m.login.email.identity``
Password-based
~~~~~~~~~~~~~~
:Type:
``m.login.password``
:Description:
Login is supported via a username and password.
To respond to this type, reply with::
{
"type": "m.login.password",
"user": "<user_id or user localpart>",
"password": "<password>"
}
The home server MUST respond with either new credentials, the next stage of the
login process, or a standard error response.
Captcha-based
~~~~~~~~~~~~~
:Type:
``m.login.recaptcha``
:Description:
Login is supported by responding to a captcha (in the case of the Synapse
implementation, Google's Recaptcha library is used).
To respond to this type, reply with::
{
"type": "m.login.recaptcha",
"challenge": "<challenge token>",
"response": "<user-entered text>"
}
.. NOTE::
In Synapse, the Recaptcha parameters can be obtained in Javascript by calling:
Recaptcha.get_challenge();
Recaptcha.get_response();
The home server MUST respond with either new credentials, the next stage of the
login process, or a standard error response.
OAuth2-based
~~~~~~~~~~~~
:Type:
``m.login.oauth2``
:Description:
Login is supported via OAuth2 URLs. This login consists of multiple requests.
To respond to this type, reply with::
{
"type": "m.login.oauth2",
"user": "<user_id or user localpart>"
}
The server MUST respond with::
{
"uri": <Authorization Request URI OR service selection URI>
}
The home server acts as a 'confidential' client for the purposes of OAuth2. If
the uri is a ``sevice selection URI``, it MUST point to a webpage which prompts
the user to choose which service to authorize with. On selection of a service,
this MUST link through to an ``Authorization Request URI``. If there is only 1
service which the home server accepts when logging in, this indirection can be
skipped and the "uri" key can be the ``Authorization Request URI``.
The client then visits the ``Authorization Request URI``, which then shows the
OAuth2 Allow/Deny prompt. Hitting 'Allow' returns the ``redirect URI`` with the
auth code. Home servers can choose any path for the ``redirect URI``. The
client should visit the ``redirect URI``, which will then finish the OAuth2
login process, granting the home server an access token for the chosen service.
When the home server gets this access token, it verifies that the cilent has
authorised with the 3rd party, and can now complete the login. The OAuth2
``redirect URI`` (with auth code) MUST respond with either new credentials, the
next stage of the login process, or a standard error response.
For example, if a home server accepts OAuth2 from Google, it would return the
Authorization Request URI for Google::
{
"uri": "https://accounts.google.com/o/oauth2/auth?response_type=code&
client_id=CLIENT_ID&redirect_uri=REDIRECT_URI&scope=photos"
}
The client then visits this URI and authorizes the home server. The client then
visits the REDIRECT_URI with the auth code= query parameter which returns::
{
"user_id": "@user:matrix.org",
"access_token": "0123456789abcdef"
}
Email-based (code)
~~~~~~~~~~~~~~~~~~
:Type:
``m.login.email.code``
:Description:
Login is supported by typing in a code which is sent in an email. This login
consists of multiple requests.
To respond to this type, reply with::
{
"type": "m.login.email.code",
"user": "<user_id or user localpart>",
"email": "<email address>"
}
After validating the email address, the home server MUST send an email
containing an authentication code and return::
{
"type": "m.login.email.code",
"session": "<session id>"
}
The second request in this login stage involves sending this authentication
code::
{
"type": "m.login.email.code",
"session": "<session id>",
"code": "<code in email sent>"
}
The home server MUST respond to this with either new credentials, the next
stage of the login process, or a standard error response.
Email-based (url)
~~~~~~~~~~~~~~~~~
:Type:
``m.login.email.url``
:Description:
Login is supported by clicking on a URL in an email. This login consists of
multiple requests.
