Perf graphing (#46346)

* csv of memory usage

* Fix var

* Configurable output file

* Add cpu profiling

* Valdiate the existence of cgroup files

* Add guard to prevent exception when trying to reset max memory value

* to_bytes/to_text and docs updates

* Add support for CPU results

* Just track the max, don't log all results, and then calculate max

* Restore cgroup_memory_recap, and move new functionality into cgroup_perf_recap

* Add pid count tracking, restructure to support more profilers

* Add cli tool for graphing cgroup_perf_recap data

* csv_output_dir is a path

* Correct CALLBACK_NAME

* Include uuid in csv data

* fix linting errors

* Bump version_added

* Create helper funciton to create dict from list of keys, with callable default

* Updated notes to include pids

* Print a newline after each section

* Plugin improvements

* Add option to supporess recap display
* Add default for output directory
* Add option to dictate whether or not to write files
* Add JSON-seq output option

* s/uuid/task_uuid

* Use bytes for paths

* Increase polling interval length for pids/memory

* Reduce instance attrs, change how we invoke profilers

* Shorten some line lengths

* Remove more instance attrs

* Fix some typos

* document directory creation, and catch exceptions

* Enable per task file outputs, and filename customization

* s/per_task_file/file_per_task/g
pull/50664/head
Matt Martz 6 years ago committed by ansibot
parent 207848f354
commit 7a89d373ac

@ -0,0 +1,130 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# (c) 2018, Matt Martz <matt@sivel.net>
#
# This file is part of Ansible
#
# Ansible is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Ansible is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Ansible. If not, see <http://www.gnu.org/licenses/>.
# Make coding more python3-ish
from __future__ import (absolute_import, division, print_function)
__metaclass__ = type
import os
import argparse
import csv
from collections import namedtuple
try:
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
except ImportError:
raise SystemExit('matplotlib is required for this script to work')
Data = namedtuple('Data', ['axis_name', 'dates', 'names', 'values'])
def task_start_ticks(dates, names):
item = None
ret = []
for i, name in enumerate(names):
if name == item:
continue
item = name
ret.append((dates[i], name))
return ret
def create_axis_data(filename, relative=False):
x_base = None if relative else 0
axis_name, dummy = os.path.splitext(os.path.basename(filename))
dates = []
names = []
values = []
with open(filename) as f:
reader = csv.reader(f)
for row in reader:
if x_base is None:
x_base = float(row[0])
dates.append(mdates.epoch2num(float(row[0]) - x_base))
names.append(row[1])
values.append(float(row[3]))
return Data(axis_name, dates, names, values)
def create_graph(data1, data2, width=11.0, height=8.0, filename='out.png', title=None):
fig, ax1 = plt.subplots(figsize=(width, height), dpi=300)
task_ticks = task_start_ticks(data1.dates, data1.names)
ax1.grid(linestyle='dashed', color='lightgray')
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%X'))
ax1.plot(data1.dates, data1.values, 'b-')
if title:
ax1.set_title(title)
ax1.set_xlabel('Time')
ax1.set_ylabel(data1.axis_name, color='b')
for item in ax1.get_xticklabels():
item.set_rotation(60)
ax2 = ax1.twiny()
ax2.set_xticks([x[0] for x in task_ticks])
ax2.set_xticklabels([x[1] for x in task_ticks])
ax2.grid(axis='x', linestyle='dashed', color='lightgray')
ax2.xaxis.set_ticks_position('bottom')
ax2.xaxis.set_label_position('bottom')
ax2.spines['bottom'].set_position(('outward', 86))
ax2.set_xlabel('Task')
ax2.set_xlim(ax1.get_xlim())
for item in ax2.get_xticklabels():
item.set_rotation(60)
ax3 = ax1.twinx()
ax3.plot(data2.dates, data2.values, 'g-')
ax3.set_ylabel(data2.axis_name, color='g')
fig.tight_layout()
fig.savefig(filename, format='png')
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('files', nargs=2, help='2 CSV files produced by cgroup_perf_recap to graph together')
parser.add_argument('--relative', default=False, action='store_true',
help='Use relative dates instead of absolute')
parser.add_argument('--output', default='out.png', help='output path of PNG file: Default %s(default)s')
parser.add_argument('--width', type=float, default=11.0,
help='Width of output image in inches. Default %(default)s')
parser.add_argument('--height', type=float, default=8.0,
help='Height of output image in inches. Default %(default)s')
parser.add_argument('--title', help='Title for graph')
return parser.parse_args()
def main():
args = parse_args()
data1 = create_axis_data(args.files[0], relative=args.relative)
data2 = create_axis_data(args.files[1], relative=args.relative)
create_graph(data1, data2, width=args.width, height=args.height, filename=args.output, title=args.title)
print('Graph written to %s' % os.path.abspath(args.output))
if __name__ == '__main__':
main()

