The Cisco Application Centric Infrastructure (ACI) allows application requirements to define the network. This architecture simplifies, optimizes, and accelerates the entire application deployment life cycle.
The APIC manages the scalable ACI multi-tenant fabric. The APIC provides a unified point of automation and management, policy programming, application deployment, and health monitoring for the fabric. The APIC, which is implemented as a replicated synchronized clustered controller, optimizes performance, supports any application anywhere, and provides unified operation of the physical and virtual infrastructure.
The APIC enables network administrators to easily define the optimal network for applications. Data center operators can clearly see how applications consume network resources, easily isolate and troubleshoot application and infrastructure problems, and monitor and profile resource usage patterns.
The Cisco Application Policy Infrastructure Controller (APIC) API enables applications to directly connect with a secure, shared, high-performance resource pool that includes network, compute, and storage capabilities.
The Cisco Application Centric Infrastructure (ACI) Fabric includes Cisco Nexus 9000 Series switches with the APIC to run in the leaf/spine ACI fabric mode. These switches form a "fat-tree" network by connecting each leaf node to each spine node; all other devices connect to the leaf nodes. The APIC manages the ACI fabric.
The ACI fabric provides consistent low-latency forwarding across high-bandwidth links (40 Gbps, with a 100-Gbps future capability). Traffic with the source and destination on the same leaf switch is handled locally, and all other traffic travels from the ingress leaf to the egress leaf through a spine switch. Although this architecture appears as two hops from a physical perspective, it is actually a single Layer 3 hop because the fabric operates as a single Layer 3 switch.
The ACI fabric object-oriented operating system (OS) runs on each Cisco Nexus 9000 Series node. It enables programming of objects for each configurable element of the system. The ACI fabric OS renders policies from the APIC into a concrete model that runs in the physical infrastructure. The concrete model is analogous to compiled software; it is the form of the model that the switch operating system can execute.
All the switch nodes contain a complete copy of the concrete model. When an administrator creates a policy in the APIC that represents a configuration, the APIC updates the logical model. The APIC then performs the intermediate step of creating a fully elaborated policy that it pushes into all the switch nodes where the concrete model is updated.
The APIC is responsible for fabric activation, switch firmware management, network policy configuration, and instantiation. While the APIC acts as the centralized policy and network management engine for the fabric, it is completely removed from the data path, including the forwarding topology. Therefore, the fabric can still forward traffic even when communication with the APIC is lost.
A complete list of existing ACI modules is available for the latest stable release on the :ref:`list of network modules <network_modules>`. You can also view the `current development version <http://docs.ansible.com/ansible/devel/modules/list_of_network_modules.html#aci>`_.
After registering the return values of the `aci_tenant <aci_tenant_module>` task as shown above, you can access all tenant information from variable ``all_tenants``.
Port to use for communication. (Defaults to ``443`` for HTTPS, and ``80`` for HTTP)
username
User name used to log on to the APIC. (Defaults to ``admin``)
password
Password for ``username`` to log on to the APIC, using password-based authentication.
private_key
Private key for ``username`` to log on to APIC, using signature-based authentication. *New in version 2.5*
certificate_name
Name of the certificate in the ACI Web GUI. (Defaults to ``private_key`` file base name) *New in version 2.5*
timeout
Timeout value for socket-level communication.
use_proxy
Use system proxy settings. (Defaults to ``yes``)
use_ssl
Use HTTPS or HTTP for APIC REST communication. (Defaults to ``yes``)
validate_certs
Validate certificate when using HTTPS communication. (Defaults to ``yes``)
output_level
Influence the level of detail ACI modules return to the user. (One of ``normal``, ``info`` or ``debug``) *New in version 2.5*
Proxy support
.............
By default, if an environment variable ``<protocol>_proxy`` is set on the target host, requests will be sent through that proxy. This behaviour can be overridden by setting a variable for this task (see :ref:`playbooks_environment`), or by using the ``use_proxy`` module parameter.
HTTP redirects can redirect from HTTP to HTTPS so you should be sure that your proxy environment for both protocols is correct.
If you don't need proxy support, but the system may have it configured nevertheless, you can add this parameter setting: ``use_proxy: no`` to avoid accidental proxy usage.
..hint:: Selective proxy support using the ``no_proxy`` environment variable is also supported.
Password-based authentication is very simple to work with, but it is not the most efficient form of authentication from ACI's point-of-view as it requires a separate login-request and an open session to work. To avoid having your session time-out and requiring another login, you can use the more efficient Signature-based authentication.
..note:: Password-based authentication also may trigger anti-DoS measures in ACI v3.1+ that causes session throttling and results in HTTP 503 errors and login failures.
The "Vault" feature of Ansible allows you to keep sensitive data such as passwords or keys in encrypted files, rather than as plain text in your playbooks or roles. These vault files can then be distributed or placed in source control. See :ref:`playbooks_vault` for more information.
Using signature-based authentication is more efficient and more reliable than password-based authentication.
Generate certificate and private key
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Signature-based authentication requires a (self-signed) X.509 certificate with private key, and a configuration step for your AAA user in ACI. To generate a working X.509 certificate and private key, use the following procedure:
..hint:: If you use a certificate name in ACI that matches the private key's basename, you can leave out the ``certificate_name`` parameter like the example above.
Detailed information about Signature-based Authentication is available from `Cisco APIC Signature-Based Transactions <https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_KB_Signature_Based_Transactions.html>`_.
While already a lot of ACI modules exists in the Ansible distribution, and the most common actions can be performed with these existing modules, there's always something that may not be possible with off-the-shelf modules.