To respond to this type, reply with::
{
"type": "m.login.email.url",
"user": "<user_id or user localpart>",
"email": "<email address>"
}
After validating the email address, the home server MUST send an email
containing an authentication URL and return::
{
"type": "m.login.email.url",
"session": "<session id>"
}
The email contains a URL which must be clicked. After it has been clicked, the
client should perform another request::
{
"type": "m.login.email.url",
"session": "<session id>"
}
The home server MUST respond to this with either new credentials, the next
stage of the login process, or a standard error response.
A common client implementation will be to periodically poll until the link is
clicked. If the link has not been visited yet, a standard error response with
an errcode of ``M_LOGIN_EMAIL_URL_NOT_YET`` should be returned.
Email-based (identity server)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
:Type:
``m.login.email.identity``
:Description:
Login is supported by authorising an email address with an identity server.
Prior to submitting this, the client should authenticate with an identity
server. After authenticating, the session information should be submitted to
the home server.
To respond to this type, reply with::
{
"type": "m.login.email.identity",
"threepidCreds": [
{
"sid": "<identity server session id>",
"clientSecret": "<identity server client secret>",
"idServer": "<url of identity server authed with, e.g. 'matrix.org:8090'>"
}
]
}
N-Factor Authentication
~~~~~~~~~~~~~~~~~~~~~~~
Multiple login stages can be combined to create N-factor authentication during
login.
This can be achieved by responding with the ``next`` login type on completion
of a previous login stage::
{
"next": "<next login type>"
}
If a home server implements N-factor authentication, it MUST respond with all
``stages`` when initially queried for their login requirements::
{
"type": "<1st login type>",
"stages": [ <1st login type>, <2nd login type>, ... , <Nth login type> ]
}
This can be represented conceptually as::
_______________________
| Login Stage 1 |
| type: "<login type1>" |
| ___________________ |
| |_Request_1_________| | <-- Returns "session" key which is used throughout.
| ___________________ |
| |_Request_2_________| | <-- Returns a "next" value of "login type2"
|_______________________|
|
|
_________V_____________
| Login Stage 2 |
| type: "<login type2>" |
| ___________________ |
| |_Request_1_________| |
| ___________________ |
| |_Request_2_________| |
| ___________________ |
| |_Request_3_________| | <-- Returns a "next" value of "login type3"
|_______________________|
|
|
_________V_____________
| Login Stage 3 |
| type: "<login type3>" |
| ___________________ |
| |_Request_1_________| | <-- Returns user credentials
|_______________________|
Fallback
~~~~~~~~
Clients cannot be expected to be able to know how to process every single login
type. If a client determines it does not know how to handle a given login type,
it should request a login fallback page::
GET matrix/client/api/v1/login/fallback
This MUST return an HTML page which can perform the entire login process.
Events
------
Receiving live updates on a client
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Clients can receive new events by long-polling the home server. This will hold
open the HTTP connection for a short period of time waiting for new events,
returning early if an event occurs. This is called the `Event Stream`_. All
events which are visible to the client will appear in the event stream. When
the request returns, an ``end`` token is included in the response. This token
can be used in the next request to continue where the client left off.
All events must be deduplicated based on their event ID (TODO: is this actually a
hard requirement in CS v2?)
.. TODO-spec
How do we filter the event stream?
Do we ever return multiple events in a single request? Don't we get lots of request
setup RTT latency if we only do one event per request? Do we ever support streaming
requests? Why not websockets?
When the client first logs in, they will need to initially synchronise with
their home server. This is achieved via the |initialSync|_ API. This API also
returns an ``end`` token which can be used with the event stream.
Rooms
-----
Creation
~~~~~~~~
To create a room, a client has to use the |createRoom|_ API. There are various
options which can be set when creating a room:
``visibility``
Type:
String
Optional:
Yes
Value:
Either ``public`` or ``private``.
Description:
A ``public`` visibility indicates that the room will be shown in the public
room list. A ``private`` visibility will hide the room from the public room
list. Rooms default to ``private`` visibility if this key is not included.
``room_alias_name``
Type:
String
Optional:
Yes
Value:
The room alias localpart.