@ -0,0 +1,431 @@
# -*- coding: utf-8 -*-
# (c) 2018 Matt Martz <matt@sivel.net>
# GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt)
# Make coding more python3-ish
from __future__ import (absolute_import, division, print_function)
__metaclass__ = type
ANSIBLE_METADATA = {'metadata_version': '1.1',
'status': ['preview'],
'supported_by': 'community'}
DOCUMENTATION = '''
callback: cgroup_perf_recap
callback_type: aggregate
requirements:
- whitelist in configuration
- cgroups
short_description: Profiles system activity of tasks and full execution using cgroups
version_added: "2.8"
description:
- This is an ansible callback plugin utilizes cgroups to profile system activity of ansible and
individual tasks, and display a recap at the end of the playbook execution
notes:
- Requires ansible to be run from within a cgroup, such as with
C(cgexec -g cpuacct,memory,pids:ansible_profile ansible-playbook ...)
- This cgroup should only be used by ansible to get accurate results
- To create the cgroup, first use a command such as
C(sudo cgcreate -a ec2-user:ec2-user -t ec2-user:ec2-user -g cpuacct,memory,pids:ansible_profile)
options:
control_group:
required: True
description: Name of cgroups control group
env:
- name: CGROUP_CONTROL_GROUP
ini:
- section: callback_cgroup_perf_recap
key: control_group
cpu_poll_interval:
description: Interval between CPU polling for determining CPU usage. A lower value may produce inaccurate
results, a higher value may not be short enough to collect results for short tasks.
default: 0.25
type: float
env:
- name: CGROUP_CPU_POLL_INTERVAL
ini:
- section: callback_cgroup_perf_recap
key: cpu_poll_interval
display_recap:
description: Controls whether the recap is printed at the end, useful if you will automatically
process the output files
env:
- name: CGROUP_DISPLAY_RECAP
ini:
- section: callback_cgroup_perf_recap
key: display_recap
type: bool
default: true
file_name_format:
description: Format of filename. Accepts C(%(counter)s), C(%(task_uuid)s),
C(%(feature)s), C(%(ext)s). Defaults to C(%(feature)s.%(ext)s) when C(file_per_task) is C(False)
and C(%(counter)s-%(task_uuid)s-%(feature)s.%(ext)s) when C(True)
env:
- name: CGROUP_FILE_NAME_FORMAT
ini:
- section: callback_cgroup_perf_recap
key: file_name_format
type: str
default: '%(feature)s.%(ext)s'
output_dir:
description: Output directory for files containing recorded performance readings. If the value contains a
single %s, the start time of the playbook run will be inserted in that space. Only the deepest
level directory will be created if it does not exist, parent directories will not be created.
type: path
default: /tmp/ansible-perf-%s
env:
- name: CGROUP_OUTPUT_DIR
ini:
- section: callback_cgroup_perf_recap
key: output_dir
output_format:
description: Output format, either CSV or JSON-seq
env:
- name: CGROUP_OUTPUT_FORMAT
ini:
- section: callback_cgroup_perf_recap
key: output_format
type: str
default: csv
choices:
- csv
- json
file_per_task:
description: When set as C(True) along with C(write_files), this callback will write 1 file per task
instead of 1 file for the entire playbook run
env:
- name: CGROUP_FILE_PER_TASK
ini:
- section: callback_cgroup_perf_recap
key: file_per_task
type: bool
default: False
write_files:
description: Dictates whether files will be written containing performance readings
env:
- name: CGROUP_WRITE_FILES
ini:
- section: callback_cgroup_perf_recap
key: write_files
type: bool
default: false
'''
import csv
import datetime
import os
import time
import threading
from abc import ABCMeta, abstractmethod
from functools import partial
from ansible.module_utils._text import to_bytes, to_text
from ansible.module_utils.six import with_metaclass
from ansible.parsing.ajson import AnsibleJSONEncoder, json
from ansible.plugins.callback import CallbackBase
RS = '\x1e' # RECORD SEPARATOR
LF = '\x0a' # LINE FEED
def dict_fromkeys(keys, default=None):
d = {}