The :ref:`aci_rest <aci_rest_module>` module provides you with direct access to the APIC REST API and enables you to perform any task not already covered by the existing modules. This may seem like a complex undertaking, but you can generate the needed REST payload for any action performed in the ACI web interface effortlessly.
Because the APIC REST API is intrinsically idempotent and can report whether a change was made, the :ref:`aci_rest <aci_rest_module>` module automatically inherits both capabilities and is a first-class solution for automating your ACI infrastructure. As a result, users that require more powerful low-level access to their ACI infrastructure don't have to give up on idempotency and don't have to guess whether a change was performed when using the :ref:`aci_rest <aci_rest_module>` module.
The :ref:`aci_rest <aci_rest_module>` module accepts the native XML and JSON payloads, but additionally accepts inline YAML payload (structured like JSON). The XML payload requires you to use a path ending with ``.xml`` whereas JSON or YAML require the path to end with ``.json``.
..hint:: The XML format is more practical when there is a need to template the REST payload (inline), but the YAML format is more convenient for maintaing your infrastructure-as-code and feels more naturely integrated with Ansible playbooks. The dedicated modules offer a more simple, abstracted, but also a more limited experience. Use what feels best for your use-case.
-`APIC REST API Configuration Guide <https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide.html>`_ -- Detailed guide on how the APIC REST API is designed and used, incl. many examples
-`APIC Management Information Model reference <https://developer.cisco.com/docs/apic-mim-ref/>`_ -- Complete reference of the APIC object model
You can use the below task after you started to build your APICs and configured the cluster to wait until all the APICs have come online. It will wait until the number of controllers equals the number listed in the ``apic`` inventory group.
The below example waits until the cluster is fully-fit. In this example you know the number of APICs in the cluster and you verify each APIC reports a 'fully-fit' status.
In case you receive this error while you are certain your :ref:`aci_rest <aci_rest_module>` payload and object classes are seemingly correct, the issue might be that your payload is not in fact correct JSON (e.g. the sent payload is using single quotes, rather than double quotes), and as a result the APIC is not correctly parsing your object classes from the payload. One way to avoid this is by using a YAML or an XML formatted payload, which are easier to construct correctly and modify later.
APIC Error 400: invalid data at line '1'. Attributes are missing, tag 'attributes' must be specified first, before any other tag
Although the JSON specification allows unordered elements, the APIC REST API requires that the JSON ``attributes`` element precede the ``children`` array or other elements. So you need to ensure that your payload conforms to this requirement. Sorting your dictionary keys will do the trick just fine. If you don't have any attributes, it may be necessary to add: ``attributes: {}`` as the APIC does expect the entry to precede any ``children``.
APIC Error 801: property descr of uni/tn-TENANT/ap-AP failed validation for value 'A "legacy" network'
Some values in the APIC have strict format-rules to comply to, and the internal APIC validation check for the provided value failed. In the above case, the ``description`` parameter (internally known as ``descr``) only accepts values conforming to `Regex: [a-zA-Z0-9\\!#$%()*,-./:;@ _{|}~?&+]+ <https://pubhub-prod.s3.amazonaws.com/media/apic-mim-ref/docs/MO-fvAp.html#descr>`_, in general it must not include quotes or square brackets.
The :ref:`aci_rest <aci_rest_module>` module is a wrapper around the APIC REST API. As a result any issues related to the APIC will be reflected in the use of this module.
Too many consecutive API calls may result in connection throttling
Starting with ACI v3.1 the APIC will actively throttle password-based authenticated connection rates over a specific treshold. This is as part of an anti-DDOS measure but can act up when using Ansible with ACI using password-based authentication. Currently, one solution is to increase this treshold within the nginx configuration, but using signature-based authentication is recommended.
**NOTE:** It is advisable to use signature-based authentication with ACI as it not only prevents connection-throttling, but also improves general performance when using the ACI modules.
Specific requests may not reflect changes correctly (`#35401 <https://github.com/ansible/ansible/issues/35041>`_)
There is a known issue where specific requests to the APIC do not properly reflect changed in the resulting output, even when we request those changes explicitly from the APIC. In one instance using the path ``api/node/mo/uni/infra.xml`` fails, where ``api/node/mo/uni/infra/.xml`` does work correctly.
**NOTE:** A workaround is to register the task return values (e.g. ``register: this``) and influence when the task should report a change by adding: ``changed_when: this.imdata != []``.
Specific requests are known to not be idempotent (`#35050 <https://github.com/ansible/ansible/issues/35050>`_)
The behaviour of the APIC is inconsistent to the use of ``status="created"`` and ``status="deleted"``. The result is that when you use ``status="created"`` in your payload the resulting tasks are not idempotent and creation will fail when the object was already created. However this is not the case with ``status="deleted"`` where such call to an non-existing object does not cause any failure whatsoever.
Setting user password is not idempotent (`#35544 <https://github.com/ansible/ansible/issues/35544>`_)
Due to an inconsistency in the APIC REST API, a task that sets the password of a locally-authenticated user is not idempotent. The APIC will complain with message ``Password history check: user dag should not use previous 5 passwords``.
If you have specific issues with the ACI modules, or a feature request, or you like to contribute to the ACI project by proposing changes or documentation updates, look at the Ansible Community wiki ACI page at: https://github.com/ansible/community/wiki/Network:-ACI
You will find our roadmap, an overview of open ACI issues and pull-requests and more information about who we are. If you have an interest in using ACI with Ansible, feel free to join ! We occasionally meet online to track progress and prepare for new Ansible releases.