Description:
If this is included, a room alias will be created and mapped to the newly
created room. The alias will belong on the same home server which created
the room, e.g. ``!qadnasoi:domain.com >>> #room_alias_name:domain.com``
``name``
Type:
String
Optional:
Yes
Value:
The ``name`` value for the ``m.room.name`` state event.
Description:
If this is included, an ``m.room.name`` event will be sent into the room to
indicate the name of the room. See `Room Events`_ for more information on
``m.room.name``.
``topic``
Type:
String
Optional:
Yes
Value:
The ``topic`` value for the ``m.room.topic`` state event.
Description:
If this is included, an ``m.room.topic`` event will be sent into the room
to indicate the topic for the room. See `Room Events`_ for more information
on ``m.room.topic``.
``invite``
Type:
List
Optional:
Yes
Value:
A list of user ids to invite.
Description:
This will tell the server to invite everyone in the list to the newly
created room.
Example::
{
"visibility": "public",
"room_alias_name": "thepub",
"name": "The Grand Duke Pub",
"topic": "All about happy hour"
}
The home server will create a ``m.room.create`` event when the room is created,
which serves as the root of the PDU graph for this room. This event also has a
``creator`` key which contains the user ID of the room creator. It will also
generate several other events in order to manage permissions in this room. This
includes:
- ``m.room.power_levels`` : Sets the power levels of users.
- ``m.room.join_rules`` : Whether the room is "invite-only" or not.
- ``m.room.add_state_level``: The power level required in order to add new
state to the room (as opposed to updating exisiting state)
- ``m.room.send_event_level`` : The power level required in order to send a
message in this room.
- ``m.room.ops_level`` : The power level required in order to kick or ban a
user from the room or redact an event in the room.
See `Room Events`_ for more information on these events.
Room aliases
~~~~~~~~~~~~
.. NOTE::
This section is a work in progress.
Room aliases can be created by sending a ``PUT /directory/room/<room alias>``::
{
"room_id": <room id>
}
They can be deleted by sending a ``DELETE /directory/room/<room alias>`` with
no content. Only some privileged users may be able to delete room aliases, e.g.
server admins, the creator of the room alias, etc. This specification does not
outline the privilege level required for deleting room aliases.
As room aliases are scoped to a particular home server domain name, it is
likely that a home server will reject attempts to maintain aliases on other
domain names. This specification does not provide a way for home servers to
send update requests to other servers.
Rooms store a *partial* list of room aliases via the ``m.room.aliases`` state
event. This alias list is partial because it cannot guarantee that the alias
list is in any way accurate or up-to-date, as room aliases can point to
different room IDs over time. Crucially, the aliases in this event are
**purely informational** and SHOULD NOT be treated as accurate. They SHOULD
be checked before they are used or shared with another user. If a room
appears to have a room alias of ``#alias:example.com``, this SHOULD be checked
to make sure that the room's ID matches the ``room_id`` returned from the
request.
Room aliases can be checked in the same way they are resolved; by sending a
``GET /directory/room/<room alias>``::
{
"room_id": <room id>,
"servers": [ <domain>, <domain2>, <domain3> ]
}
Home servers can respond to resolve requests for aliases on other domains than
their own by using the federation API to ask other domain name home servers.
Permissions
~~~~~~~~~~~
.. NOTE::
This section is a work in progress.
Permissions for rooms are done via the concept of power levels - to do any
action in a room a user must have a suitable power level. Power levels are
stored as state events in a given room.
Power levels for users are defined in ``m.room.power_levels``, where both a
default and specific users' power levels can be set::
{
"<user id 1>": <power level int>,
"<user id 2>": <power level int>,
"default": 0
}
By default all users have a power level of 0, other than the room creator whose
power level defaults to 100. Users can grant other users increased power levels
up to their own power level. For example, user A with a power level of 50 could
increase the power level of user B to a maximum of level 50. Power levels for
users are tracked per-room even if the user is not present in the room.