for key in keys:
d[key] = default() if callable(default) else default
return d
class BaseProf(with_metaclass(ABCMeta, threading.Thread)):
def __init__(self, path, obj=None, writer=None):
threading.Thread.__init__(self) # pylint: disable=non-parent-init-called
self.obj = obj
self.path = path
self.max = 0
self.running = True
self.writer = writer
def run(self):
while self.running:
self.poll()
@abstractmethod
def poll(self):
pass
class MemoryProf(BaseProf):
"""Python thread for recording memory usage"""
def poll(self):
with open(self.path) as f:
val = int(f.read().strip()) / 1024**2
if val > self.max:
self.max = val
if self.writer:
try:
self.writer(time.time(), self.obj.get_name(), self.obj._uuid, val)
except ValueError:
# We may be profiling after the playbook has ended
self.running = False
time.sleep(0.01)
class CpuProf(BaseProf):
def __init__(self, path, poll_interval=0.25, obj=None, writer=None):
super(CpuProf, self).__init__(path, obj=obj, writer=writer)
self._poll_interval = poll_interval
def poll(self):
with open(self.path) as f:
start_time = time.time() * 1000**2
start_usage = int(f.read().strip()) / 1000
time.sleep(self._poll_interval)
with open(self.path) as f:
end_time = time.time() * 1000**2
end_usage = int(f.read().strip()) / 1000
val = (end_usage - start_usage) / (end_time - start_time) * 100
if val > self.max:
self.max = val
if self.writer:
try:
self.writer(time.time(), self.obj.get_name(), self.obj._uuid, val)
except ValueError:
# We may be profiling after the playbook has ended
self.running = False
class PidsProf(BaseProf):
def poll(self):
with open(self.path) as f:
val = int(f.read().strip())
if val > self.max:
self.max = val
if self.writer:
try:
self.writer(time.time(), self.obj.get_name(), self.obj._uuid, val)
except ValueError:
# We may be profiling after the playbook has ended
self.running = False
time.sleep(0.01)
def csv_writer(writer, timestamp, task_name, task_uuid, value):
writer.writerow([timestamp, task_name, task_uuid, value])
def json_writer(writer, timestamp, task_name, task_uuid, value):
data = {
'timestamp': timestamp,
'task_name': task_name,
'task_uuid': task_uuid,
'value': value,
}
writer.write('%s%s%s' % (RS, json.dumps(data, cls=AnsibleJSONEncoder), LF))
class CallbackModule(CallbackBase):
CALLBACK_VERSION = 2.0
CALLBACK_TYPE = 'aggregate'
CALLBACK_NAME = 'cgroup_perf_recap'
CALLBACK_NEEDS_WHITELIST = True
def __init__(self, display=None):
super(CallbackModule, self).__init__(display)
self._features = ('memory', 'cpu', 'pids')
self._units = {
'memory': 'MB',
'cpu': '%',
'pids': '',
}
self.task_results = dict_fromkeys(self._features, default=list)
self._profilers = dict.fromkeys(self._features)
self._files = dict.fromkeys(self._features)
self._writers = dict.fromkeys(self._features)
self._file_per_task = False
self._counter = 0
def _open_files(self, task_uuid=None):
output_format = self._output_format
output_dir = self._output_dir
for feature in self._features:
data = {
'counter': to_bytes(self._counter),
'task_uuid': to_bytes(task_uuid),
'feature': to_bytes(feature),
'ext': to_bytes(output_format)
}
if self._files.get(feature):
try:
self._files[feature].close()
except Exception:
pass
filename = self._file_name_format % data
self._files[feature] = open(os.path.join(output_dir, filename), 'w+')
if output_format == b'csv':
self._writers[feature] = partial(csv_writer, csv.writer(self._files[feature]))
elif output_format == b'json':
self._writers[feature] = partial(json_writer, self._files[feature])
def set_options(self, task_keys=None, var_options=None, direct=None):
super(CallbackModule, self).set_options(task_keys=task_keys, var_options=var_options, direct=direct)
cpu_poll_interval = self.get_option('cpu_poll_interval')
self._display_recap = self.get_option('display_recap')
control_group = to_bytes(self.get_option('control_group'), errors='surrogate_or_strict')