State events may contain a ``required_power_level`` key, which indicates the
minimum power a user must have before they can update that state key. The only
exception to this is when a user leaves a room, which revokes the user's right
to update state events in that room.
To perform certain actions there are additional power level requirements
defined in the following state events:
- ``m.room.send_event_level`` defines the minimum ``level`` for sending
non-state events. Defaults to 50.
- ``m.room.add_state_level`` defines the minimum ``level`` for adding new
state, rather than updating existing state. Defaults to 50.
- ``m.room.ops_level`` defines the minimum ``ban_level`` and ``kick_level`` to
ban and kick other users respectively. This defaults to a kick and ban levels
of 50 each.
Joining rooms
~~~~~~~~~~~~~
.. TODO-doc What does the home server have to do to join a user to a room?
- See SPEC-30.
Users need to join a room in order to send and receive events in that room. A
user can join a room by making a request to |/join/<room_alias_or_id>|_ with::
{}
Alternatively, a user can make a request to |/rooms/<room_id>/join|_ with the
same request content. This is only provided for symmetry with the other
membership APIs: ``/rooms/<room id>/invite`` and ``/rooms/<room id>/leave``. If
a room alias was specified, it will be automatically resolved to a room ID,
which will then be joined. The room ID that was joined will be returned in
response::
{
"room_id": "!roomid:domain"
}
The membership state for the joining user can also be modified directly to be
``join`` by sending the following request to
``/rooms/<room id>/state/m.room.member/<url encoded user id>``::
{
"membership": "join"
}
See the `Room events`_ section for more information on ``m.room.member``.
After the user has joined a room, they will receive subsequent events in that
room. This room will now appear as an entry in the |initialSync|_ API.
Some rooms enforce that a user is *invited* to a room before they can join that
room. Other rooms will allow anyone to join the room even if they have not
received an invite.
Inviting users
~~~~~~~~~~~~~~
.. TODO-doc Invite-join dance
- Outline invite join dance. What is it? Why is it required? How does it work?
- What does the home server have to do?
The purpose of inviting users to a room is to notify them that the room exists
so they can choose to become a member of that room. Some rooms require that all
users who join a room are previously invited to it (an "invite-only" room).
Whether a given room is an "invite-only" room is determined by the room config
key ``m.room.join_rules``. It can have one of the following values:
``public``
This room is free for anyone to join without an invite.
``invite``
This room can only be joined if you were invited.
Only users who have a membership state of ``join`` in a room can invite new
users to said room. The person being invited must not be in the ``join`` state
in the room. The fully-qualified user ID must be specified when inviting a
user, as the user may reside on a different home server. To invite a user, send
the following request to |/rooms/<room_id>/invite|_, which will manage the
entire invitation process::
{
"user_id": "<user id to invite>"
}
Alternatively, the membership state for this user in this room can be modified
directly by sending the following request to
``/rooms/<room id>/state/m.room.member/<url encoded user id>``::
{
"membership": "invite"
}
See the `Room events`_ section for more information on ``m.room.member``.
Leaving rooms
~~~~~~~~~~~~~
.. TODO-spec - HS deleting rooms they are no longer a part of. Not implemented.
- This is actually Very Tricky. If all clients a HS is serving leave a room,
the HS will no longer get any new events for that room, because the servers
who get the events are determined on the *membership list*. There should
probably be a way for a HS to lurk on a room even if there are 0 of their
members in the room.
- Grace period before deletion?
- Under what conditions should a room NOT be purged?
A user can leave a room to stop receiving events for that room. A user must
have joined the room before they are eligible to leave the room. If the room is
an "invite-only" room, they will need to be re-invited before they can re-join
the room. To leave a room, a request should be made to
|/rooms/<room_id>/leave|_ with::
{}
Alternatively, the membership state for this user in this room can be modified
directly by sending the following request to
``/rooms/<room id>/state/m.room.member/<url encoded user id>``::
{
"membership": "leave"
}
See the `Room events`_ section for more information on ``m.room.member``.