self.mem_max_file = b'/sys/fs/cgroup/memory/%s/memory.max_usage_in_bytes' % control_group
mem_current_file = b'/sys/fs/cgroup/memory/%s/memory.usage_in_bytes' % control_group
cpu_usage_file = b'/sys/fs/cgroup/cpuacct/%s/cpuacct.usage' % control_group
pid_current_file = b'/sys/fs/cgroup/pids/%s/pids.current' % control_group
for path in (self.mem_max_file, mem_current_file, cpu_usage_file, pid_current_file):
try:
with open(path) as f:
pass
except Exception as e:
self._display.warning(
u'Cannot open %s for reading (%s). Disabling %s' % (to_text(path), to_text(e), self.CALLBACK_NAME)
)
self.disabled = True
return
try:
with open(self.mem_max_file, 'w+') as f:
f.write('0')
except Exception as e:
self._display.warning(
u'Unable to reset max memory value in %s: %s' % (to_text(self.mem_max_file), to_text(e))
)
self.disabled = True
return
try:
with open(cpu_usage_file, 'w+') as f:
f.write('0')
except Exception as e:
self._display.warning(
u'Unable to reset CPU usage value in %s: %s' % (to_text(cpu_usage_file), to_text(e))
)
self.disabled = True
return
self._profiler_map = {
'memory': partial(MemoryProf, mem_current_file),
'cpu': partial(CpuProf, cpu_usage_file, poll_interval=cpu_poll_interval),
'pids': partial(PidsProf, pid_current_file),
}
write_files = self.get_option('write_files')
file_per_task = self.get_option('file_per_task')
self._output_format = to_bytes(self.get_option('output_format'))
output_dir = to_bytes(self.get_option('output_dir'), errors='surrogate_or_strict')
try:
output_dir %= to_bytes(datetime.datetime.now().isoformat())
except TypeError:
pass
self._output_dir = output_dir
file_name_format = to_bytes(self.get_option('file_name_format'))
if write_files:
if file_per_task:
self._file_per_task = True
if file_name_format == b'%(feature)s.%(ext)s':
file_name_format = b'%(counter)s-%(task_uuid)s-%(feature)s.%(ext)s'
else:
file_name_format = to_bytes(self.get_option('file_name_format'))
self._file_name_format = file_name_format
if not os.path.exists(output_dir):
try:
os.mkdir(output_dir)
except Exception as e:
self._display.warning(
u'Could not create the output directory at %s: %s' % (to_text(output_dir), to_text(e))
)
self.disabled = True
return
if not self._file_per_task:
self._open_files()
def _profile(self, obj=None):
prev_task = None
results = dict.fromkeys(self._features)
try:
for name, prof in self._profilers.items():
prof.running = False
for name, prof in self._profilers.items():
results[name] = prof.max
prev_task = prof.obj
except AttributeError:
pass
for name, result in results.items():
if result is not None:
try:
self.task_results[name].append((prev_task, result))
except ValueError:
pass
if obj is not None:
if self._file_per_task:
self._open_files(task_uuid=obj._uuid)
for feature in self._features:
self._profilers[feature] = self._profiler_map[feature](obj=obj, writer=self._writers[feature])
self._profilers[feature].start()
self._counter += 1
def v2_playbook_on_task_start(self, task, is_conditional):
self._profile(task)
def v2_playbook_on_stats(self, stats):
self._profile()
for dummy, f in self._files.items():
try:
f.close()
except Exception:
pass
if not self._display_recap:
return
with open(self.mem_max_file) as f:
max_results = int(f.read().strip()) / 1024 / 1024
self._display.banner('CGROUP PERF RECAP')
self._display.display('Memory Execution Maximum: %0.2fMB\n' % max_results)
for name, data in self.task_results.items():
if name == 'memory':
continue
try:
self._display.display(
'%s Execution Maximum: %0.2f%s\n' % (name, max((t[1] for t in data)), self._units[name])
)
except Exception as e:
self._display.display('%s profiling error: no results collected: %s\n' % (name, e))
self._display.display('\n')
for name, data in self.task_results.items():
if data:
self._display.display('%s:\n' % name)
for task, value in data:
self._display.display('%s (%s): %0.2f%s' % (task.get_name(), task._uuid, value, self._units[name]))
self._display.display('\n')
Loading…
Cancel
Save