Once a user has left a room, that room will no longer appear on the
|initialSync|_ API.
If all members in a room leave, that room becomes eligible for deletion.
Banning users in a room
~~~~~~~~~~~~~~~~~~~~~~~
A user may decide to ban another user in a room. 'Banning' forces the target
user to leave the room and prevents them from re-joining the room. A banned
user will not be treated as a joined user, and so will not be able to send or
receive events in the room. In order to ban someone, the user performing the
ban MUST have the required power level. To ban a user, a request should be made
to |/rooms/<room_id>/ban|_ with::
{
"user_id": "<user id to ban"
"reason": "string: <reason for the ban>"
}
Banning a user adjusts the banned member's membership state to ``ban`` and
adjusts the power level of this event to a level higher than the banned person.
Like with other membership changes, a user can directly adjust the target
member's state, by making a request to
``/rooms/<room id>/state/m.room.member/<user id>``::
{
"membership": "ban"
}
Events in a room
~~~~~~~~~~~~~~~~
Room events can be split into two categories:
:State Events:
These are events which replace events that came before it, depending on a set
of unique keys. These keys are the event ``type`` and a ``state_key``.
Events with the same set of keys will be overwritten. Typically, state events
are used to store state, hence their name.
:Non-state events:
These are events which cannot be overwritten after sending. The list of
events continues to grow as more events are sent. As this list grows, it
becomes necessary to provide a mechanism for navigating this list. Pagination
APIs are used to view the list of historical non-state events. Typically,
non-state events are used to send messages.
This specification outlines several events, all with the event type prefix
``m.``. However, applications may wish to add their own type of event, and this
can be achieved using the REST API detailed in the following sections. If new
events are added, the event ``type`` key SHOULD follow the Java package naming
convention, e.g. ``com.example.myapp.event``. This ensures event types are
suitably namespaced for each application and reduces the risk of clashes.
State events
~~~~~~~~~~~~
State events can be sent by ``PUT`` ing to
|/rooms/<room_id>/state/<event_type>/<state_key>|_. These events will be
overwritten if ``<room id>``, ``<event type>`` and ``<state key>`` all match.
If the state event has no ``state_key``, it can be omitted from the path. These
requests **cannot use transaction IDs** like other ``PUT`` paths because they
cannot be differentiated from the ``state_key``. Furthermore, ``POST`` is
unsupported on state paths. Valid requests look like::
PUT /rooms/!roomid:domain/state/m.example.event
{ "key" : "without a state key" }
PUT /rooms/!roomid:domain/state/m.another.example.event/foo
{ "key" : "with 'foo' as the state key" }
In contrast, these requests are invalid::
POST /rooms/!roomid:domain/state/m.example.event/
{ "key" : "cannot use POST here" }
PUT /rooms/!roomid:domain/state/m.another.example.event/foo/11
{ "key" : "txnIds are not supported" }
Care should be taken to avoid setting the wrong ``state key``::
PUT /rooms/!roomid:domain/state/m.another.example.event/11
{ "key" : "with '11' as the state key, but was probably intended to be a txnId" }
The ``state_key`` is often used to store state about individual users, by using
the user ID as the ``state_key`` value. For example::
PUT /rooms/!roomid:domain/state/m.favorite.animal.event/%40my_user%3Adomain.com
{ "animal" : "cat", "reason": "fluffy" }
In some cases, there may be no need for a ``state_key``, so it can be omitted::
PUT /rooms/!roomid:domain/state/m.room.bgd.color
{ "color": "red", "hex": "#ff0000" }
See `Room Events`_ for the ``m.`` event specification.
Non-state events
~~~~~~~~~~~~~~~~
Non-state events can be sent by sending a request to
|/rooms/<room_id>/send/<event_type>|_. These requests *can* use transaction
IDs and ``PUT``/``POST`` methods. Non-state events allow access to historical
events and pagination, making it best suited for sending messages. For
example::
POST /rooms/!roomid:domain/send/m.custom.example.message
{ "text": "Hello world!" }
PUT /rooms/!roomid:domain/send/m.custom.example.message/11
{ "text": "Goodbye world!" }
See `Room Events`_ for the ``m.`` event specification.
Syncing rooms
~~~~~~~~~~~~~
.. NOTE::
This section is a work in progress.
When a client logs in, they may have a list of rooms which they have already
joined. These rooms may also have a list of events associated with them. The
purpose of 'syncing' is to present the current room and event information in a
convenient, compact manner. The events returned are not limited to room events;
presence events will also be returned. A single syncing API is provided:
- |initialSync|_ : A global sync which will present room and event information
for all rooms the user has joined.
.. TODO-spec room-scoped initial sync
- |/rooms/<room_id>/initialSync|_ : A sync scoped to a single room. Presents
room and event information for this room only.
- Room-scoped initial sync is Very Tricky because typically people would
want to sync the room then listen for any new content from that point
onwards. The event stream cannot do this for a single room currently.
As a result, commenting room-scoped initial sync at this time.
The |initialSync|_ API contains the following keys:
``presence``
Description:
Contains a list of presence information for users the client is interested
in.
Format:
A JSON array of ``m.presence`` events.
``end``
Description:
Contains an event stream token which can be used with the `Event Stream`_.
Format:
A string containing the event stream token.
``rooms``
Description:
Contains a list of room information for all rooms the client has joined,
and limited room information on rooms the client has been invited to.
Format:
A JSON array containing Room Information JSON objects.
Room Information:
Description:
Contains all state events for the room, along with a limited amount of
the most recent non-state events, configured via the ``limit`` query
parameter. Also contains additional keys with room metadata, such as the
``room_id`` and the client's ``membership`` to the room.
Format:
A JSON object with the following keys:
``room_id``
A string containing the ID of the room being described.
``membership``
A string representing the client's membership status in this room.
``messages``
An event stream JSON object containing a ``chunk`` of recent non-state
events, along with an ``end`` token. *NB: The name of this key will be
changed in a later version.*
``state``
A JSON array containing all the current state events for this room.
Getting events for a room
~~~~~~~~~~~~~~~~~~~~~~~~~
There are several APIs provided to ``GET`` events for a room:
``/rooms/<room id>/state/<event type>/<state key>``
Description:
Get the state event identified.
Response format:
A JSON object representing the state event **content**.
Example:
``/rooms/!room:domain.com/state/m.room.name`` returns ``{ "name": "Room name" }``
|/rooms/<room_id>/state|_
Description:
Get all state events for a room.
Response format:
``[ { state event }, { state event }, ... ]``
Example:
TODO-doc
|/rooms/<room_id>/members|_
Description:
Get all ``m.room.member`` state events.
Response format:
``{ "start": "<token>", "end": "<token>", "chunk": [ { m.room.member event }, ... ] }``
Example:
TODO-doc
|/rooms/<room_id>/messages|_
Description:
Get all ``m.room.message`` and ``m.room.member`` events. This API supports
pagination using ``from`` and ``to`` query parameters, coupled with the
``start`` and ``end`` tokens from an |initialSync|_ API.
Response format:
``{ "start": "<token>", "end": "<token>" }``
Example:
TODO-doc
|/rooms/<room_id>/initialSync|_
Description:
Get all relevant events for a room. This includes state events, paginated
non-state events and presence events.
Response format:
`` { TODO-doc } ``
Example:
TODO-doc
Redactions
~~~~~~~~~~
Since events are extensible it is possible for malicious users and/or servers
to add keys that are, for example offensive or illegal. Since some events
cannot be simply deleted, e.g. membership events, we instead 'redact' events.
This involves removing all keys from an event that are not required by the
protocol. This stripped down event is thereafter returned anytime a client or
remote server requests it.
Events that have been redacted include a ``redacted_because`` key whose value
is the event that caused it to be redacted, which may include a reason.
Redacting an event cannot be undone, allowing server owners to delete the
offending content from the databases.
Currently, only room admins can redact events by sending a ``m.room.redaction``
event, but server admins also need to be able to redact events by a similar
mechanism.
Upon receipt of a redaction event, the server should strip off any keys not in
the following list:
- ``event_id``
- ``type``
- ``room_id``
- ``user_id``
- ``state_key``
- ``prev_state``
- ``content``
The content object should also be stripped of all keys, unless it is one of
one of the following event types:
- ``m.room.member`` allows key ``membership``
- ``m.room.create`` allows key ``creator``
- ``m.room.join_rules`` allows key ``join_rule``
- ``m.room.power_levels`` allows keys that are user ids or ``default``
- ``m.room.add_state_level`` allows key ``level``
- ``m.room.send_event_level`` allows key ``level``
- ``m.room.ops_levels`` allows keys ``kick_level``, ``ban_level``
and ``redact_level``
- ``m.room.aliases`` allows key ``aliases``
The redaction event should be added under the key ``redacted_because``.
When a client receives a redaction event it should change the redacted event
in the same way a server does.
Presence
~~~~~~~~
The client API for presence is on the following set of REST calls.
Fetching basic status::
GET $PREFIX/presence/:user_id/status
Returned content: JSON object containing the following keys:
presence: "offline"|"unavailable"|"online"|"free_for_chat"
status_msg: (optional) string of freeform text
last_active_ago: miliseconds since the last activity by the user
Setting basic status::
PUT $PREFIX/presence/:user_id/status
Content: JSON object containing the following keys:
presence and status_msg: as above
When setting the status, the activity time is updated to reflect that activity;
the client does not need to specify the ``last_active_ago`` field.
Fetching the presence list::
GET $PREFIX/presence/list
Returned content: JSON array containing objects; each object containing the
following keys:
user_id: observed user ID
presence: "offline"|"unavailable"|"online"|"free_for_chat"
status_msg: (optional) string of freeform text
last_active_ago: miliseconds since the last activity by the user
Maintaining the presence list::
POST $PREFIX/presence/list
Content: JSON object containing either or both of the following keys:
invite: JSON array of strings giving user IDs to send invites to
drop: JSON array of strings giving user IDs to remove from the list
.. TODO-spec
- Define how users receive presence invites, and how they accept/decline them
Profiles
~~~~~~~~
The client API for profile management consists of the following REST calls.
Fetching a user account displayname::
GET $PREFIX/profile/:user_id/displayname
Returned content: JSON object containing the following keys:
displayname: string of freeform text
This call may be used to fetch the user's own displayname or to query the name
of other users; either locally or on remote systems hosted on other home
servers.
Setting a new displayname::
PUT $PREFIX/profile/:user_id/displayname
Content: JSON object containing the following keys:
displayname: string of freeform text
Fetching a user account avatar URL::
GET $PREFIX/profile/:user_id/avatar_url
Returned content: JSON object containing the following keys:
avatar_url: string containing an http-scheme URL
As with displayname, this call may be used to fetch either the user's own, or
other users' avatar URL.
Setting a new avatar URL::
PUT $PREFIX/profile/:user_id/avatar_url
Content: JSON object containing the following keys:
avatar_url: string containing an http-scheme URL
Fetching combined account profile information::
GET $PREFIX/profile/:user_id
Returned content: JSON object containing the following keys:
displayname: string of freeform text
avatar_url: string containing an http-scheme URL
At the current time, this API simply returns the displayname and avatar URL
information, though it is intended to return more fields about the user's
profile once they are defined. Client implementations should take care not to
expect that these are the only two keys returned as future versions of this
specification may yield more keys here.
Security
--------
Rate limiting
~~~~~~~~~~~~~
Home servers SHOULD implement rate limiting to reduce the risk of being
overloaded. If a request is refused due to rate limiting, it should return a
standard error response of the form::
{
"errcode": "M_LIMIT_EXCEEDED",
"error": "string",
"retry_after_ms": integer (optional)
}
The ``retry_after_ms`` key SHOULD be included to tell the client how long they
have to wait in milliseconds before they can try again.
.. TODO-spec
- Surely we should recommend an algorithm for the rate limiting, rather than letting every
homeserver come up with their own idea, causing totally unpredictable performance over
federated rooms?
End-to-End Encryption
~~~~~~~~~~~~~~~~~~~~~
.. TODO-doc
- Why is this needed.
- Overview of process
- Implementation
Content repository
------------------
.. NOTE::
This section is a work in progress.
.. TODO-spec
- path to upload
- format for thumbnail paths, mention what it is protecting against.
- content size limit and associated M_ERROR.
Address book repository
-----------------------
.. NOTE::
This section is a work in progress.
.. TODO-spec
- format: POST(?) wodges of json, some possible processing, then return wodges of json on GET.
- processing may remove dupes, merge contacts, pepper with extra info (e.g. matrix-ability of
contacts), etc.
- Standard json format for contacts? Piggy back off vcards?
.. Links through the external API docs are below
.. =============================================
.. |createRoom| replace:: ``/createRoom``
.. _createRoom: /docs/api/client-server/#!/-rooms/create_room
.. |initialSync| replace:: ``/initialSync``
.. _initialSync: /docs/api/client-server/#!/-events/initial_sync
.. |/rooms/<room_id>/initialSync| replace:: ``/rooms/<room_id>/initialSync``
.. _/rooms/<room_id>/initialSync: /docs/api/client-server/#!/-rooms/get_room_sync_data
.. |login| replace:: ``/login``
.. _login: /docs/api/client-server/#!/-login
.. |register| replace:: ``/register``
.. _register: /docs/api/client-server/#!/-registration
.. |/rooms/<room_id>/messages| replace:: ``/rooms/<room_id>/messages``
.. _/rooms/<room_id>/messages: /docs/api/client-server/#!/-rooms/get_messages
.. |/rooms/<room_id>/members| replace:: ``/rooms/<room_id>/members``
.. _/rooms/<room_id>/members: /docs/api/client-server/#!/-rooms/get_members
.. |/rooms/<room_id>/state| replace:: ``/rooms/<room_id>/state``
.. _/rooms/<room_id>/state: /docs/api/client-server/#!/-rooms/get_state_events
.. |/rooms/<room_id>/send/<event_type>| replace:: ``/rooms/<room_id>/send/<event_type>``
.. _/rooms/<room_id>/send/<event_type>: /docs/api/client-server/#!/-rooms/send_non_state_event
.. |/rooms/<room_id>/state/<event_type>/<state_key>| replace:: ``/rooms/<room_id>/state/<event_type>/<state_key>``
.. _/rooms/<room_id>/state/<event_type>/<state_key>: /docs/api/client-server/#!/-rooms/send_state_event
.. |/rooms/<room_id>/invite| replace:: ``/rooms/<room_id>/invite``
.. _/rooms/<room_id>/invite: /docs/api/client-server/#!/-rooms/invite
.. |/rooms/<room_id>/join| replace:: ``/rooms/<room_id>/join``
.. _/rooms/<room_id>/join: /docs/api/client-server/#!/-rooms/join_room
.. |/rooms/<room_id>/leave| replace:: ``/rooms/<room_id>/leave``
.. _/rooms/<room_id>/leave: /docs/api/client-server/#!/-rooms/leave
.. |/rooms/<room_id>/ban| replace:: ``/rooms/<room_id>/ban``
.. _/rooms/<room_id>/ban: /docs/api/client-server/#!/-rooms/ban
.. |/join/<room_alias_or_id>| replace:: ``/join/<room_alias_or_id>``
.. _/join/<room_alias_or_id>: /docs/api/client-server/#!/-rooms/join
.. _`Event Stream`: /docs/api/client-server/#!/-events/get_event_stream